Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = log_{2}\left( x^{2}
- 3x + 2 \right). Xét tính đúng sai của các nhận định sau:

    a) Hàm số có giá trị lớn nhất trên khoảng (2; + \infty). Sai||Đúng

    b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \lbrack - 1;0\rbrack. Đúng||Sai

    c) Trên đoạn \lbrack -
1;0\rbrack hàm số có giá trị nhỏ nhất bằng 1. Đúng||Sai

    d) Gọi m_{0} là giá trị của tham số m để hàm số g(x) = 2^{f(x)} + m có giá trị nhỏ nhất trên đoạn \lbrack 3;4\rbrack bằng - 3. Khi đó m_{0} \in ( - 5;0). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = log_{2}\left( x^{2}
- 3x + 2 \right). Xét tính đúng sai của các nhận định sau:

    a) Hàm số có giá trị lớn nhất trên khoảng (2; + \infty). Sai||Đúng

    b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \lbrack - 1;0\rbrack. Đúng||Sai

    c) Trên đoạn \lbrack -
1;0\rbrack hàm số có giá trị nhỏ nhất bằng 1. Đúng||Sai

    d) Gọi m_{0} là giá trị của tham số m để hàm số g(x) = 2^{f(x)} + m có giá trị nhỏ nhất trên đoạn \lbrack 3;4\rbrack bằng - 3. Khi đó m_{0} \in ( - 5;0). Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) SAI

    Hàm số có tập xác định D = ( - \infty;1)
\cup (2; + \infty).

    Ta có \lim_{x \rightarrow + \infty}f(x) =
+ \infty.

    b) ĐÚNG

    \lbrack - 1;0\rbrack \subset
D và hàm số liên tục trên \lbrack -
1;0\rbrack nên luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn này.

    c) ĐÚNG

    f(x) = log_{2}\left( x^{2} - 3x + 2
\right) \Rightarrow f'(x) = \frac{2x - 3}{\left( x^{2} - 3x + 2
\right)ln2}

    f'(x) = 0 \Leftrightarrow x = -
\frac{3}{2} \notin \lbrack - 1;0\rbrack.

    \begin{matrix}
f( - 1) = log_{2}6 \\
f(0) = 1 < log_{2}6
\end{matrix}

    Vậy \min_{\lbrack - 1;0\rbrack}f(x) =
1.

    d) SAI

    TXĐ D = ( - \infty;1) \cup (2; +
\infty) chứa \lbrack
3;4\rbrack.

    g(x) = 2^{f(x)} + m = 2^{log_{2}\left(
x^{2} - 3x + 2 \right)} + m = x^{2} - 3x + 2 + m.

    g'(x) = 2x - 3,g'(x) = 0
\Leftrightarrow x = \frac{3}{2} \notin \lbrack 3;4\rbrack. Mà hàm số đồng biến trên \lbrack
3;4\rbrack nên \min_{\lbrack
0;1\rbrack}g(x) = g(3) = 2 + m.

    Theo đề ta có 2 + m = - 3 \Leftrightarrow
m = - 5

    Vậy m_{0} = - 5 \in ( - 5;0) là sai.

  • Câu 2: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Điều kiện xác định: x^{2} - 4x + 5
> 0 .

    Vậy hàm số có tập xác định là D\mathbb{=
R}.

    b) Ta có y' = \frac{2x - 4}{\left(
x^{2} - 4x + 5 \right)ln2}.

    Do y' > 0 \Leftrightarrow x >
2 nên hàm số đồng biến trên khoảng (2\ ;\  + \infty).

    c) Ta có bảng biến thiên

    Suy ra hàm số đạt cực tiểu tại x =
2.

    d) Đồ thị hàm số (C) có điểm cực tiểu là M(2\ ;\ 0) và cắt đường thẳng (d):y = 1 tại hai điểm A\left( x_{1};1 \right),\ \ B\left( x_{2};1
\right) với x_{1},\ x_{2} là nghiệm của phương trình:

    log_{2}\left( x^{2} - 4x + 5 \right) = 1
\Leftrightarrow x^{2} - 4x + 5 = 2

    \Leftrightarrow x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3
\end{matrix} \right.

    \Rightarrow A(1;1),\ \
B(3;1).

    Khi đó \overrightarrow{MA} = ( - 1\ ;\
1),\ \overrightarrow{MB} = (1\ ;\ 1) \Rightarrow
\overrightarrow{MA}.\overrightarrow{MB} = 0.

    Suy ra tam giác MAB vuông tại M.

    Do đó, bán kính đường tròn ngoại tiếp tam giác MABR =
\frac{AB}{2} = 1.

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3. Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Tìm thời điểm mà vận tốc của con lắc bẳng 0.

    Hướng dẫn:

    Ta có: v = x' = - 4\pi\sin\left( \pi
t - \frac{2\pi}{3} \right)

    Vận tốc của con lắc bẳng 0

    => v = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right) = 0 = > t = \frac{2\pi}{3}(s)

  • Câu 5: Vận dụng cao
    Tính chi phí sản xuất máy vô tuyến

    Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Hãy tính chi phí sản xuất máy vô tuyến thứ 100.

    Hướng dẫn:

    Chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Chi phí biên được xác định bởi hàm số C'(Q)

    = > C'(Q) = \lim_{Q \rightarrow Q
+ 1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( (Q + 1)^{2} + 80(Q
+ 1) + 3500 \right)}{Q - Q - 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( Q^{2} + 2Q + 1 + 80Q
+ 80 + 3500 \right)}{- 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}(2Q + 80)

    Chi phí sản xuất 101 máy vô tuyến là:

    C(101) = 101^{2} + 80.101 + 3500 =
21781(USD)

    Chi phí sản xuất 100 máy vô tuyến là:

    C(100) = 100^{2} + 80.100 + 3500 =
21500(USD)

    Chi phí sản xuất máy vô tuyến thứ 100 là

    C(101) - C(100) = 281(USD)

  • Câu 6: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    Đáp án là:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Các mệnh đề sau đúng hay sai?

    a) Xét thời điểm 0 \leq t \leq
50 thì tại thời điểm t \approx
18 giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Đúng||Sai

    b) Đồ thị của hàm số y = h(t)với 0 \leq t \leq 70 như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Đúng||Sai

    c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu tại thời điểm t = 25 là 5,25 km/s. Sai||Đúng

    d) Tại thời điểm t = 25 , vận tốc tức thời của con tàu vẫn giảm. Sai||Đúng

    a) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;50\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0 \Leftrightarrow
- 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow t \approx 18

    Ta có:

    h(0) = 250;h(18) = 8,08;h(50) =
250

    Do đó, \min_{\lbrack 0;50\rbrack}h(t) =
8,08 tại t \approx 18.

    Vậy tại thời điểm t \approx
18giây thì con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km. Suy ra mệnh đề đúng.

    b) Đúng. Xét hàm số h(t) = - 0,01t^{3} +
1,1t^{2} - 30t + 250với t \in
\lbrack 0;70\rbrack

    Ta có h'(t) = - 0,03t^{2} + 2,2t -
30

    \Rightarrow h'(t) = 0
\Leftrightarrow - 0,03t^{2} + 2,2t - 30 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t \approx 18 \\
t \approx 55
\end{matrix} \right.

    Bảng biến thiên của hàm số h như sau:

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 1)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng. (ảnh 2)

    Suy ra mệnh đề đúng.

    c) Sai. Ta có v(t) là vận tốc tức thời của con tàu ở thời điểm t kể từ khi đốt cháy các tên lửa hãm với 0 ≤ t ≤ 50.

    Khi đó v(t) = h'(t) = - 0,03t^{2} +
2,2t - 30 với t \in \lbrack
0;50\rbrack

    v(25) = - 0,03.25^{2} + 2,2.25 - 30 =
6,25. Suy ra mệnh đề sai.

    d) Sai. Tại thời điểm t = 25 , lúc đó t \in \lbrack 18;55\rbrack, căn cứ vào bảng biến thiên ở câu b), ta thấy rằng h'(t) > 0, tức là v(t) > 0, vậy vận tốc tức thời của con tàu đang tăng trở lại.

    Suy ra mệnh đề sai.

  • Câu 7: Thông hiểu
    Tìm vận tốc tức

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Vận tốc tức thời và gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s) lần lượt là:

    Hướng dẫn:

    Ta có:

    v = x' = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right)

    a = v' = - 4\pi^{2}\cos\left( \pi t
- \frac{2\pi}{3} \right)

    a) Vận tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    v = - 4\pi\sin\left( \pi.3 -
\frac{2\pi}{3} \right) = - 2\sqrt{3}\pi(cm/s)

    Gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    a = - 4\pi^{2}\cos\left( 3\pi -
\frac{2\pi}{3} \right) = - 2\pi^{2}\left( cm/s^{2} \right)

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị là (C). Biết (C) có một điểm cực trị là A(1; - 1) và tâm đối xứng là I\left( \frac{2}{3}; - \frac{29}{27}
\right). Xét tính đúng sai của các mệnh đề dưới đây?

    a) (C) có một điểm cực trị là B\left( - \frac{1}{3}; - \frac{2}{27}
\right). Sai||Đúng

    b) a + b + c + d = - 1. Đúng||Sai

    c) Tiếp tuyến của (C) tại A song song với trục hoành. Đúng||Sai

    d) a + 2b + 3c + 4d = 4. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị là (C). Biết (C) có một điểm cực trị là A(1; - 1) và tâm đối xứng là I\left( \frac{2}{3}; - \frac{29}{27}
\right). Xét tính đúng sai của các mệnh đề dưới đây?

    a) (C) có một điểm cực trị là B\left( - \frac{1}{3}; - \frac{2}{27}
\right). Sai||Đúng

    b) a + b + c + d = - 1. Đúng||Sai

    c) Tiếp tuyến của (C) tại A song song với trục hoành. Đúng||Sai

    d) a + 2b + 3c + 4d = 4. Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    + Theo tính chất của đồ thị hàm số bậc ba, ta có:

    A,\ \ B là hai điểm cực trị và I là tâm đối xứng của (C) \Rightarrow I là trung điểm của AB

    \Rightarrow \left\{ \begin{matrix}
x_{B} = 2x_{I} - x_{A} = \frac{1}{3} \\
y_{B} = 2y_{I} - y_{A} = - \frac{31}{27}
\end{matrix} \right.

    \RightarrowCâu a sai.

    + Vì A là điểm cực trị của (C) nên A \in
(C) \Rightarrow a + b + c + d = -
1.

    \RightarrowCâu b đúng.

    + Vì A là điểm cực trị của (C) nên f'\left( x_{A} \right)= 0.

    Phương trình tiếp tuyến của (C) tại A là:

    y = f'\left( x_{A} \right)\left( x -
x_{A} \right) + y_{A} \Leftrightarrow y = - 1

    \Rightarrow Tiếp tuyến của (C) tại A song song với trục hoành.

    \RightarrowCâu c đúng.

    + Ta có: f'(x) = 3ax^{2} + 2bx +
cf''(x) = 6ax +
2b

    GT \Leftrightarrow \left\{\begin{matrix}f^{'\left( x_{A} \right)} = 0 \\f^{''\left( x_{I} \right)} = 0 \\A \in (C) \\I \in (C)\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}3a + 2b + c = 0 \\4a + 2b = 0 \\a + b + c + d = - 1 \\\frac{8}{27}a + \frac{4}{9}b + \frac{2}{3}c + d = - \frac{29}{27}\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}a = - 1 \\b = 2 \\c = - 1 \\d = - 1\end{matrix} \right.

    Do đó: a + 2b + 3c + 4d = -
4

    \Rightarrow Câu d sai.

  • Câu 9: Vận dụng
    Chọn kết quả đúng

    Một công ty chuyên sản xuất thùng phi nhận được đơn đặt hàng với yêu cầu là thùng phi phải có dạng hình trụ và chứa được 16\pi\left( m^{3} \right) mỗi chiếc. Hỏi chiếc thùng phải có chiều cao h và bán kính đáy Rbằng bao nhiêu để sản xuất ít tốn vật liệu nhất?

    Hướng dẫn:

    Do thùng phi có dạng hình trụ nên:

    V_{tru} = \pi R^{2}h = 16\pi
\Leftrightarrow h = \frac{16}{R^{2}}\ \ \ \ \ \ \ (1)

    Diện tích toàn phần của thùng phi là:

    S_{Tp} = 2\pi R^{2} + 2\pi Rh = 2\pi R(h
+ R)\ \ \ \ \ \ \ (2)

    Thay vào ta được:

    S_{Tp} = 2\pi\left( \frac{16}{R} + R^{2}
\right)

    \Rightarrow S'_{Tp} = 2\pi\left( -
\frac{16}{R^{2}} + 2R \right) = \frac{4\pi}{R^{2}}\left( R^{3} - 8
\right)

    \Rightarrow S'_{Tp} = 0
\Leftrightarrow R = 2

    Bảng biến thiên

    Ảnh có chứa hàng, ảnh chụp màn hình, Sơ đồ, văn bảnMô tả được tạo tự động

    Vậy để sản xuất thùng phi ít tốn vật liệu nhất thì R = 2(m) và chiều cao là h = 4(m).

  • Câu 10: Vận dụng
    Xác định hàm số v(t)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu lúc bắt đầu hãm phanh là bao nhiêu?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Tại thời điểm bắt đầu hãm phanh (t =
0), vận tốc của con tàu là:

    v(0) = - 0,030^{2} + 2,20 - 30 = - 30\
km/s

  • Câu 11: Vận dụng
    Tính tốc độ chuyển hóa nồng độ cồn trong máu

    Sau khi uống đồ uống có cồn, nồng độ cồn trong máu tăng lên rồi giảm dần được xác định bằng hàm số C(t) =
1,35te^{- 2902t}, trong đó C(mg/ml) là nồng độ cồn, t(\ h) là thời điểm đo tính từ ngay sau khi uống 15ml đồ uống có cồn.

    (Nguồn: P. Wilkinson et al., Pharmacokinetics of Ethanol after Ora' Administration in the Fasting State, 1977)

    Giả sử một người uống hết nhanh 15ml đồ uống có cồn. Tính tốc độ chuyển hoá nồng độ cồn trong máu của người đó tại thời điểm t = 3 (h) (làm tròn kết quả đến hàng phần triệu).

    Hướng dẫn:

    Ta có: C'(t) = 1,35e^{- 2,802t} -
3,7827te^{- 2,802t}.

    Vậy tốc độ chuyển hoá nồng độ cồn tức thời trong máu của người đó tại thời điểm t = 3 (h) là:

    C'(3) = 1,35e^{- 2,802 \cdot 3} -
3,7827 \cdot 3e^{- 2,802.3} \approx - 0,002235\left( \frac{mg/ml}{h}
\right).

  • Câu 12: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{1}{3}x^{3} + (m +
1)x^{2} + \left( m^{2} + 2m \right)x - 3, với m là tham số. Các nhận định dưới đây là đúng hay sai?

    a) Với mọi m hàm số luôn có hai điểm cực trị. Đúng||Sai

    b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng 2. Đúng||Sai

    c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}. Đúng||Sai

    d) Hàm số nghịch biến trên ( - 1;\
1) khi và chỉ khi m \geq -
1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{1}{3}x^{3} + (m +
1)x^{2} + \left( m^{2} + 2m \right)x - 3, với m là tham số. Các nhận định dưới đây là đúng hay sai?

    a) Với mọi m hàm số luôn có hai điểm cực trị. Đúng||Sai

    b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng 2. Đúng||Sai

    c) Không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}. Đúng||Sai

    d) Hàm số nghịch biến trên ( - 1;\
1) khi và chỉ khi m \geq -
1. Sai||Đúng

    a) Đúng: Ta có y' = x^{2} + 2(m + 1)x
+ m^{2} + 2m.

    Do \Delta' = {b'}^{2} - ac = (m +
1)^{2} - \left( m^{2} + 2m \right) = 1 > 0 nên phương trình có hai nghiệm phân biệt

    Nên hàm số luôn có hai điểm cực trị.

    b) Đúng: Ta có y' = x^{2} + 2(m + 1)x
+ m^{2} + 2m.

    Do \Delta' = {b'}^{2} - ac = (m +
1)^{2} - \left( m^{2} + 2m \right) = 1 > 0 nên phương trình có hai nghiệm phân biệt x_{1} = - mx_{2} = - m - 2.

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Hàm số luôn nghịch biến trên khoảng ( - m
- 2; - m).

    Ta có: - m - ( - m - 2) = 2

    c) Đúng: Ta có bảng biến thiên

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Từ bảng biến thiên, suy ra không tồn tại giá trị của tham số m để hàm số đồng biến trên \mathbb{R}.

    d) Sai: Bảng biến thiên

    A math equations with numbers and linesDescription automatically generated with medium confidence

    Từ bảng biến thiên, suy ra hàm số nghịch biến trên khoảng ( - 1;\ 1) khi và chỉ khi

    \left\{ \begin{matrix}
- m - 2 \leq - 1 \\
- m \geq 1
\end{matrix} \right.\  \Leftrightarrow m = - 1

    .

  • Câu 13: Vận dụng cao
    Tính số lượng vi khuẩn lớn nhất

    Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: N(t)
= 1000 + \frac{100t}{100 + t^{2}}(con),trong đó t là thời gian tính bằng giây. Tính số lượng vi khuẩn lớn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng.

    Hướng dẫn:

    Xét hàm số N(t) = 1000 + \frac{100t}{100
+ t^{2}}(t > 0).

    Ta có: N^{'}(t) = \frac{100 \cdot
\left( 100 + t^{2} \right) - 100t \cdot 2t}{\left( 100 + t^{2}
\right)^{2}} = \frac{100 \cdot \left( 100 - t^{2} \right)}{\left( 100 +
t^{2} \right)^{2}}.

    Khi đó, với t > 0,N^{'}(t) = 0
\Leftrightarrow 100 - t^{2} = 0 \Leftrightarrow t^{2} = 100
\Leftrightarrow t = 10.

    Bảng biến thiên của hàm số N(t) như sau:

    Căn cứ bảng biến thiên, ta thấy: Trên khoảng (0; + \infty), hàm số N(t) đạt giá trị lớn nhất bằng 1005 tại t = 10.

    Vậy số lượng vi khuẩn lớn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng là 1005 con.

  • Câu 14: Vận dụng
    Tính giá trị của biểu thức

    Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Tìm C'(90)?

    Hướng dẫn:

    Chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Chi phí biên được xác định bởi hàm số C'(Q)

    = > C'(Q) = \lim_{Q \rightarrow Q
+ 1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( (Q + 1)^{2} + 80(Q
+ 1) + 3500 \right)}{Q - Q - 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}\frac{\left( Q^{2} + 80Q + 3500 \right) - \left( Q^{2} + 2Q + 1 + 80Q
+ 80 + 3500 \right)}{- 1}

    C'(Q) = \lim_{Q \rightarrow Q +
1}(2Q + 80)

    C'(90) = 2.90 + 80 =
260(USD)

    => Ý nghĩa: Chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 89 sản phẩm lên 90 sản phẩm là 260 (USD)

  • Câu 15: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai.

    Đồ thị (C) có tiệm cận đứng là x = - 1.

    b) Đúng.

    Đồ thị (C) cắt trục Oy tại M(0; -
1).

    Ta có y' = 1 + \frac{1}{(x + 1)^{2}}
\Rightarrow y'(0) = 2.

    Phương trình tiếp tuyến của (C) tại My = 2x - 1.

    c) Sai.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{1}\left( x_{1};y_{1}
\right) có hệ số góc k_{1} =
y'\left( x_{1} \right) = 1 + \frac{1}{\left( x_{1} + 1 \right)^{2}}
> 0.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{2}\left( x_{2};y_{2}
\right) có hệ số góc k_{2} =
y'\left( x_{2} \right) = 1 + \frac{1}{\left( x_{2} + 1 \right)^{2}}
> 0.

    Khi đó k_{1}k_{2} > 0 nên không tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.

    d) Đúng.

    Phương trình hoành độ giao điểm giữa đồ thị (C) và đường thẳng y = k

    x - \frac{1}{x + 1} = k \Leftrightarrow
\left\{ \begin{matrix}
x \neq - 1 \\
x^{2} + x - 1 = k(x + 1).\ \ \ (1)
\end{matrix} \right.\ \ (I)

    Nhận thấy x = - 1 không thỏa mãn nên (I) \Leftrightarrow x^{2} + (1 - k)x - 1
- k = 0.\ \ (2)

    Phương trình có \Delta = (1 - k)^{2} +
4(1 + k) = k^{2} + 2k + 5 = (k + 1)^{2} + 4 > 0,\forall
k.

    Do đó, đường thẳng y = k luôn cắt đồ thị (C) tại hai điểm phân biệt A\left( x_{A};k \right),B\left( x_{B};k
\right) với x_{A},x_{B} là nghiệm của phương trình.

    Theo Vi-et thì x_{A}x_{B} = - 1 -
k.

    Ta có OA\bot OB \Leftrightarrow
\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Leftrightarrow
x_{A}x_{B} + k^{2} = 0 \Leftrightarrow - 1 - k + k^{2} = 0.

    Vậy OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1= 0.

  • Câu 16: Thông hiểu
    Chọn kết luận đúng

    Để điều chỉnh nhiệt độ trong phòng, một hệ thống điều hòa không khí được phép hoạt động trong 10 phút. Gọi T là nhiệt độ phòng ở phút thứ t được cho bởi công thức T = - 0,008t^{3} - 0,16t + 28 với t \in \lbrack 1;10\rbrack. Trong thời gian 10 phút kể từ khi hệ thống điều hòa không khí bắt đầu hoạt động, nhiệt độ trong phòng tăng hay giảm?

    Hướng dẫn:

    Xét hàm số T = - 0,008t^{3} - 0,16t +
28 với t \in \lbrack
1;10\rbrack.

    T' = - 0,024t^{2} - 0,16 <
0,\forall t \in \lbrack 1;10\rbrack.

    Suy ra hàm số T nghịch biến trên đoạn \lbrack 1;10\rbrack. Vậy trong thời gian 10 phút kể từ khi hệ thống làm mát bắt đầu hoạt động, nhiệt độ trong phòng giảm.

  • Câu 17: Vận dụng
    Chọn kết luận đúng

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Để xác định liệu vận tốc của con tàu tại thời điểm t = 25 giây có đang tăng hay giảm, chúng ta cần xem xét đạo hàm bậc hai của hàm số h(t), tức là gia tốc của con tàu.

    Gia tốc a(t)là đạo hàm của vận tốc v(t), tức là đạo hàm bậc hai của h(t):

    a(t) = v^{'}(t) = - 0,06t +
2,2

    Tại thời điểm t = 25 giây, gia tốc của con tàu là: a(25) = - 0,06.25 + 2,2
= - 1,3\ km/s^{2}

    Vi gia tốc a(25) < 0, nên vận tốc của con tàu tại thời điểm t =
25 giây đang giảm

  • Câu 18: Thông hiểu
    Xác định tốc độ thay đổi dân số

    Người ta ước tính rằng sau x tháng tính từ bây giờ, dân số của một huyện nào đó sẽ là P(x) = x^{2} + 20x + 8000 người. Dân số sẽ thay đổi với tốc độ bao nhiêu sau 12 tháng?

    Hướng dẫn:

    Tốc độ thay đổi dân số tương ứng với thời gian là đạo hàm của hàm dân số. Tức là:

    Tốc độ thay đổi: P'(x) = 2x +
20

    Tốc độ thay đổi dân số sau 12 tháng sẽ là: P'(12) = 2.12 + 20 =
44 người/tháng.

  • Câu 19: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    a) Đúng.

    b) Sai. Vì không đủ cơ sở để xác định hàm số f(x) nên không xác định được giá trị cực tiểu.

    c) Sai.

    Ta có: \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 2xf'\left( x^{2} \right) = 2x\left( x^{2} + 1
\right)e^{x^{2}}

    \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 0 \Leftrightarrow x = 0

    Do đó, hàm số nghịch biến trên ( - 1;\
0).

    d) Sai.

    Ta có:

    g'(x) = \frac{1}{x}f'\left( \ln x
\right) - 2mx + 4m

    = \frac{1}{x}\left( \ln x + 1
\right)e^{\ln x} - 2mx + 4m = \ln x + 1 - 2mx + 4m

    Hàm số nghịch biến trong khoảng \left(
e;\ e^{2024} \right) khi và chỉ khi \ln x + 1 - mx + 4m \leq 0,\forall x \in \left(
e;\ e^{2024} \right)

    \Leftrightarrow 2m \geq \frac{\ln x +
1}{x - 2},\forall x \in \left( e;\ e^{2024} \right).

    Xét hàm số g(x) = \frac{\ln x + 1}{x -
2},x \in \left( e;\ e^{2024} \right)

    Ta có g'(x) = \frac{\frac{1}{x}(x +
1) - \ln x - 1}{(x - 2)^{2}} =
\frac{1 - x\ln x}{x(x - 2)^{2}},x \in \left( e;\ e^{2024}
\right)

    g'(x) < 0,\forall x \in \left(
e;\ e^{2024} \right)

    Bảng biến thiên:

    Ảnh có chứa hàng, ảnh chụp màn hình, biểu đồ, biên laiMô tả được tạo tự động

    Quan sát bảng biến thiên ta có 2m \geq
\frac{2}{e - 2} \Leftrightarrow m \geq \frac{1}{e - 2} \Rightarrow m
\geq 2.

    Do m \in \lbrack - 2024;\
2025\rbrack, m\mathbb{\in
Z} nên m \in \left\{ 2;\ 3;\ ...\
;\ 2025 \right\}.

    Vậy có 2024 giá trị nguyên của tham số m.

  • Câu 20: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    a) Sai.Hàm số f(x) = \frac{x^{2} - 2x +
6}{- x - 1} xác định khi - x - 1
\neq 0 \Leftrightarrow x \neq - 1.

    Do đó hàm số f(x) có tập xác định là \mathbb{R}\backslash\left\{ - 1
\right\}. Suy ra mệnh đề sai.

    b) Sai. Ta có: f'(x) = \frac{\left(
x^{2} - 2x + 6 \right)'( - x - 1) - \left( x^{2} - 2x + 6 \right)( -
x - 1)'}{(x + 1)^{2}} = \frac{- x^{2} - 2x + 8}{(x +
1)^{2}}.

    Suy ra mệnh đề sai.

    c) Đúng. f^{'(x)} = 0 \Leftrightarrow\frac{- x^{2} - 2x + 8}{(x + 1)^{2}} = 0.

    Bảng biến thiên:

    Vậy hàm số f(x) có giá trị cực đại bằng 2.

    Suy ra mệnh đề đúng.

    d) Đúng. Hàm số y = f\left( x^{2} - 2
\right) xác định khi x^{2} - 2 \neq
- 1 \Leftrightarrow x \neq \pm 1

    \Rightarrow Tập xác định D\mathbb{= R}\backslash\left\{ \pm 1
\right\}.

    y' = 2xf'\left( x^{2} - 2
\right).

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 \right) = 0
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = 2 \\
x^{2} - 2 = - 4
\end{matrix} \right.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = 4 \\
x^{2} = - 2\ (VN)
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2;x = - 2
\end{matrix} \right.

    Bảng biến thiên:

    Vậy hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Suy ra mệnh đề đúng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo