Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn kết quả đúng

    Một bể ban đầu chứa 150 lít nước. Sau đó, cứ mỗi phút người ta bơm thêm 50 lít nước, đồng thời cho vào bể 20 gam chất khử trùng. Đặt f(t) gam/lít là nồng độ chất khử trùng trong bể sau t phút , biết rằng sau khi khảo sát sự biến thiên của hàm số f(t), ta thấy giá trị f(t) tăng theo t nhưng không vượt ngưỡng p gam/lít. Tìm số p .

    Hướng dẫn:

    Sau t phút, trong bể chứa (50t + 150)lít nước và 20tgam chất khử trùng.

    Suy ra nồng độ chất khử trùng trong bể sau t phút là f(t) = \frac{20t}{50t + 150}gam/lít.

    Khảo sát sự biến thiên hàm số f(t) =
\frac{20t}{50t + 150}, t \geq
0.

    Ta có: f'(t) = \frac{3000}{(50t +
150)^{2}} > 0,\forall t \geq 0

    \lim_{t \rightarrow + \infty}f(t) =
\lim_{t \rightarrow + \infty}\frac{20t}{50t + 150} = \lim_{t \rightarrow
+ \infty}\frac{20}{50 + \frac{150}{t}} = \frac{2}{5} = 0,4

    Bảng biến thiên

    Ảnh có chứa hàng, Phông chữ, biểu đồ, Sơ đồMô tả được tạo tự động

    Dựa vào BBT ta thấy giá trị f(t) tăng theo t nhưng không vượt ngưỡng 0,4gam/lít.

    Vậy p = 0,4.

  • Câu 2: Vận dụng cao
    Chọn phương án đúng nhất

    Trên mặt phẳng tọa độ (Oxy), cho điểm A(3;2) Một đường thẳng đi qua A cắt trục hoành tại B, cắt trục tung tại C tạo thành một tam giác OBC, với O là gốc tọa độ (tham khảo hình vẽ).

    Tìm toạ độ điểm B để diện tích tam giác OBC là nhỏ nhất.

    Hướng dẫn:

    + Đường thằng qua AB có phương trinh \frac{y - 2}{- 2} = \frac{x - 3}{t - 3}. Hay y = 2 - \frac{2}{t - 3}(x -
3).

    Vậy điểm C có tung độ là y_{C} = 2 + \frac{6}{t - 3}.

    Diện tích tam giác OBC là S(t) = t \cdot y_{C} =
\frac{2t^{2}}{t - 3}.

    + Khảo sát sự biến thiên của hàm số y =
S(t).

    Tập xác đỉnh: (3; +
\infty).

    Sự biến thiên: Ta có S(t) = 2t + 6 +
\frac{18}{t - 3}.

    - S'(t) = \frac{2t^{2} - 12t}{(t -
3)^{2}},S^{'}(t) = 0 \Leftrightarrow t = 6 (do t > 3 ).

    - Hàm số S(t) nghịch biến trên khoảng (3; 6), đồng biến trên khoảng (6; +
\infty).

    - Hàm số đạt cực tiểu tại t = 6 với S_{CT} = 24.

    - Giới hạn vô cực: \lim_{t \rightarrow
3^{+}}S(t) = + \infty, giới hạn tại vô cực: \lim_{t \rightarrow + \infty}S(t) = +
\infty.

    - Bảng biến thiên:

    Diện tích tam giác OBC nhỏ nhất với điểm B(6;0).

  • Câu 3: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{ax + b}{cx +
1} có đồ thị như hình vẽ sau:

    A graph of a functionDescription automatically generated

    Xét sự đúng sai của các nhận định:

    a) Tâm đối xứng của đồ thị có tọa độ là (2;1). Sai||Đúng

    b) a - 2b + c = - 5. Sai||Đúng

    c) Tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 có phương trình là y = - 3x + 11. Đúng||Sai

    d) Có đúng 4 điểm M(m;n) với m,\ \ n\mathbb{\in Z} thuộc đồ thị. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax + b}{cx +
1} có đồ thị như hình vẽ sau:

    A graph of a functionDescription automatically generated

    Xét sự đúng sai của các nhận định:

    a) Tâm đối xứng của đồ thị có tọa độ là (2;1). Sai||Đúng

    b) a - 2b + c = - 5. Sai||Đúng

    c) Tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 có phương trình là y = - 3x + 11. Đúng||Sai

    d) Có đúng 4 điểm M(m;n) với m,\ \ n\mathbb{\in Z} thuộc đồ thị. Đúng||Sai

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

    + Từ đồ thị, ta có:

    Tiệm cận đứng: x = 1

    Tiệm cận ngang: y = 2

    \Rightarrow Tâm đối xứng của đồ thị có tọa độ là (1;2)

    \RightarrowCâu a sai.

    + Từ đồ thị, ta có:

    Tiệm cận đứng: x = 1 \Rightarrow -
\frac{1}{c} = 1 \Leftrightarrow c = - 1

    Tiệm cận ngang: y = 2 \Rightarrow
\frac{a}{c} = 2 \Leftrightarrow a = 2c

    \Rightarrow a = - 2

    Điểm A(0; - 1) thuộc đồ thị \Rightarrow - 1 = b.

    Do đó: a - 2b + c = - 1.

    \RightarrowCâu b sai.

    + Với a = - 2;b = - 1;c = - 1 suy ra: y = \frac{- 2x - 1}{- x +
1}

    \Rightarrow y' = \frac{- 3}{( - x +
1)^{2}}

    Ta có: x = 2 \Rightarrow \left\{
\begin{matrix}
y(2) = 5 \\
y'(2) = - 3
\end{matrix} \right.

    Tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 có phương trình là

    y = y'(2)(x - 2) + y(2)

    \Leftrightarrow y = - 3x +
11

    \RightarrowCâu c đúng.

    + Ta có: y = \frac{- 2x - 1}{- x +
1}

    M(m;n) thuộc đồ thị nên n = \frac{- 2m - 1}{- m + 1} \Leftrightarrow n = 2
- \frac{3}{- m + 1}

    Do m,\ \ n\mathbb{\in Z} nên ( - m + 1) \inƯ(3) \Leftrightarrow - m + 1 \in \left\{ - 3; - 1;1;3
\right\}

    \Leftrightarrow m \in \left\{ 4;2;0; - 2
\right\}

    Suy ra: có đúng 4 điểm M(m;n) với m,\ \ n\mathbb{\in Z} thuộc đồ thị.

    \RightarrowCâu d đúng.

  • Câu 4: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} - 3x + m^{2}
- 2. Các nhận định dưới đây đúng hay sai?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4 khi m =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số y =
f(2x) trên đoạn \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack bằng - 4 khi m =
0. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x +
1) trên đoạn \lbrack -
3;0\rbrack bằng 1 khi m = 1. Đúng||Sai

    d) Có 2024 giá trị của nguyên của m \in ( - 2023;2024) để giá trị nhỏ nhất của hàm số h(x) = f(1 -
3x) trên đoạn \lbrack -
2;0\rbrack nhỏ hơn 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - 3x + m^{2}
- 2. Các nhận định dưới đây đúng hay sai?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4 khi m =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số y =
f(2x) trên đoạn \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack bằng - 4 khi m =
0. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x +
1) trên đoạn \lbrack -
3;0\rbrack bằng 1 khi m = 1. Đúng||Sai

    d) Có 2024 giá trị của nguyên của m \in ( - 2023;2024) để giá trị nhỏ nhất của hàm số h(x) = f(1 -
3x) trên đoạn \lbrack -
2;0\rbrack nhỏ hơn 2. Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Sai

    Khi m = 0 ta có y = f(x) = x^{3} - 3x - 2y' = 3x^{2} - 3

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 1
\end{matrix} \right.

    Bảng biến thiên

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng 0.

    b) Đúng

    Ta có x \in \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack \Leftrightarrow 2x \in \lbrack -
1;1\rbrack

    Đặt t = 2x,t \in \lbrack -
1;1\rbrack, f(t) = t^{3} - 3t -
2

    Theo câu a có giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4.

    c) Đúng

    x \in \lbrack - 3;0\rbrack
\Leftrightarrow x + 1 \in \lbrack - 2;1\rbrack

    Đặt t = x + 1, t \in \lbrack - 2;1\rbrack; f(t) = t^{3} - 3t - 1

    f'(t) = 3t^{2} - 3; f'(t) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1 \\
t = - 1
\end{matrix} \right.

    Ta có f( - 2) = - 3; f( - 1) = 1; f(1) = - 3 nên \max_{\lbrack - 3;0\rbrack}f(x + 1) =
1.

    d) Sai

    Đặt t = 1 - 3x, x \in \lbrack - 2;0\rbrack \Rightarrow t \in
\lbrack 1;7\rbrack

    f(t) = t^{3} - 3t + m^{2} - 2, f'(t) = 3t^{2} - 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \in \lbrack 1;7\rbrack \\
t = - 1 \notin \lbrack 1;7\rbrack
\end{matrix} \right.

    f(1) = m^{2} - 4; f(7) = m^{2} + 320

    \mathop {\min h(x)}\limits_{\left[ { - 2;0} \right]}  < 2 \Leftrightarrow {m^2} - 4 < 2 \Leftrightarrow  - \sqrt 6  < m < \sqrt 6

    Do m \in ( - 2023;2024), m \in Z \Rightarrow m \in \left\{ - 2, - 1,0,1,2
\right\}. Vậy có 5 giá trị thỏa mãn nên câu d sai

  • Câu 5: Vận dụng
    Chọn kết luận đúng

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Để xác định liệu vận tốc của con tàu tại thời điểm t = 25 giây có đang tăng hay giảm, chúng ta cần xem xét đạo hàm bậc hai của hàm số h(t), tức là gia tốc của con tàu.

    Gia tốc a(t)là đạo hàm của vận tốc v(t), tức là đạo hàm bậc hai của h(t):

    a(t) = v^{'}(t) = - 0,06t +
2,2

    Tại thời điểm t = 25 giây, gia tốc của con tàu là: a(25) = - 0,06.25 + 2,2
= - 1,3\ km/s^{2}

    Vi gia tốc a(25) < 0, nên vận tốc của con tàu tại thời điểm t =
25 giây đang giảm

  • Câu 6: Thông hiểu
    Tìm số dân cao nhát của thị trấn

    Số dân của một thị trấn sau t năm kể từ năm 2022 được ước tính bởi công thức f(t) = \frac{26t + 10}{t +
5} (f(t) được tính bằng nghìn người).

    Hỏi trong khoảng thời gian từ năm 2022 đến năm 2032 dân số của thị trấn đạt giá trị lớn nhất bằng bao nhiêu?

    Hướng dẫn:

    Xét hàm số f(t) = \frac{26t + 10}{t +
5} với t \in \lbrack
0;10\rbrack suy ra f'(t) =
\frac{120}{(t + 5)^{2}} > 0,\ \ \ \forall t \in \lbrack
0;10\rbrack.

    Suy ra hàm số f(t) đồng biến trên đoạn \lbrack 1;10\rbrack.

    Vậy dân số đạt giá trị lớn nhất bằng f(10) = 18.

  • Câu 7: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    a) Đúng.

    b) Sai. Vì không đủ cơ sở để xác định hàm số f(x) nên không xác định được giá trị cực tiểu.

    c) Sai.

    Ta có: \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 2xf'\left( x^{2} \right) = 2x\left( x^{2} + 1
\right)e^{x^{2}}

    \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 0 \Leftrightarrow x = 0

    Do đó, hàm số nghịch biến trên ( - 1;\
0).

    d) Sai.

    Ta có:

    g'(x) = \frac{1}{x}f'\left( \ln x
\right) - 2mx + 4m

    = \frac{1}{x}\left( \ln x + 1
\right)e^{\ln x} - 2mx + 4m = \ln x + 1 - 2mx + 4m

    Hàm số nghịch biến trong khoảng \left(
e;\ e^{2024} \right) khi và chỉ khi \ln x + 1 - mx + 4m \leq 0,\forall x \in \left(
e;\ e^{2024} \right)

    \Leftrightarrow 2m \geq \frac{\ln x +
1}{x - 2},\forall x \in \left( e;\ e^{2024} \right).

    Xét hàm số g(x) = \frac{\ln x + 1}{x -
2},x \in \left( e;\ e^{2024} \right)

    Ta có g'(x) = \frac{\frac{1}{x}(x +
1) - \ln x - 1}{(x - 2)^{2}} =
\frac{1 - x\ln x}{x(x - 2)^{2}},x \in \left( e;\ e^{2024}
\right)

    g'(x) < 0,\forall x \in \left(
e;\ e^{2024} \right)

    Bảng biến thiên:

    Ảnh có chứa hàng, ảnh chụp màn hình, biểu đồ, biên laiMô tả được tạo tự động

    Quan sát bảng biến thiên ta có 2m \geq
\frac{2}{e - 2} \Leftrightarrow m \geq \frac{1}{e - 2} \Rightarrow m
\geq 2.

    Do m \in \lbrack - 2024;\
2025\rbrack, m\mathbb{\in
Z} nên m \in \left\{ 2;\ 3;\ ...\
;\ 2025 \right\}.

    Vậy có 2024 giá trị nguyên của tham số m.

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{2x^{2} + 2x - 1 -
5m}{x - m}. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số xác định với mọi x. Sai||Đúng

    b) Có 2019 giá trị nguyên dương bé hơn 2024 của tham số m để hàm số y
= \frac{2x^{2} + 2x - 1 - 5m}{x - m} nghịch biến trên khoảng (1;5). Đúng||Sai

    c) m = 0 thì hàm số có hai cực trị. Sai||Đúng

    d) Nếu đồ thị hàm số có hai điểm cực trị thì hai điểm cực trị đó luôn nằm trên đường thẳng cố định. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2x^{2} + 2x - 1 -
5m}{x - m}. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số xác định với mọi x. Sai||Đúng

    b) Có 2019 giá trị nguyên dương bé hơn 2024 của tham số m để hàm số y
= \frac{2x^{2} + 2x - 1 - 5m}{x - m} nghịch biến trên khoảng (1;5). Đúng||Sai

    c) m = 0 thì hàm số có hai cực trị. Sai||Đúng

    d) Nếu đồ thị hàm số có hai điểm cực trị thì hai điểm cực trị đó luôn nằm trên đường thẳng cố định. Đúng||Sai

    a) Sai. Tập xác định D\mathbb{=
R}\backslash\left\{ m \right\}

    b) Đúng Tập xác định D\mathbb{=
R}\backslash\left\{ m \right\} và có y' = \frac{2x^{2} - 4mx + 3m + 1}{(x -
m)^{2}}.

    Hàm số nghịch biến trên khoảng (1;5)

    \Leftrightarrow y' = \frac{2x^{2} -4mx + 3m + 1}{(x - m)^{2}} \leq 0\forall x \in (1;5)

    \Leftrightarrow\left\{ \begin{matrix}2x^{2} - 4mx + 3m + 1 \leq 0\forall x \in (1;5) \\m \notin (1;5)\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
- m + 3 \leq 0 \\
- 17m + 51 \leq 0 \\
\left\lbrack \begin{matrix}
m \leq 1 \\
m \geq 5
\end{matrix} \right.\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m \geq 3 \\
\left\lbrack \begin{matrix}
m \leq 1 \\
m \geq 5
\end{matrix} \right.\
\end{matrix} \right.\  \Leftrightarrow m \geq 5

    Do nguyên dương bé hơn 2024 nên 5 \leq m\leq2023. Vậy có tất cả 2019 giá trị.

    c) Sai. Với m = 0 thì y' = \frac{2x^{2} + 1}{x^{2}} > 0\ \forall
x \neq 0

    Vậy hàm số không có cực trị với m =
0.

    d) Đúng. Giả sử đồ thị hàm số có hai điểm cực trị khi đó hai điểm cực trị hàm số luôn nằm trên đường thẳng y = 4x
+ 2

    Chú ý:

    Áp dụng tính chất: Nếu x_{0} là điểm cực trị của hàm số hữu tỷ y =
\frac{u(x)}{v(x)} thì giá trị cực trị tương ứng của hàm số là y_{0} = \frac{u\left( x_{0} \right)}{v\left(
x_{0} \right)} = \frac{u'\left( x_{0} \right)}{v'\left( x_{0}
\right)}.

    Suy ra với bài toán trên ta có phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số là y =
\frac{\left( 2x^{2} + 2x - 1 - 5m \right)'}{(x - m)'} = 4x +
2

  • Câu 9: Vận dụng
    Tính khoảng cách theo yêu cầu

    Một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với tốc độ ban đầu v_{0} = 196\ m/s (bỏ qua sức cản của không khí). Tìm thời điểm tại đó tốc độ của viên đạn bằng 0. Khi đó viên đạn cách mặt đất bao nhiêu mét (lấy g = 9,8\ m/s^{2} )?

    Hướng dẫn:

    Phương trình của viên đạn đi theo phương thẳng đứng được cho bởi:

    y = - \frac{1}{2}gt^{2} - v_{o}t < =
> y = - 4,9t^{2} + 196t

    Vận tốc viên đạn tại thời điểm t là:

    v = y' = - 9,8t + 196

    Từ đó, ta nhận thấy:

    Thời điểm tại đó tốc độ của viên đạn bằng 0 được cho bởi:

    - 9,8t + 196 = 0 \Leftrightarrow t =
20s

    Khi đó viên đạn cách mặt đất một khoảng cho bởi:

    y = - 4,9.20^{2} + 196.20 =
1960m

  • Câu 10: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    Đáp án là:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    a) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;50\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0 \Leftrightarrow
- 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow t \approx 18

    Ta có:

    h(0) = 250;h(18) = 8,08;h(50) =
250

    Do đó, \min_{\lbrack 0;50\rbrack}h(t) =
8,08 tại t \approx 18.

    Vậy tại thời điểm t \approx
18giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Suy ra mệnh đề đúng.

    b) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;70\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0
\Leftrightarrow - 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t \approx 18 \\
t \approx 55
\end{matrix} \right.

    Bảng biến thiên của hàm số h như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 1)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Suy ra mệnh đề đúng.

    c) Sai. Ta có v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 ≤ t ≤ 50.

    Khi đó v(t) = h'(t) = - 0,03t^{2} +
2,2t - 30 với t \in \lbrack
0;50\rbrack

    v(25) = - 0,03.25^{2} + 2,2.25 - 30 =
6,25. Suy ra mệnh đề sai.

    d) Sai. Tại thời điểm t = 25 , lúc đó t \in \lbrack 18;55\rbrack, căn cứ vào bảng biến thiên ở câu b), ta thấy rằng h'(t) > 0, tức là v(t) > 0, vậy vận tốc tức thời của con tàu đang tăng trở lại.

    Suy ra mệnh đề sai.

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    a) Hàm số xác định khi x + 2 \neq 0
\Leftrightarrow x \neq - 2. Tập xác định D = \mathbb{R}\backslash\left\{ - 2
\right\}.

    Do đó mệnh đề đúng.

    b) Ta có: \lim_{x \rightarrow + \infty}y
= \lim_{x \rightarrow + \infty}\frac{x^{2} - 3x + 1}{x + 2} = +
\infty\lim_{x \rightarrow -
\infty}y = \lim_{x \rightarrow - \infty}\frac{x^{2} - 3x + 1}{x + 2} = -
\infty.

    Suy ra đồ thị hàm số không có tiệm cận ngang. Do đó mệnh đề sai.

    c) Ta có \lim_{x \rightarrow +
\infty}\left\lbrack \frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack
= 0

    \lim_{x \rightarrow - \infty}\left\lbrack
\frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack = 0

    Vậy đồ thị có đường tiệm cận xiên là y =
x - 5. Do đó mệnh đề đúng.

    d) Đường tiệm cận xiên y = x - 5 cắt hai trục tọa độ O\ x,Oy lần lượt tại A(5;0);\ B(0; - 5).

    Tam giác OAB vuông tại O, có

    OA = \left| \overrightarrow{OA} \right| =
\sqrt{5^{2} + 0^{2}} = 5

    OB = \left| \overrightarrow{OB} \right| =
\sqrt{0^{2} + ( - 5)^{2}} = 5.

    Diện tích tam giác OAB bằng: \frac{1}{2}.OA.OB = \frac{1}{2}.5.5 =
\frac{25}{2}. Do đó mệnh đề đúng.

  • Câu 12: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc bốn trùng phương f(x) có bảng biến thiên như sau:

    A math problem with numbers and linesDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số đồng biến trên ( - 1;\
1). Sai||Đúng

    b) Độ dài đoạn thẳng nối hai điểm cực tiểu là 2. Đúng||Sai

    c) Hàm số f(2x) nghịch biến trên (0;\ 1). Sai||Đúng

    d) Số điểm cực trị của hàm số y =
\frac{1}{x^{4}}\left\lbrack f(x) - 1 \right\rbrack^{4} là 5. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc bốn trùng phương f(x) có bảng biến thiên như sau:

    A math problem with numbers and linesDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số đồng biến trên ( - 1;\
1). Sai||Đúng

    b) Độ dài đoạn thẳng nối hai điểm cực tiểu là 2. Đúng||Sai

    c) Hàm số f(2x) nghịch biến trên (0;\ 1). Sai||Đúng

    d) Số điểm cực trị của hàm số y =
\frac{1}{x^{4}}\left\lbrack f(x) - 1 \right\rbrack^{4} là 5. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai. Vì hàm số nghịch biến trên (0;\
1).

    b) Đúng.

    Ta có: hai điểm cực tiểu lần lượt có tọa độ ( - 1;\  - 1)(1;\  - 1).

    Do đó độ dài nối 2 điểm cực tiểu là \sqrt{(1 + 1)^{2} + ( - 1 + 1)^{2}} =
2.

    c) Sai.

    Ta có:

    \left\lbrack f(2x)
\right\rbrack' = 2f'(2x)

    \left\lbrack f(2x) \right\rbrack' =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{- 1}{2} \\
x = 0 \\
x = \frac{1}{2}
\end{matrix} \right.

    Do đó, hàm số đồng biến trên \left(
\frac{1}{2};\ 1 \right).

    d) Đúng.

    Giả sử f(x) = ax^{4} + bx^{2} +
c.

    Từ \left\{ \begin{matrix}
f'(0) = 0 \\
f(0) = 1 \\
f'( \pm 1) = 0 \\
f( \pm 1) = 0
\end{matrix} \right.\  \leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
c = 1
\end{matrix} \right..

    Suy ra f(x) = 2x^{4} - 4x^{2} +
1.

    Khi đó y = \frac{1}{x^{4}}\left\lbrack
2x^{4} - 4x^{2} \right\rbrack^{4} = 2^{4}x^{4}(x^{2} -
2)^{4}.

    y' = 2^{4}.4.x^{3}.(x^{2} -
2)^{3}.(3x^{2} - 2).

    y' = 0 \Leftrightarrow x =
0 ; x = \pm \sqrt{2} ; x = \pm \sqrt{\frac{2}{3}}

    Do đó, hàm số y5 cực trị.

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962m?

    Hướng dẫn:

    Khi viên đạn đạt được độ cao1962m, ta có phương trình:

    1962 = 2 + 196t - 4,9t^{2} \Leftrightarrow t =
20

    Vậy sau 20s kể từ khi bắn thì viên đạn đạt được độ cao 1962m.

  • Câu 14: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = 2x^{3} + 2(m + 1)x^{2}
+ 6x + 4 + 2m, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Khi m = - 1 thì hàm số đồng biến trên khoảng ( - \infty;\  +
\infty). Đúng||Sai

    b) Khi m = 1 thì hàm số không có cực trị. Đúng||Sai

    c) Có 3 giá trị nguyên dương của tham số m để hàm số đồng biến trên ( - \infty;\  + \infty). Sai||Đúng

    d) Hàm số đạt cực tiểu tại x = 2 khi đó m \in (2;\ 5). Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = 2x^{3} + 2(m + 1)x^{2}
+ 6x + 4 + 2m, với m là tham số. Các nhận định dưới đây đúng hay sai?

    a) Khi m = - 1 thì hàm số đồng biến trên khoảng ( - \infty;\  +
\infty). Đúng||Sai

    b) Khi m = 1 thì hàm số không có cực trị. Đúng||Sai

    c) Có 3 giá trị nguyên dương của tham số m để hàm số đồng biến trên ( - \infty;\  + \infty). Sai||Đúng

    d) Hàm số đạt cực tiểu tại x = 2 khi đó m \in (2;\ 5). Sai||Đúng

    a) Khi m = - 1 thì f(x) = 2x^{3} + 6x + 2 có đạo hàm f'(x) = 6x^{2} + 6 > 0, \forall x\mathbb{\in R}. Do đó, hàm số đồng biến trên ( - \infty;\  +
\infty). Suy ra khẳng định đúng.

    b) Khi m = 1 thì f(x) = 2x^{3} + 4x^{2} + 6x + 6 có đạo hàm f'(x) = 6x^{2} + 8x +
6.

    f'(x) = 0 vô nghiệm nên hàm số không có cực trị. Suy ra khẳng định đúng.

    c) Ta có f'(x) = 6x^{2} + 4(m + 1)x +
6

    Hàm số f(x) đồng biến trên ( - \infty;\  + \infty) khi và chỉ khi f'(x) \geq 0, \forall x\mathbb{\in R}

    \Leftrightarrow 6x^{2} + 4(m + 1)x + 6
\geq 0, \forall x\mathbb{\in
R}

    \Leftrightarrow 4(m + 1)^{2} - 36 \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
m \leq - 4 \\
m \geq 2
\end{matrix} \right..

    Suy ra khẳng định sai.

    d) Vì x = 2 là điểm cực trị của hàm số f(x) nên f'(2) = 0

    \Leftrightarrow 30 + 8(m + 1) = 0
\Leftrightarrow m = - \frac{19}{4}.

    Thay m = - \frac{19}{4} vào hàm số f(x) ta được f(x) = 2x^{3} - \frac{15}{2}x^{2} + 6x -
\frac{11}{2}.

    Dựa vào bảng biến thiên của hàm số f(x) ta nhận thấy hàm số có điểm cực tiểu là x = 2. Vậy m = - \frac{19}{4} thoả mãn yêu cầu bài toán và - \frac{19}{4} \notin (2;\
5). Suy ra khẳng định sai

  • Câu 15: Thông hiểu
    Tính tốc độ tăng trưởng của dân số

    Dân số P (tính theo nghìn người) của một thành phố nhỏ được cho bởi công thức P(t) = \frac{500t}{t^{2} + 9}, trong đó t là thời gian được tính bằng năm. Tìm tốc độ tăng dân số tại thời điểm t =
12.

    Hướng dẫn:

    Tốc độ tăng trưởng dân số là:

    P'(t) = \frac{(500t)^{'}\left(
t^{2} + 9 \right) - 500t\left( t^{2} + 9 \right)^{'}}{\left( t^{2} +
9 \right)^{2}}

    P'(t) = \frac{500.\left( t^{2} + 9
\right) - 500t.2t}{\left( t^{2} + 9 \right)^{2}}

    P'(t) = \frac{4500 -
500t^{2}}{\left( t^{2} + 9 \right)^{2}}

    Khi t\  = 12 thì

    P'(12) = \frac{4500 -
500.12^{2}}{\left( 12^{2} + 9 \right)^{2}} = - 2,88

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Số dân của một thị trấn sau tnăm kể từ đầu năm 2020 được tính bởi công thức f(t) = t + \frac{9}{t + 1},\ f(t) được tính bằng vạn người. Xem f(t)là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) và đạo hàm của hàm số f(t) biểu thị tốc độ tăng dân số của thị trấn. Trong khoảng thời gian nào dưới đây thì dân số của thị trấn này giảm?

    Hướng dẫn:

    Tốc độ tăng dân số của thị trấn là f'(t) = 1 - \frac{9}{(t + 1)^{2}}

    Ta cần tìm t \geq 0 sao cho f'(t) = 1 - \frac{9}{(t + 1)^{2}} \leq
0.

    Ta có f'(t) \leq 0 \Leftrightarrow
t^{2} + 2t - 8 \leq 0 \Leftrightarrow - 4 \leq t \leq 2

    Kết hợp với điều kiện t \geq 0 ta có 0 \leq t \leq 2.

    Do đó dân số của thị trấn giảm trong khoảng thời gian từ đầu năm 2020 đến hết năm 2021.

  • Câu 17: Vận dụng
    Xét tính đúng sai của các nhận định

    Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó khi gắn với hệ trục toạ độ Oxyđược mô phỏng ở hình. Biết đường bay của nó có dạng đồ thị hàm số bậc ba; vị trí bắt đầu hạ cánh có toạ độ ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay tiếp đất tại vị trí gốc toạ độ là điểm cực tiểu của đồ thị hàm số.

    a) Hàm số mô phỏng đường bay của máy bay trên đoạn \lbrack - 4;0\rbrack là hàm số bậc 3 có hệ số a âm. Sai|Đúng

    b) Công thức xác định hàm số mô phỏng đường bay của máy bay trên đoạn \lbrack - 4;0\rbracky = \frac{1}{32}x^{3} +
\frac{3}{16}x^{2}. Đúng||Sai

    c) Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất là \frac{81}{32} dặm? (Biết đơn vị trên hệ trục toạ độ là dặm). Sai|Đúng

    d) Khi ở độ cao 0,5 dặm, máy bay cách vị trí hạ cánh theo phương ngang 2 dặm. Đúng||Sai

    Đáp án là:

    Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó khi gắn với hệ trục toạ độ Oxyđược mô phỏng ở hình. Biết đường bay của nó có dạng đồ thị hàm số bậc ba; vị trí bắt đầu hạ cánh có toạ độ ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay tiếp đất tại vị trí gốc toạ độ là điểm cực tiểu của đồ thị hàm số.

    a) Hàm số mô phỏng đường bay của máy bay trên đoạn \lbrack - 4;0\rbrack là hàm số bậc 3 có hệ số a âm. Sai|Đúng

    b) Công thức xác định hàm số mô phỏng đường bay của máy bay trên đoạn \lbrack - 4;0\rbracky = \frac{1}{32}x^{3} +
\frac{3}{16}x^{2}. Đúng||Sai

    c) Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất là \frac{81}{32} dặm? (Biết đơn vị trên hệ trục toạ độ là dặm). Sai|Đúng

    d) Khi ở độ cao 0,5 dặm, máy bay cách vị trí hạ cánh theo phương ngang 2 dặm. Đúng||Sai

    a. Sai

    b) y = \frac{1}{32}x^{3} +
\frac{3}{16}x^{2}.

    c) Thay x = - 3, ta được y = \frac{27}{32}.

    Vậy khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất \frac{27}{32} =
0,84375 (dặm).

    d) Thay y = 0,5 ta được x = - 2,x = - 2 \pm 2\sqrt{3}. Do x \in \lbrack - 4;0\rbrack nên x = - 2.

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    Đáp án là:

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Dân số của quốc gia này ở năm 2030N(7)
= 100e^{0,012.7} \approx 108,8 triệu người.

    b) Dân số của quốc gia này ở năm 2035N(12)
= 100e^{0,012.12} \approx 115,5 triệu người.

    c) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm

    d) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm.

  • Câu 19: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Điều kiện xác định: x^{2} - 4x + 5
> 0 .

    Vậy hàm số có tập xác định là D\mathbb{=
R}.

    b) Ta có y' = \frac{2x - 4}{\left(
x^{2} - 4x + 5 \right)ln2}.

    Do y' > 0 \Leftrightarrow x >
2 nên hàm số đồng biến trên khoảng (2\ ;\  + \infty).

    c) Ta có bảng biến thiên

    Suy ra hàm số đạt cực tiểu tại x =
2.

    d) Đồ thị hàm số (C) có điểm cực tiểu là M(2\ ;\ 0) và cắt đường thẳng (d):y = 1 tại hai điểm A\left( x_{1};1 \right),\ \ B\left( x_{2};1
\right) với x_{1},\ x_{2} là nghiệm của phương trình:

    log_{2}\left( x^{2} - 4x + 5 \right) = 1
\Leftrightarrow x^{2} - 4x + 5 = 2

    \Leftrightarrow x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3
\end{matrix} \right.

    \Rightarrow A(1;1),\ \
B(3;1).

    Khi đó \overrightarrow{MA} = ( - 1\ ;\
1),\ \overrightarrow{MB} = (1\ ;\ 1) \Rightarrow
\overrightarrow{MA}.\overrightarrow{MB} = 0.

    Suy ra tam giác MAB vuông tại M.

    Do đó, bán kính đường tròn ngoại tiếp tam giác MABR =
\frac{AB}{2} = 1.

  • Câu 20: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

    a) ĐÚNG

    y' = \frac{\left( x^{2} + 2x + 5\right)'(x + 1) - (x + 1)'\left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}

    = \frac{(2x + 2)(x + 1) - \left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}= \frac{x^{2} + 2x - 3}{(x + 1)^{2}}.

    b) SAI

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 3
\end{matrix} \right.\  \Rightarrow Hàm số có hai điểm cực trị là A(1;4), B( - 3; - 4).

    Gọi phương trình đường thẳng qua hai điểm cực trị có dạng y = ax + b.

    Khi đó ta có hệ phương trình \left\{
\begin{matrix}
a + b = 4 \\
- 3a + b = - 4
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2
\end{matrix} \right..

    Phương trình đường thẳng ABy = 2x + 2.

    c) ĐÚNG

    y = x + 1 + \frac{4}{x + 1}

    \lim_{x \rightarrow \pm \infty}\left( y -
(x + 1) \right) = \lim_{x \rightarrow \pm \infty}\frac{4}{x + 1} = 0
\Rightarrow y = x + 1 là đường tiệm cận xiên của đồ thị hàm số.

    d) ĐÚNG

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo