Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{1}{3}x^{3} + (m +
1)x^{2} + \left( m^{2} + 2m \right)x - 3, với m là tham số. Các nhận định dưới đây là đúng hay sai?

    a) Với mọi m hàm số luôn có hai điểm cực trị. Đúng||Sai

    b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng 2. Đúng||Sai

    c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}. Đúng||Sai

    d) Hàm số nghịch biến trên ( - 1;\
1) khi và chỉ khi m \geq -
1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{1}{3}x^{3} + (m +
1)x^{2} + \left( m^{2} + 2m \right)x - 3, với m là tham số. Các nhận định dưới đây là đúng hay sai?

    a) Với mọi m hàm số luôn có hai điểm cực trị. Đúng||Sai

    b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng 2. Đúng||Sai

    c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}. Đúng||Sai

    d) Hàm số nghịch biến trên ( - 1;\
1) khi và chỉ khi m \geq -
1. Sai||Đúng

    a) Đúng: Ta có y' = x^{2} + 2(m + 1)x
+ m^{2} + 2m.

    Do \Delta' = {b'}^{2} - ac = (m +
1)^{2} - \left( m^{2} + 2m \right) = 1 > 0 nên phương trình có hai nghiệm phân biệt

    Nên hàm số luôn có hai điểm cực trị.

    b) Đúng: Ta có y' = x^{2} + 2(m + 1)x
+ m^{2} + 2m.

    Do \Delta' = {b'}^{2} - ac = (m +
1)^{2} - \left( m^{2} + 2m \right) = 1 > 0 nên phương trình có hai nghiệm phân biệt x_{1} = - mx_{2} = - m - 2.

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Hàm số luôn nghịch biến trên khoảng ( - m
- 2; - m).

    Ta có: - m - ( - m - 2) = 2

    c) Đúng: Ta có bảng biến thiên

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Từ bảng biến thiên, suy ra không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}.

    d) Sai: Bảng biến thiên

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Từ bảng biến thiên, suy ra hàm số nghịch biến trên khoảng ( - 1;\ 1) khi và chỉ khi

    \left\{ \begin{matrix}
- m - 2 \leq - 1 \\
- m \geq 1
\end{matrix} \right.\  \Leftrightarrow m = - 1

    .

  • Câu 2: Vận dụng
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Hỏi chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm bằng bao nhiêu?

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

    Ta có:C'(90) = 2.90 + 80 =
260.

    Dựa vào kết quả đó, ta thấy chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm là 260\
USD.

  • Câu 3: Vận dụng
    Chọn kết luận đúng

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Để xác định liệu vận tốc của con tàu tại thời điểm t = 25 giây có đang tăng hay giảm, chúng ta cần xem xét đạo hàm bậc hai của hàm số h(t), tức là gia tốc của con tàu.

    Gia tốc a(t)là đạo hàm của vận tốc v(t), tức là đạo hàm bậc hai của h(t):

    a(t) = v^{'}(t) = - 0,06t +
2,2

    Tại thời điểm t = 25 giây, gia tốc của con tàu là: a(25) = - 0,06.25 + 2,2
= - 1,3\ km/s^{2}

    Vi gia tốc a(25) < 0, nên vận tốc của con tàu tại thời điểm t =
25 giây đang giảm

  • Câu 4: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Xét tính đúng sai của các khẳng định dưới đây:

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Xét tính đúng sai của các khẳng định dưới đây:

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}\backslash\left\{ 2
\right\}.

    b) ĐÚNG. Dễ thấy tiệm cận đứng là x = 2.

    Ta có \lim_{x \rightarrow + \infty}\left(
\frac{x^{2} - 2x + 4}{x - 2} - x \right) = \lim_{x \rightarrow +
\infty}\left( \frac{4}{x - 2} \right) = 0;

    \lim_{x \rightarrow - \infty}\left(\frac{x^{2} - 2x + 4}{x - 2} -x \right) = \lim_{x \rightarrow -\infty}\left( \frac{4}{x - 2} \right) = 0.

    Vậy phương trình tiệm cận xiên là y =
x.

    c) ĐÚNG. Ta có y' =
1 - \frac{4}{(x - 2)^{2}}.

    Ta thấy y' = 0 \Leftrightarrow x =
0;x = 4. y(0) = - 2;y(4) =
6.

    Vậy tổng các giá trị cực đại và giá trị cực tiểu là - 2 + 6 = 4.

    d) SAI. Phương trình hoành độ giao điểm

    \frac{x^{2} - 2x + 4}{x - 2} = mx -
2

    Dễ thấy phương trình không có nghiệm x =
2 nên phương trình tương đương

    (m - 1)x^{2} - 2mx = 0.

    Nếu m = 1 thì phương trình có nghiệm duy nhất x = 0.

    Nếu m \neq 1, phương trình đã cho có hai nghiệm x = 0;x = \frac{2m}{m -
1}.

    Yêu cầu bài toán tương đương \frac{2m}{m
- 1} > 2 \Leftrightarrow \frac{2}{m - 1} > 0 \Leftrightarrow m
> 1.

    Vậy có 9 giá trị nguyên của tham số m thỏa mãn là 2;3;4;5;6;7;8;9;10.

  • Câu 5: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc bốn trùng phương f(x) có bảng biến thiên như sau:

    A math problem with numbers and linesDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số đồng biến trên ( - 1;\
1). Sai||Đúng

    b) Độ dài đoạn thẳng nối hai điểm cực tiểu là 2. Đúng||Sai

    c) Hàm số f(2x) nghịch biến trên (0;\ 1). Sai||Đúng

    d) Số điểm cực trị của hàm số y =
\frac{1}{x^{4}}\left\lbrack f(x) - 1 \right\rbrack^{4} là 5. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc bốn trùng phương f(x) có bảng biến thiên như sau:

    A math problem with numbers and linesDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số đồng biến trên ( - 1;\
1). Sai||Đúng

    b) Độ dài đoạn thẳng nối hai điểm cực tiểu là 2. Đúng||Sai

    c) Hàm số f(2x) nghịch biến trên (0;\ 1). Sai||Đúng

    d) Số điểm cực trị của hàm số y =
\frac{1}{x^{4}}\left\lbrack f(x) - 1 \right\rbrack^{4} là 5. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai. Vì hàm số nghịch biến trên (0;\
1).

    b) Đúng.

    Ta có: hai điểm cực tiểu lần lượt có tọa độ ( - 1;\  - 1)(1;\  - 1).

    Do đó độ dài nối 2 điểm cực tiểu là \sqrt{(1 + 1)^{2} + ( - 1 + 1)^{2}} =
2.

    c) Sai.

    Ta có:

    \left\lbrack f(2x)
\right\rbrack' = 2f'(2x)

    \left\lbrack f(2x) \right\rbrack' =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{- 1}{2} \\
x = 0 \\
x = \frac{1}{2}
\end{matrix} \right.

    Do đó, hàm số đồng biến trên \left(
\frac{1}{2};\ 1 \right).

    d) Đúng.

    Giả sử f(x) = ax^{4} + bx^{2} +
c.

    Từ \left\{ \begin{matrix}
f'(0) = 0 \\
f(0) = 1 \\
f'( \pm 1) = 0 \\
f( \pm 1) = 0
\end{matrix} \right.\  \leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
c = 1
\end{matrix} \right..

    Suy ra f(x) = 2x^{4} - 4x^{2} +
1.

    Khi đó y = \frac{1}{x^{4}}\left\lbrack
2x^{4} - 4x^{2} \right\rbrack^{4} = 2^{4}x^{4}(x^{2} -
2)^{4}.

    y' = 2^{4}.4.x^{3}.(x^{2} -
2)^{3}.(3x^{2} - 2).

    y' = 0 \Leftrightarrow x =
0 ; x = \pm \sqrt{2} ; x = \pm \sqrt{\frac{2}{3}}

    Do đó, hàm số y5 cực trị.

  • Câu 6: Vận dụng cao
    Chọn đáp án đúng

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Hướng dẫn:

    ọi số máy móc công ty sử dụng để sản xuất là x(x \in Ν,\ \ x > 0).

    Thời gian cần để sản xuất hết 8000 quả bóng là: \frac{8000}{30x}.

    Tổng chi phí để sản xuất là: P(x) = 200x
+ \frac{8000}{30x}.192 = 200x + \frac{51200}{x}

    Ta có: P'(x) = 200 -
\frac{51200}{x^{2}} = 0 \Leftrightarrow x^{2} = 256 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 16 \\
x = - 16(L) \\
\end{matrix} \right..

    Vậy công ty nên sử dụng 16 máy để chi phí hoạt động là thấp nhất.

  • Câu 7: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    Đáp án là:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    a) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;50\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0 \Leftrightarrow
- 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow t \approx 18

    Ta có:

    h(0) = 250;h(18) = 8,08;h(50) =
250

    Do đó, \min_{\lbrack 0;50\rbrack}h(t) =
8,08 tại t \approx 18.

    Vậy tại thời điểm t \approx
18giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Suy ra mệnh đề đúng.

    b) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;70\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0
\Leftrightarrow - 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t \approx 18 \\
t \approx 55
\end{matrix} \right.

    Bảng biến thiên của hàm số h như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 1)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Suy ra mệnh đề đúng.

    c) Sai. Ta có v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 ≤ t ≤ 50.

    Khi đó v(t) = h'(t) = - 0,03t^{2} +
2,2t - 30 với t \in \lbrack
0;50\rbrack

    v(25) = - 0,03.25^{2} + 2,2.25 - 30 =
6,25. Suy ra mệnh đề sai.

    d) Sai. Tại thời điểm t = 25 , lúc đó t \in \lbrack 18;55\rbrack, căn cứ vào bảng biến thiên ở câu b), ta thấy rằng h'(t) > 0, tức là v(t) > 0, vậy vận tốc tức thời của con tàu đang tăng trở lại.

    Suy ra mệnh đề sai.

  • Câu 8: Vận dụng
    Tính giá trị của biểu thức

    Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Tìm C'(90)?

    Hướng dẫn:

    Chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Chi phí biên được xác định bởi hàm số C'(Q)

    = > C'(Q) = \lim_{Q \rightarrow Q
+ 1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( (Q + 1)^{2} + 80(Q
+ 1) + 3500 \right)}{Q - Q - 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( Q^{2} + 2Q + 1 + 80Q
+ 80 + 3500 \right)}{- 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}(2Q + 80)

    C'(90) = 2.90 + 80 =
260(USD)

    => Ý nghĩa: Chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 89 sản phẩm lên 90 sản phẩm là 260 (USD)

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Số dân của một thị trấn sau tnăm kể từ đầu năm 2020 được tính bởi công thức f(t) = t + \frac{9}{t + 1},\ f(t) được tính bằng vạn người. Xem f(t)là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) và đạo hàm của hàm số f(t) biểu thị tốc độ tăng dân số của thị trấn. Trong khoảng thời gian nào dưới đây thì dân số của thị trấn này giảm?

    Hướng dẫn:

    Tốc độ tăng dân số của thị trấn là f'(t) = 1 - \frac{9}{(t + 1)^{2}}

    Ta cần tìm t \geq 0 sao cho f'(t) = 1 - \frac{9}{(t + 1)^{2}} \leq
0.

    Ta có f'(t) \leq 0 \Leftrightarrow
t^{2} + 2t - 8 \leq 0 \Leftrightarrow - 4 \leq t \leq 2

    Kết hợp với điều kiện t \geq 0 ta có 0 \leq t \leq 2.

    Do đó dân số của thị trấn giảm trong khoảng thời gian từ đầu năm 2020 đến hết năm 2021.

  • Câu 10: Thông hiểu
    Xác định hàm doanh thu của công ty

    Một công ty sản xuất một sản phẩm. Bộ phận tài chính của công ty đưa ra hàm giá bán là p(x) = 1000 -
25x, trong đó p(x) là giá bán của mỗi sản phẩm mà tại giá bán này có x sản phẩm được bán ra. Khi đó hàm doanh thu của công ty là

    Hướng dẫn:

    Ta có khi có x sản phẩm được bán ra thì giá bán là p(x) = 1000 -
25x, do đó doanh thu của cửu hàng khi bán ra x sản phẩm là f(x) = x.p(x) = 1000x - 25x^{2}.

  • Câu 11: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} - 3x + m^{2}
- 2. Các nhận định dưới đây đúng hay sai?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4 khi m =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số y =
f(2x) trên đoạn \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack bằng - 4 khi m =
0. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x +
1) trên đoạn \lbrack -
3;0\rbrack bằng 1 khi m = 1. Đúng||Sai

    d) Có 2024 giá trị của nguyên của m \in ( - 2023;2024) để giá trị nhỏ nhất của hàm số h(x) = f(1 -
3x) trên đoạn \lbrack -
2;0\rbrack nhỏ hơn 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - 3x + m^{2}
- 2. Các nhận định dưới đây đúng hay sai?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4 khi m =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số y =
f(2x) trên đoạn \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack bằng - 4 khi m =
0. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x +
1) trên đoạn \lbrack -
3;0\rbrack bằng 1 khi m = 1. Đúng||Sai

    d) Có 2024 giá trị của nguyên của m \in ( - 2023;2024) để giá trị nhỏ nhất của hàm số h(x) = f(1 -
3x) trên đoạn \lbrack -
2;0\rbrack nhỏ hơn 2. Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Sai

    Khi m = 0 ta có y = f(x) = x^{3} - 3x - 2y' = 3x^{2} - 3

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 1
\end{matrix} \right.

    Bảng biến thiên

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng 0.

    b) Đúng

    Ta có x \in \left\lbrack -
\frac{1}{2};\frac{1}{2} \right\rbrack \Leftrightarrow 2x \in \lbrack -
1;1\rbrack

    Đặt t = 2x,t \in \lbrack -
1;1\rbrack, f(t) = t^{3} - 3t -
2

    Theo câu a có giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;1\rbrack bằng - 4.

    c) Đúng

    x \in \lbrack - 3;0\rbrack
\Leftrightarrow x + 1 \in \lbrack - 2;1\rbrack

    Đặt t = x + 1, t \in \lbrack - 2;1\rbrack; f(t) = t^{3} - 3t - 1

    f'(t) = 3t^{2} - 3; f'(t) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1 \\
t = - 1
\end{matrix} \right.

    Ta có f( - 2) = - 3; f( - 1) = 1; f(1) = - 3 nên \max_{\lbrack - 3;0\rbrack}f(x + 1) =
1.

    d) Sai

    Đặt t = 1 - 3x, x \in \lbrack - 2;0\rbrack \Rightarrow t \in
\lbrack 1;7\rbrack

    f(t) = t^{3} - 3t + m^{2} - 2, f'(t) = 3t^{2} - 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \in \lbrack 1;7\rbrack \\
t = - 1 \notin \lbrack 1;7\rbrack
\end{matrix} \right.

    f(1) = m^{2} - 4; f(7) = m^{2} + 320

    \mathop {\min h(x)}\limits_{\left[ { - 2;0} \right]}  < 2 \Leftrightarrow {m^2} - 4 < 2 \Leftrightarrow  - \sqrt 6  < m < \sqrt 6

    Do m \in ( - 2023;2024), m \in Z \Rightarrow m \in \left\{ - 2, - 1,0,1,2
\right\}. Vậy có 5 giá trị thỏa mãn nên câu d sai

  • Câu 12: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{2x^{2} + 2x - 1 -
5m}{x - m}. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số xác định với mọi x. Sai||Đúng

    b) Có 2019 giá trị nguyên dương bé hơn 2024 của tham số m để hàm số y
= \frac{2x^{2} + 2x - 1 - 5m}{x - m} nghịch biến trên khoảng (1;5). Đúng||Sai

    c) m = 0 thì hàm số có hai cực trị. Sai||Đúng

    d) Nếu đồ thị hàm số có hai điểm cực trị thì hai điểm cực trị đó luôn nằm trên đường thẳng cố định. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2x^{2} + 2x - 1 -
5m}{x - m}. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số xác định với mọi x. Sai||Đúng

    b) Có 2019 giá trị nguyên dương bé hơn 2024 của tham số m để hàm số y
= \frac{2x^{2} + 2x - 1 - 5m}{x - m} nghịch biến trên khoảng (1;5). Đúng||Sai

    c) m = 0 thì hàm số có hai cực trị. Sai||Đúng

    d) Nếu đồ thị hàm số có hai điểm cực trị thì hai điểm cực trị đó luôn nằm trên đường thẳng cố định. Đúng||Sai

    a) Sai. Tập xác định D\mathbb{=
R}\backslash\left\{ m \right\}

    b) Đúng Tập xác định D\mathbb{=
R}\backslash\left\{ m \right\} và có y' = \frac{2x^{2} - 4mx + 3m + 1}{(x -
m)^{2}}.

    Hàm số nghịch biến trên khoảng (1;5)

    \Leftrightarrow y' = \frac{2x^{2} -4mx + 3m + 1}{(x - m)^{2}} \leq 0\forall x \in (1;5)

    \Leftrightarrow\left\{ \begin{matrix}2x^{2} - 4mx + 3m + 1 \leq 0\forall x \in (1;5) \\m \notin (1;5)\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
- m + 3 \leq 0 \\
- 17m + 51 \leq 0 \\
\left\lbrack \begin{matrix}
m \leq 1 \\
m \geq 5
\end{matrix} \right.\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m \geq 3 \\
\left\lbrack \begin{matrix}
m \leq 1 \\
m \geq 5
\end{matrix} \right.\
\end{matrix} \right.\  \Leftrightarrow m \geq 5

    Do nguyên dương bé hơn 2024 nên 5 \leq m\leq2023. Vậy có tất cả 2019 giá trị.

    c) Sai. Với m = 0 thì y' = \frac{2x^{2} + 1}{x^{2}} > 0\ \forall
x \neq 0

    Vậy hàm số không có cực trị với m =
0.

    d) Đúng. Giả sử đồ thị hàm số có hai điểm cực trị khi đó hai điểm cực trị hàm số luôn nằm trên đường thẳng y = 4x
+ 2

    Chú ý:

    Áp dụng tính chất: Nếu x_{0} là điểm cực trị của hàm số hữu tỷ y =
\frac{u(x)}{v(x)} thì giá trị cực trị tương ứng của hàm số là y_{0} = \frac{u\left( x_{0} \right)}{v\left(
x_{0} \right)} = \frac{u'\left( x_{0} \right)}{v'\left( x_{0}
\right)}.

    Suy ra với bài toán trên ta có phương trình đường thẳng qua hai điểm cực trị của đồ thị hàm số là y =
\frac{\left( 2x^{2} + 2x - 1 - 5m \right)'}{(x - m)'} = 4x +
2

  • Câu 13: Vận dụng
    Chọn công thức thích hợp

    Một cửa hàng bán dầu muốn đóng những thùng đựng dầu có thể tích không đổi bằng V = 30dm^{3}, thùng có dạng hình hộp chữ nhật có nắp; đáy là hình vuông cạnh x\ dm(x >
0). Trên thị trường, giá nguyên vật liệu làm đáy và nắp thùng là 120\ 000 đồng/1\ m^{2}, giá nguyên vật liệu làm mặt xung quanh của thùng là 100\ 000 đồng/1\ m^{2}. Chi phí để cửa hàng làm một thùng đựng dầu được cho bởi công thức?

    Hướng dẫn:

    Hình vẽ minh họa

    Thể tích của thùng V = 30\
dm^{3}, vì x(x > 0, đơn vị dm) là cạnh đáy của thùng nên chiều cao của thùng là: h = \frac{V}{x^{2}} =
\frac{30}{x^{2}}.

    Giá nguyên vật liệu làm đáy và nắp thùng là 1\ 200 đồng/1dm^{2}, giá nguyên vật liệu làm mặt xung quanh của thùng là 1\ 000 đồng/1\ dm^{2}.

    Diện tích mặt đáy, nắp thùng và diện tích xung quanh lần lượt là: x^{2};\ x^{2};4xh. Chi phí làm một thùng đựng dầu là:

    f(x) = 2.1,2.x^{2} + 1.4xh = 2,4x^{2} +
\frac{120}{x} = \frac{12}{5}x^{2} + \frac{120}{x} .

  • Câu 14: Vận dụng
    Tính tốc độ chuyển hóa nồng độ cồn trong máu

    Sau khi uống đồ uống có cồn, nồng độ cồn trong máu tăng lên rồi giảm dần được xác định bằng hàm số C(t) =
1,35te^{- 2902t}, trong đó C(mg/ml) là nồng độ cồn, t(\ h) là thời điểm đo tính từ ngay sau khi uống 15ml đồ uống có cồn.

    (Nguồn: P. Wilkinson et al., Pharmacokinetics of Ethanol after Ora' Administration in the Fasting State, 1977)

    Giả sử một người uống hết nhanh 15ml đồ uống có cồn. Tính tốc độ chuyển hoá nồng độ cồn trong máu của người đó tại thời điểm t = 3 (h) (làm tròn kết quả đến hàng phần triệu).

    Hướng dẫn:

    Ta có: C'(t) = 1,35e^{- 2,802t} -
3,7827te^{- 2,802t}.

    Vậy tốc độ chuyển hoá nồng độ cồn tức thời trong máu của người đó tại thời điểm t = 3 (h) là:

    C'(3) = 1,35e^{- 2,802 \cdot 3} -
3,7827 \cdot 3e^{- 2,802.3} \approx - 0,002235\left( \frac{mg/ml}{h}
\right).

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s) là thời gian chuyển động, s(m) là độ cao so với mặt đất. Tại thời điểm viên đạn đạt vận tốc tức thời bằng 98\ m/sthì viên đạn đang ở độ cao bao nhiêu mét so với mặt đất?

    Hướng dẫn:

    Viên đạn đạt vận tốc tức thời bằng 98\
m/s ta có phương trình: 

    v(t) = 196 -
9,8t = 98 \Leftrightarrow t = 10

    Khi đó viên đạn đang ở độ cao là:

    s(10) =
2 + 196.10 - 4,9.10^{2} = 1472(m).

  • Câu 16: Vận dụng
    Chọn kết quả đúng

    Một công ty chuyên sản xuất thùng phi nhận được đơn đặt hàng với yêu cầu là thùng phi phải có dạng hình trụ và chứa được 16\pi\left( m^{3} \right) mỗi chiếc. Hỏi chiếc thùng phải có chiều cao h và bán kính đáy Rbằng bao nhiêu để sản xuất ít tốn vật liệu nhất?

    Hướng dẫn:

    Do thùng phi có dạng hình trụ nên:

    V_{tru} = \pi R^{2}h = 16\pi
\Leftrightarrow h = \frac{16}{R^{2}}\ \ \ \ \ \ \ (1)

    Diện tích toàn phần của thùng phi là:

    S_{Tp} = 2\pi R^{2} + 2\pi Rh = 2\pi R(h
+ R)\ \ \ \ \ \ \ (2)

    Thay vào ta được:

    S_{Tp} = 2\pi\left( \frac{16}{R} + R^{2}
\right)

    \Rightarrow S'_{Tp} = 2\pi\left( -
\frac{16}{R^{2}} + 2R \right) = \frac{4\pi}{R^{2}}\left( R^{3} - 8
\right)

    \Rightarrow S'_{Tp} = 0
\Leftrightarrow R = 2

    Bảng biến thiên

    Ảnh có chứa hàng, ảnh chụp màn hình, Sơ đồ, văn bảnMô tả được tạo tự động

    Vậy để sản xuất thùng phi ít tốn vật liệu nhất thì R = 2(m) và chiều cao là h = 4(m).

  • Câu 17: Vận dụng
    Xét tính đúng sai của các nhận định

    Một chủ nhà hàng kinh doanh phần ăn đồng giá có chiến lược kinh doanh như sau:

    - Phí cố định được ước tính trong một năm là 50000 nghìn đồng.

    - Chi phí một phần ăn ước tính khoảng 22 nghìn đồng.

    - Giá niêm yết trên thực đơn là 30 nghìn đồng.

    Trong bài này, giả định rằng tất cả các phần ăn chế biến sẵn đều được bán hết và kí hiệu x là số phần ăn phục vụ trong một năm, giả sử x thuộc khoảng \lbrack 5000;\
25000\rbrack

    a) Gọi C(x) lả tổng chi phí hằng năm cho x phần ăn này. Khi đó: C(x) = 22x.Sai||Đúng

    b) Giá thành của một phần ăn cho bởi biểu thức D(x) = 22 + \frac{50000}{x}( nghìn đồng)Đúng||Sai

    c) Dựa vào đồ thị hàm số D(x) và đường thẳng y = 30, ta thấy điểm hoà vốn của nhà hàng, tức là số lượng phần ăn tối thiểu phải được phục vụ hằng năm để hoạt động của nhà hàng tạo ra lợi nhuận là 6250. Đúng||Sai

    d) Tổng lợi nhuận hằng năm cho x phần ăn được biểu thị bởi: L(x) = 8x - 50000 (nghìn đồng).Đúng||Sai

    Đáp án là:

    Một chủ nhà hàng kinh doanh phần ăn đồng giá có chiến lược kinh doanh như sau:

    - Phí cố định được ước tính trong một năm là 50000 nghìn đồng.

    - Chi phí một phần ăn ước tính khoảng 22 nghìn đồng.

    - Giá niêm yết trên thực đơn là 30 nghìn đồng.

    Trong bài này, giả định rằng tất cả các phần ăn chế biến sẵn đều được bán hết và kí hiệu x là số phần ăn phục vụ trong một năm, giả sử x thuộc khoảng \lbrack 5000;\
25000\rbrack

    a) Gọi C(x) lả tổng chi phí hằng năm cho x phần ăn này. Khi đó: C(x) = 22x.Sai||Đúng

    b) Giá thành của một phần ăn cho bởi biểu thức D(x) = 22 + \frac{50000}{x}( nghìn đồng)Đúng||Sai

    c) Dựa vào đồ thị hàm số D(x) và đường thẳng y = 30, ta thấy điểm hoà vốn của nhà hàng, tức là số lượng phần ăn tối thiểu phải được phục vụ hằng năm để hoạt động của nhà hàng tạo ra lợi nhuận là 6250. Đúng||Sai

    d) Tổng lợi nhuận hằng năm cho x phần ăn được biểu thị bởi: L(x) = 8x - 50000 (nghìn đồng).Đúng||Sai

    a) C(x) = 22x + 50000

    b) D(x) = \frac{C(x)}{x} = 22 +
\frac{50000}{x} nghìn đồng.

    c) Vẽ đồ thị hàm số D(x) và đường thẳng y = 30 trên cùng một hệ trục tọa độ

    Quan sát đồ thị của hai hàm số, ta thấy giao điểm của đồ thị hàm số D(x) và đường thẳng y = 30 là điểm có tọa độ (6250;30). Nghĩa là khi phục vụ được tối thiểu 6250 phần ăn thì chi phí một phần ăn đúng bằng tiền bán một phần ăn (là 30 nghìn đồng).

    d) L(x) = 30x - (22x + 50000) = 8x -
50000.

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty; - 1)(1; + \infty).

    b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 - 1 = 2.

    c) Hàm số y = f(x) có hai cực trị là x = \pm 1.

    d) Gọi d:y = ax + b là đường thẳng qua hai điểm cực trị A( - 1;3),B(1; -
1).

    A,B \in d \Rightarrow \left\{\begin{matrix}- a + b = 3 \\a + b = - 1\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}a = - 2 \\b = 1\end{matrix} \right.\  \Rightarrow d:y = - 2x + 1

  • Câu 19: Thông hiểu
    Xác định tốc độ thay đổi dân số

    Người ta ước tính rằng sau x tháng tính từ bây giờ, dân số của một huyện nào đó sẽ là P(x) = x^{2} + 20x + 8000 người. Dân số sẽ thay đổi với tốc độ bao nhiêu sau 12 tháng?

    Hướng dẫn:

    Tốc độ thay đổi dân số tương ứng với thời gian là đạo hàm của hàm dân số. Tức là:

    Tốc độ thay đổi: P'(x) = 2x +
20

    Tốc độ thay đổi dân số sau 12 tháng sẽ là: P'(12) = 2.12 + 20 =
44 người/tháng.

  • Câu 20: Thông hiểu
    Tính vận tốc cực đại

    Chuyển động của một hạt trên một dây rung được cho bởi s(t) = 12 + 0,5sin(4\pi t), trong đó s tính bằng centimét và t tính bằng giây. Tính vận tốc của hạt sau t giây. Vận tốc cực đại của hạt là bao nhiêu?

    Hướng dẫn:

    Đạo hàm của hàm s(t) theo thời gian t:

    v(t) = \frac{ds}{dt} = 2\pi cos(4\pi
t)4

    Ta thấy rằng hàm v(t) là một hàm cosin với biên độ bằng 2\pi, do đó giá trị lớn nhất của hàm này là 2\pi.

    Vậy vận tốc cực đại của hạt là 2\pi
cm/s.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo