Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính khoảng cách theo yêu cầu

    Một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với tốc độ ban đầu v_{0} = 196\ m/s (bỏ qua sức cản của không khí). Tìm thời điểm tại đó tốc độ của viên đạn bằng 0. Khi đó viên đạn cách mặt đất bao nhiêu mét (lấy g = 9,8\ m/s^{2} )?

    Hướng dẫn:

    Phương trình của viên đạn đi theo phương thẳng đứng được cho bởi:

    y = - \frac{1}{2}gt^{2} - v_{o}t < =
> y = - 4,9t^{2} + 196t

    Vận tốc viên đạn tại thời điểm t là:

    v = y' = - 9,8t + 196

    Từ đó, ta nhận thấy:

    Thời điểm tại đó tốc độ của viên đạn bằng 0 được cho bởi:

    - 9,8t + 196 = 0 \Leftrightarrow t =
20s

    Khi đó viên đạn cách mặt đất một khoảng cho bởi:

    y = - 4,9.20^{2} + 196.20 =
1960m

  • Câu 2: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    a) Đúng.

    b) Sai. Vì không đủ cơ sở để xác định hàm số f(x) nên không xác định được giá trị cực tiểu.

    c) Sai.

    Ta có: \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 2xf'\left( x^{2} \right) = 2x\left( x^{2} + 1
\right)e^{x^{2}}

    \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 0 \Leftrightarrow x = 0

    Do đó, hàm số nghịch biến trên ( - 1;\
0).

    d) Sai.

    Ta có:

    g'(x) = \frac{1}{x}f'\left( \ln x
\right) - 2mx + 4m

    = \frac{1}{x}\left( \ln x + 1
\right)e^{\ln x} - 2mx + 4m = \ln x + 1 - 2mx + 4m

    Hàm số nghịch biến trong khoảng \left(
e;\ e^{2024} \right) khi và chỉ khi \ln x + 1 - mx + 4m \leq 0,\forall x \in \left(
e;\ e^{2024} \right)

    \Leftrightarrow 2m \geq \frac{\ln x +
1}{x - 2},\forall x \in \left( e;\ e^{2024} \right).

    Xét hàm số g(x) = \frac{\ln x + 1}{x -
2},x \in \left( e;\ e^{2024} \right)

    Ta có g'(x) = \frac{\frac{1}{x}(x +
1) - \ln x - 1}{(x - 2)^{2}} =
\frac{1 - x\ln x}{x(x - 2)^{2}},x \in \left( e;\ e^{2024}
\right)

    g'(x) < 0,\forall x \in \left(
e;\ e^{2024} \right)

    Bảng biến thiên:

    Ảnh có chứa hàng, ảnh chụp màn hình, biểu đồ, biên laiMô tả được tạo tự động

    Quan sát bảng biến thiên ta có 2m \geq
\frac{2}{e - 2} \Leftrightarrow m \geq \frac{1}{e - 2} \Rightarrow m
\geq 2.

    Do m \in \lbrack - 2024;\
2025\rbrack, m\mathbb{\in
Z} nên m \in \left\{ 2;\ 3;\ ...\
;\ 2025 \right\}.

    Vậy có 2024 giá trị nguyên của tham số m.

  • Câu 3: Vận dụng
    Chọn công thức thích hợp

    Một cửa hàng bán dầu muốn đóng những thùng đựng dầu có thể tích không đổi bằng V = 30dm^{3}, thùng có dạng hình hộp chữ nhật có nắp; đáy là hình vuông cạnh x\ dm(x >
0). Trên thị trường, giá nguyên vật liệu làm đáy và nắp thùng là 120\ 000 đồng/1\ m^{2}, giá nguyên vật liệu làm mặt xung quanh của thùng là 100\ 000 đồng/1\ m^{2}. Chi phí để cửa hàng làm một thùng đựng dầu được cho bởi công thức?

    Hướng dẫn:

    Hình vẽ minh họa

    Thể tích của thùng V = 30\
dm^{3}, vì x(x > 0, đơn vị dm) là cạnh đáy của thùng nên chiều cao của thùng là: h = \frac{V}{x^{2}} =
\frac{30}{x^{2}}.

    Giá nguyên vật liệu làm đáy và nắp thùng là 1\ 200 đồng/1dm^{2}, giá nguyên vật liệu làm mặt xung quanh của thùng là 1\ 000 đồng/1\ dm^{2}.

    Diện tích mặt đáy, nắp thùng và diện tích xung quanh lần lượt là: x^{2};\ x^{2};4xh. Chi phí làm một thùng đựng dầu là:

    f(x) = 2.1,2.x^{2} + 1.4xh = 2,4x^{2} +
\frac{120}{x} = \frac{12}{5}x^{2} + \frac{120}{x} .

  • Câu 4: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 2mx + m +
2}{x - m}, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ m \right\}. Đúng||Sai

    b) Có bốn giá trị nguyên của tham số m để hàm số có hai điểm cực trị. Sai||Đúng

    c) Hàm số đạt cực đại tại x = -
1 khi m = \frac{1}{2}. Đúng||Sai

    d) Khi đồ thị hàm số có hai điểm cực trị thì đường thẳng đi qua hai điểm cực trị của đồ thị hàm số có phương trình y = 2x - 2m. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 2mx + m +
2}{x - m}, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ m \right\}. Đúng||Sai

    b) Có bốn giá trị nguyên của tham số m để hàm số có hai điểm cực trị. Sai||Đúng

    c) Hàm số đạt cực đại tại x = -
1 khi m = \frac{1}{2}. Đúng||Sai

    d) Khi đồ thị hàm số có hai điểm cực trị thì đường thẳng đi qua hai điểm cực trị của đồ thị hàm số có phương trình y = 2x - 2m. Đúng||Sai

    a) Hàm số xác định khi x - m \neq 0
\Leftrightarrow x \neq m nên tập xác định là D\mathbb{= R}\backslash\left\{ m
\right\}. Suy ra mệnh đề đúng.

    b) Đạo hàm y' = \frac{x^{2} - 2mx +
2m^{2} - m - 2}{(x - m)^{2}}.

    Để hàm số có hai điểm cực trị thì y'
= 0 có hai nghiệm phân biệt khác m hay g(x) =
x^{2} - 2mx + 2m^{2} - m - 2 có hai ngiệm phân biệt khác m.

    \left\{ \begin{matrix}
\Delta' > 0 \\
g(m) \neq 0
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + m + 2 > 0 \\
m^{2} - m - 2 \neq 0
\end{matrix} \right.

    \Leftrightarrow m \in ( - 1;\
2)

    m nguyên nên m = \left\{ 0;\ 1 \right\} nên có hai giá trị nguyên của tham số m thoả mãn. Suy ra mệnh đề sai.

    c) Hàm số đạt cực trị tại x = -
1 thì y^{'( - 1)} =
0

    \Leftrightarrow 2m^{2} + m - 1 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = \frac{1}{2}
\end{matrix} \right.

    Thử lại với m = \frac{1}{2} thì y' = \frac{x^{2} - x - 2}{x -
\frac{1}{2}} và có bảng biến thiên như sau:

    A diagram of a mathematical equationDescription automatically generated with medium confidence

    Vậy với m = \frac{1}{2} thoả mãn yêu cầu bài toán. Suy ra mệnh đề đúng.

    d) Cho hàm số y =
\frac{u(x)}{v(x)}. Nếu hàm số có hai điểm cực trị thì phương trình đường thẳng đi qua hai điểm cực trị có dạng y = \frac{u'(x)}{v'(x)}.

    Áp dụng vào bài toán ta được y =
\frac{\left( x^{2} - 2mx + m + 2 \right)'}{(x - m)'} = 2x -
2m. Suy ra mệnh đề đúng.

  • Câu 5: Thông hiểu
    Tìm vận tốc tức

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Vận tốc tức thời và gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s) lần lượt là:

    Hướng dẫn:

    Ta có:

    v = x' = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right)

    a = v' = - 4\pi^{2}\cos\left( \pi t
- \frac{2\pi}{3} \right)

    a) Vận tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    v = - 4\pi\sin\left( \pi.3 -
\frac{2\pi}{3} \right) = - 2\sqrt{3}\pi(cm/s)

    Gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    a = - 4\pi^{2}\cos\left( 3\pi -
\frac{2\pi}{3} \right) = - 2\pi^{2}\left( cm/s^{2} \right)

  • Câu 6: Vận dụng cao
    Tính chi phí sản xuất máy vô tuyến

    Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Hãy tính chi phí sản xuất máy vô tuyến thứ 100.

    Hướng dẫn:

    Chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Chi phí biên được xác định bởi hàm số C'(Q)

    = > C'(Q) = \lim_{Q \rightarrow Q
+ 1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( (Q + 1)^{2} + 80(Q
+ 1) + 3500 \right)}{Q - Q - 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( Q^{2} + 2Q + 1 + 80Q
+ 80 + 3500 \right)}{- 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}(2Q + 80)

    Chi phí sản xuất 101 máy vô tuyến là:

    C(101) = 101^{2} + 80.101 + 3500 =
21781(USD)

    Chi phí sản xuất 100 máy vô tuyến là:

    C(100) = 100^{2} + 80.100 + 3500 =
21500(USD)

    Chi phí sản xuất máy vô tuyến thứ 100 là

    C(101) - C(100) = 281(USD)

  • Câu 7: Vận dụng cao
    Chọn phương án đúng nhất

    Trên mặt phẳng tọa độ (Oxy), cho điểm A(3;2) Một đường thẳng đi qua A cắt trục hoành tại B, cắt trục tung tại C tạo thành một tam giác OBC, với O là gốc tọa độ (tham khảo hình vẽ).

    Tìm toạ độ điểm B để diện tích tam giác OBC là nhỏ nhất.

    Hướng dẫn:

    + Đường thằng qua AB có phương trinh \frac{y - 2}{- 2} = \frac{x - 3}{t - 3}. Hay y = 2 - \frac{2}{t - 3}(x -
3).

    Vậy điểm C có tung độ là y_{C} = 2 + \frac{6}{t - 3}.

    Diện tích tam giác OBC là S(t) = t \cdot y_{C} =
\frac{2t^{2}}{t - 3}.

    + Khảo sát sự biến thiên của hàm số y =
S(t).

    Tập xác đỉnh: (3; +
\infty).

    Sự biến thiên: Ta có S(t) = 2t + 6 +
\frac{18}{t - 3}.

    - S'(t) = \frac{2t^{2} - 12t}{(t -
3)^{2}},S^{'}(t) = 0 \Leftrightarrow t = 6 (do t > 3 ).

    - Hàm số S(t) nghịch biến trên khoảng (3; 6), đồng biến trên khoảng (6; +
\infty).

    - Hàm số đạt cực tiểu tại t = 6 với S_{CT} = 24.

    - Giới hạn vô cực: \lim_{t \rightarrow
3^{+}}S(t) = + \infty, giới hạn tại vô cực: \lim_{t \rightarrow + \infty}S(t) = +
\infty.

    - Bảng biến thiên:

    Diện tích tam giác OBC nhỏ nhất với điểm B(6;0).

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

    a) ĐÚNG

    y' = \frac{\left( x^{2} + 2x + 5\right)'(x + 1) - (x + 1)'\left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}

    = \frac{(2x + 2)(x + 1) - \left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}= \frac{x^{2} + 2x - 3}{(x + 1)^{2}}.

    b) SAI

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 3
\end{matrix} \right.\  \Rightarrow Hàm số có hai điểm cực trị là A(1;4), B( - 3; - 4).

    Gọi phương trình đường thẳng qua hai điểm cực trị có dạng y = ax + b.

    Khi đó ta có hệ phương trình \left\{
\begin{matrix}
a + b = 4 \\
- 3a + b = - 4
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2
\end{matrix} \right..

    Phương trình đường thẳng ABy = 2x + 2.

    c) ĐÚNG

    y = x + 1 + \frac{4}{x + 1}

    \lim_{x \rightarrow \pm \infty}\left( y -
(x + 1) \right) = \lim_{x \rightarrow \pm \infty}\frac{4}{x + 1} = 0
\Rightarrow y = x + 1 là đường tiệm cận xiên của đồ thị hàm số.

    d) ĐÚNG

  • Câu 9: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai.

    Đồ thị (C) có tiệm cận đứng là x = - 1.

    b) Đúng.

    Đồ thị (C) cắt trục Oy tại M(0; -
1).

    Ta có y' = 1 + \frac{1}{(x + 1)^{2}}
\Rightarrow y'(0) = 2.

    Phương trình tiếp tuyến của (C) tại My = 2x - 1.

    c) Sai.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{1}\left( x_{1};y_{1}
\right) có hệ số góc k_{1} =
y'\left( x_{1} \right) = 1 + \frac{1}{\left( x_{1} + 1 \right)^{2}}
> 0.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{2}\left( x_{2};y_{2}
\right) có hệ số góc k_{2} =
y'\left( x_{2} \right) = 1 + \frac{1}{\left( x_{2} + 1 \right)^{2}}
> 0.

    Khi đó k_{1}k_{2} > 0 nên không tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.

    d) Đúng.

    Phương trình hoành độ giao điểm giữa đồ thị (C) và đường thẳng y = k

    x - \frac{1}{x + 1} = k \Leftrightarrow
\left\{ \begin{matrix}
x \neq - 1 \\
x^{2} + x - 1 = k(x + 1).\ \ \ (1)
\end{matrix} \right.\ \ (I)

    Nhận thấy x = - 1 không thỏa mãn nên (I) \Leftrightarrow x^{2} + (1 - k)x - 1
- k = 0.\ \ (2)

    Phương trình có \Delta = (1 - k)^{2} +
4(1 + k) = k^{2} + 2k + 5 = (k + 1)^{2} + 4 > 0,\forall
k.

    Do đó, đường thẳng y = k luôn cắt đồ thị (C) tại hai điểm phân biệt A\left( x_{A};k \right),B\left( x_{B};k
\right) với x_{A},x_{B} là nghiệm của phương trình.

    Theo Vi-et thì x_{A}x_{B} = - 1 -
k.

    Ta có OA\bot OB \Leftrightarrow
\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Leftrightarrow
x_{A}x_{B} + k^{2} = 0 \Leftrightarrow - 1 - k + k^{2} = 0.

    Vậy OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1= 0.

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Số dân của một thị trấn sau tnăm kể từ đầu năm 2020 được tính bởi công thức f(t) = t + \frac{9}{t + 1},\ f(t) được tính bằng vạn người. Xem f(t)là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) và đạo hàm của hàm số f(t) biểu thị tốc độ tăng dân số của thị trấn. Trong khoảng thời gian nào dưới đây thì dân số của thị trấn này giảm?

    Hướng dẫn:

    Tốc độ tăng dân số của thị trấn là f'(t) = 1 - \frac{9}{(t + 1)^{2}}

    Ta cần tìm t \geq 0 sao cho f'(t) = 1 - \frac{9}{(t + 1)^{2}} \leq
0.

    Ta có f'(t) \leq 0 \Leftrightarrow
t^{2} + 2t - 8 \leq 0 \Leftrightarrow - 4 \leq t \leq 2

    Kết hợp với điều kiện t \geq 0 ta có 0 \leq t \leq 2.

    Do đó dân số của thị trấn giảm trong khoảng thời gian từ đầu năm 2020 đến hết năm 2021.

  • Câu 11: Vận dụng
    Định số lượng sản phẩm theo yêu cầu

    Giả sử chi phí để sản xuất x sản phẩm của một nhà máy được cho bởi C(x) =
0,2x^{2} + 10x + 5(triệu đồng). Khi đó chi phí trung bình để sản xuất một đơn vị sản phẩm là f(x) =
\frac{C(x)}{x}. Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?

    Hướng dẫn:

    Khảo sát sự biến thiên của hàm số y =
f(x) = \frac{C(x)}{x} = \frac{0,2x^{2} + 10x + 5}{x}.

    Tập xác định: \lbrack 1; +
\infty).

    Sự biến thiên: Ta có f(x) = 0,2x + 10 +
\frac{5}{x}.

    - f'(x) = \frac{0,2x^{2} -
5}{x^{2}},f^{'}(x) = 0 \Leftrightarrow x = 5 (do x \geq 1 ).

    - Hàm số f(x) đồng biến trên khoảng (5; + \infty), nghịch biến trên khoàng (1;5).

    - Hàm số f(x) đạt cực tiều tại x = 5 với f_{CT} = 12.

    - Giới hạn tại vô cực: \lim_{x
\rightarrow + \infty}f(x) = + \infty.

    Bảng biến thiên:

    Số lượng sản phẩm cần sản xuất là x =
5 để chi phí trung bình là thấp nhất

  • Câu 12: Thông hiểu
    Tính vận tốc cực đại của hại

    Chuyển động của một hạt trên một dây rung được cho bởi công thức s(t) = 10 + \sqrt{2}\sin\left( 4\pi t +
\frac{\pi}{6} \right), trong đó s tính bằng centimét và t tính bằng giây. Vận tốc của hạt sau t giây là v(t). Vận tốc cực đại của hạt là bao nhiêu (làm tròn kết quả đến chữ số thập thứ nhất)?

    Hướng dẫn:

    Vận tốc của hạt sau t giây là: v(t) = s'(t) = 4\pi\sqrt{2}\cos\left(
4\pi t + \frac{\pi}{6} \right).

    Vận tốc cực đại của hạt là: v_{\max} =
4\pi\sqrt{2} \approx 17,8m/s, đạt được khi

    \left| \cos\left( 4\pi t + \frac{\pi}{6} \right)
\right| = 1 hay t = \frac{5}{24} +
\frac{k}{4},k\mathbb{\in N}.

  • Câu 13: Vận dụng
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Hỏi chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm bằng bao nhiêu?

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

    Ta có:C'(90) = 2.90 + 80 =
260.

    Dựa vào kết quả đó, ta thấy chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm là 260\
USD.

  • Câu 14: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    Đáp án là:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    a) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;50\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0 \Leftrightarrow
- 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow t \approx 18

    Ta có:

    h(0) = 250;h(18) = 8,08;h(50) =
250

    Do đó, \min_{\lbrack 0;50\rbrack}h(t) =
8,08 tại t \approx 18.

    Vậy tại thời điểm t \approx
18giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Suy ra mệnh đề đúng.

    b) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;70\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0
\Leftrightarrow - 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t \approx 18 \\
t \approx 55
\end{matrix} \right.

    Bảng biến thiên của hàm số h như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 1)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Suy ra mệnh đề đúng.

    c) Sai. Ta có v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 ≤ t ≤ 50.

    Khi đó v(t) = h'(t) = - 0,03t^{2} +
2,2t - 30 với t \in \lbrack
0;50\rbrack

    v(25) = - 0,03.25^{2} + 2,2.25 - 30 =
6,25. Suy ra mệnh đề sai.

    d) Sai. Tại thời điểm t = 25 , lúc đó t \in \lbrack 18;55\rbrack, căn cứ vào bảng biến thiên ở câu b), ta thấy rằng h'(t) > 0, tức là v(t) > 0, vậy vận tốc tức thời của con tàu đang tăng trở lại.

    Suy ra mệnh đề sai.

  • Câu 15: Thông hiểu
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Qmáy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Tìm hàm chi phí biên.

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

  • Câu 16: Vận dụng cao
    Tính số lượng vi khuẩn lớn nhất

    Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: N(t)
= 1000 + \frac{100t}{100 + t^{2}}(con),trong đó t là thời gian tính bằng giây. Tính số lượng vi khuẩn lớn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng.

    Hướng dẫn:

    Xét hàm số N(t) = 1000 + \frac{100t}{100
+ t^{2}}(t > 0).

    Ta có: N^{'}(t) = \frac{100 \cdot
\left( 100 + t^{2} \right) - 100t \cdot 2t}{\left( 100 + t^{2}
\right)^{2}} = \frac{100 \cdot \left( 100 - t^{2} \right)}{\left( 100 +
t^{2} \right)^{2}}.

    Khi đó, với t > 0,N^{'}(t) = 0
\Leftrightarrow 100 - t^{2} = 0 \Leftrightarrow t^{2} = 100
\Leftrightarrow t = 10.

    Bảng biến thiên của hàm số N(t) như sau:

    Căn cứ bảng biến thiên, ta thấy: Trên khoảng (0; + \infty), hàm số N(t) đạt giá trị lớn nhất bằng 1005 tại t = 10.

    Vậy số lượng vi khuẩn lớn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng là 1005 con.

  • Câu 17: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị là (C). Biết (C) có một điểm cực trị là A(1; - 1) và tâm đối xứng là I\left( \frac{2}{3}; - \frac{29}{27}
\right). Xét tính đúng sai của các mệnh đề dưới đây?

    a) (C) có một điểm cực trị là B\left( - \frac{1}{3}; - \frac{2}{27}
\right). Sai||Đúng

    b) a + b + c + d = - 1. Đúng||Sai

    c) Tiếp tuyến của (C) tại A song song với trục hoành. Đúng||Sai

    d) a + 2b + 3c + 4d = 4. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị là (C). Biết (C) có một điểm cực trị là A(1; - 1) và tâm đối xứng là I\left( \frac{2}{3}; - \frac{29}{27}
\right). Xét tính đúng sai của các mệnh đề dưới đây?

    a) (C) có một điểm cực trị là B\left( - \frac{1}{3}; - \frac{2}{27}
\right). Sai||Đúng

    b) a + b + c + d = - 1. Đúng||Sai

    c) Tiếp tuyến của (C) tại A song song với trục hoành. Đúng||Sai

    d) a + 2b + 3c + 4d = 4. Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    + Theo tính chất của đồ thị hàm số bậc ba, ta có:

    A,\ \ B là hai điểm cực trị và I là tâm đối xứng của (C) \Rightarrow I là trung điểm của AB

    \Rightarrow \left\{ \begin{matrix}
x_{B} = 2x_{I} - x_{A} = \frac{1}{3} \\
y_{B} = 2y_{I} - y_{A} = - \frac{31}{27}
\end{matrix} \right.

    \RightarrowCâu a sai.

    + Vì A là điểm cực trị của (C) nên A \in
(C) \Rightarrow a + b + c + d = -
1.

    \RightarrowCâu b đúng.

    + Vì A là điểm cực trị của (C) nên f'\left( x_{A} \right)= 0.

    Phương trình tiếp tuyến của (C) tại A là:

    y = f'\left( x_{A} \right)\left( x -
x_{A} \right) + y_{A} \Leftrightarrow y = - 1

    \Rightarrow Tiếp tuyến của (C) tại A song song với trục hoành.

    \RightarrowCâu c đúng.

    + Ta có: f'(x) = 3ax^{2} + 2bx +
cf''(x) = 6ax +
2b

    GT \Leftrightarrow \left\{\begin{matrix}f^{'\left( x_{A} \right)} = 0 \\f^{''\left( x_{I} \right)} = 0 \\A \in (C) \\I \in (C)\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}3a + 2b + c = 0 \\4a + 2b = 0 \\a + b + c + d = - 1 \\\frac{8}{27}a + \frac{4}{9}b + \frac{2}{3}c + d = - \frac{29}{27}\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}a = - 1 \\b = 2 \\c = - 1 \\d = - 1\end{matrix} \right.

    Do đó: a + 2b + 3c + 4d = -
4

    \Rightarrow Câu d sai.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Tìm thời điểm mà vận tốc của con lắc bẳng 0.

    Hướng dẫn:

    Ta có: v = x' = - 4\pi\sin\left( \pi
t - \frac{2\pi}{3} \right)

    Vận tốc của con lắc bẳng 0

    => v = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right) = 0 = > t = \frac{2\pi}{3}(s)

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962m?

    Hướng dẫn:

    Khi viên đạn đạt được độ cao1962m, ta có phương trình:

    1962 = 2 + 196t - 4,9t^{2} \Leftrightarrow t =
20

    Vậy sau 20s kể từ khi bắn thì viên đạn đạt được độ cao 1962m.

  • Câu 20: Vận dụng
    Chọn kết luận đúng

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Để xác định liệu vận tốc của con tàu tại thời điểm t = 25 giây có đang tăng hay giảm, chúng ta cần xem xét đạo hàm bậc hai của hàm số h(t), tức là gia tốc của con tàu.

    Gia tốc a(t)là đạo hàm của vận tốc v(t), tức là đạo hàm bậc hai của h(t):

    a(t) = v^{'}(t) = - 0,06t +
2,2

    Tại thời điểm t = 25 giây, gia tốc của con tàu là: a(25) = - 0,06.25 + 2,2
= - 1,3\ km/s^{2}

    Vi gia tốc a(25) < 0, nên vận tốc của con tàu tại thời điểm t =
25 giây đang giảm

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo