Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm vận tốc tức

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Vận tốc tức thời và gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s) lần lượt là:

    Hướng dẫn:

    Ta có:

    v = x' = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right)

    a = v' = - 4\pi^{2}\cos\left( \pi t
- \frac{2\pi}{3} \right)

    a) Vận tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    v = - 4\pi\sin\left( \pi.3 -
\frac{2\pi}{3} \right) = - 2\sqrt{3}\pi(cm/s)

    Gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    a = - 4\pi^{2}\cos\left( 3\pi -
\frac{2\pi}{3} \right) = - 2\pi^{2}\left( cm/s^{2} \right)

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

    Tập xác định: D\mathbb{=
R}\backslash\left\{ 1 \right\}.

    y' = f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3
\end{matrix} \right..

    Bảng biến thiên:

    A graph with arrows and numbersDescription automatically generated with medium confidence

    a) Từ bảng biến thiên suy ra mệnh đề sai.

    b) Mệnh đề đúng.

    c) Hàm số chỉ có hai điểm cực trị là x =
- 1x = 3. Vậy mệnh đề sai.

    d) Do hàm số không xác định tại x =
1 thuộc ( - 1;3) nên mệnh đề sai.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962m?

    Hướng dẫn:

    Khi viên đạn đạt được độ cao1962m, ta có phương trình:

    1962 = 2 + 196t - 4,9t^{2} \Leftrightarrow t =
20

    Vậy sau 20s kể từ khi bắn thì viên đạn đạt được độ cao 1962m.

  • Câu 4: Vận dụng cao
    Chọn kết quả đúng

    Một bể ban đầu chứa 150 lít nước. Sau đó, cứ mỗi phút người ta bơm thêm 50 lít nước, đồng thời cho vào bể 20 gam chất khử trùng. Đặt f(t) gam/lít là nồng độ chất khử trùng trong bể sau t phút , biết rằng sau khi khảo sát sự biến thiên của hàm số f(t), ta thấy giá trị f(t) tăng theo t nhưng không vượt ngưỡng p gam/lít. Tìm số p .

    Hướng dẫn:

    Sau t phút, trong bể chứa (50t + 150)lít nước và 20tgam chất khử trùng.

    Suy ra nồng độ chất khử trùng trong bể sau t phút là f(t) = \frac{20t}{50t + 150}gam/lít.

    Khảo sát sự biến thiên hàm số f(t) =
\frac{20t}{50t + 150}, t \geq
0.

    Ta có: f'(t) = \frac{3000}{(50t +
150)^{2}} > 0,\forall t \geq 0

    \lim_{t \rightarrow + \infty}f(t) =
\lim_{t \rightarrow + \infty}\frac{20t}{50t + 150} = \lim_{t \rightarrow
+ \infty}\frac{20}{50 + \frac{150}{t}} = \frac{2}{5} = 0,4

    Bảng biến thiên

    Ảnh có chứa hàng, Phông chữ, biểu đồ, Sơ đồMô tả được tạo tự động

    Dựa vào BBT ta thấy giá trị f(t) tăng theo t nhưng không vượt ngưỡng 0,4gam/lít.

    Vậy p = 0,4.

  • Câu 5: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    a) Sai.Hàm số f(x) = \frac{x^{2} - 2x +
6}{- x - 1} xác định khi - x - 1
\neq 0 \Leftrightarrow x \neq - 1.

    Do đó hàm số f(x) có tập xác định là \mathbb{R}\backslash\left\{ - 1
\right\}. Suy ra mệnh đề sai.

    b) Sai. Ta có: f'(x) = \frac{\left(
x^{2} - 2x + 6 \right)'( - x - 1) - \left( x^{2} - 2x + 6 \right)( -
x - 1)'}{(x + 1)^{2}} = \frac{- x^{2} - 2x + 8}{(x +
1)^{2}}.

    Suy ra mệnh đề sai.

    c) Đúng. f^{'(x)} = 0 \Leftrightarrow\frac{- x^{2} - 2x + 8}{(x + 1)^{2}} = 0.

    Bảng biến thiên:

    Vậy hàm số f(x) có giá trị cực đại bằng 2.

    Suy ra mệnh đề đúng.

    d) Đúng. Hàm số y = f\left( x^{2} - 2
\right) xác định khi x^{2} - 2 \neq
- 1 \Leftrightarrow x \neq \pm 1

    \Rightarrow Tập xác định D\mathbb{= R}\backslash\left\{ \pm 1
\right\}.

    y' = 2xf'\left( x^{2} - 2
\right).

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 \right) = 0
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = 2 \\
x^{2} - 2 = - 4
\end{matrix} \right.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = 4 \\
x^{2} = - 2\ (VN)
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2;x = - 2
\end{matrix} \right.

    Bảng biến thiên:

    Vậy hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Suy ra mệnh đề đúng.

  • Câu 6: Vận dụng cao
    Chọn đáp án đúng

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Hướng dẫn:

    ọi số máy móc công ty sử dụng để sản xuất là x(x \in Ν,\ \ x > 0).

    Thời gian cần để sản xuất hết 8000 quả bóng là: \frac{8000}{30x}.

    Tổng chi phí để sản xuất là: P(x) = 200x
+ \frac{8000}{30x}.192 = 200x + \frac{51200}{x}

    Ta có: P'(x) = 200 -
\frac{51200}{x^{2}} = 0 \Leftrightarrow x^{2} = 256 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 16 \\
x = - 16(L) \\
\end{matrix} \right..

    Vậy công ty nên sử dụng 16 máy để chi phí hoạt động là thấp nhất.

  • Câu 7: Thông hiểu
    Xác định hàm chi phí biên

    Giả sử chi phí để sản xuất x đơn vị hàng hóa nào đó là C(x) = 27900 + 100x -
1,5x^{2} + 0,025x^{3}. Khi đó hàm chi phí biên tương ứng là

    Hướng dẫn:

    Hàm chi phí biên tương ứng là: C'(x)
= 100 - 3x + 0,075x^{2}.

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai.

    Đồ thị (C) có tiệm cận đứng là x = - 1.

    b) Đúng.

    Đồ thị (C) cắt trục Oy tại M(0; -
1).

    Ta có y' = 1 + \frac{1}{(x + 1)^{2}}
\Rightarrow y'(0) = 2.

    Phương trình tiếp tuyến của (C) tại My = 2x - 1.

    c) Sai.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{1}\left( x_{1};y_{1}
\right) có hệ số góc k_{1} =
y'\left( x_{1} \right) = 1 + \frac{1}{\left( x_{1} + 1 \right)^{2}}
> 0.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{2}\left( x_{2};y_{2}
\right) có hệ số góc k_{2} =
y'\left( x_{2} \right) = 1 + \frac{1}{\left( x_{2} + 1 \right)^{2}}
> 0.

    Khi đó k_{1}k_{2} > 0 nên không tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.

    d) Đúng.

    Phương trình hoành độ giao điểm giữa đồ thị (C) và đường thẳng y = k

    x - \frac{1}{x + 1} = k \Leftrightarrow
\left\{ \begin{matrix}
x \neq - 1 \\
x^{2} + x - 1 = k(x + 1).\ \ \ (1)
\end{matrix} \right.\ \ (I)

    Nhận thấy x = - 1 không thỏa mãn nên (I) \Leftrightarrow x^{2} + (1 - k)x - 1
- k = 0.\ \ (2)

    Phương trình có \Delta = (1 - k)^{2} +
4(1 + k) = k^{2} + 2k + 5 = (k + 1)^{2} + 4 > 0,\forall
k.

    Do đó, đường thẳng y = k luôn cắt đồ thị (C) tại hai điểm phân biệt A\left( x_{A};k \right),B\left( x_{B};k
\right) với x_{A},x_{B} là nghiệm của phương trình.

    Theo Vi-et thì x_{A}x_{B} = - 1 -
k.

    Ta có OA\bot OB \Leftrightarrow
\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Leftrightarrow
x_{A}x_{B} + k^{2} = 0 \Leftrightarrow - 1 - k + k^{2} = 0.

    Vậy OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1= 0.

  • Câu 9: Vận dụng cao
    Chọn phương án đúng nhất

    Trên mặt phẳng tọa độ (Oxy), cho điểm A(3;2) Một đường thẳng đi qua A cắt trục hoành tại B, cắt trục tung tại C tạo thành một tam giác OBC, với O là gốc tọa độ (tham khảo hình vẽ).

    Tìm toạ độ điểm B để diện tích tam giác OBC là nhỏ nhất.

    Hướng dẫn:

    + Đường thằng qua AB có phương trinh \frac{y - 2}{- 2} = \frac{x - 3}{t - 3}. Hay y = 2 - \frac{2}{t - 3}(x -
3).

    Vậy điểm C có tung độ là y_{C} = 2 + \frac{6}{t - 3}.

    Diện tích tam giác OBC là S(t) = t \cdot y_{C} =
\frac{2t^{2}}{t - 3}.

    + Khảo sát sự biến thiên của hàm số y =
S(t).

    Tập xác đỉnh: (3; +
\infty).

    Sự biến thiên: Ta có S(t) = 2t + 6 +
\frac{18}{t - 3}.

    - S'(t) = \frac{2t^{2} - 12t}{(t -
3)^{2}},S^{'}(t) = 0 \Leftrightarrow t = 6 (do t > 3 ).

    - Hàm số S(t) nghịch biến trên khoảng (3; 6), đồng biến trên khoảng (6; +
\infty).

    - Hàm số đạt cực tiểu tại t = 6 với S_{CT} = 24.

    - Giới hạn vô cực: \lim_{t \rightarrow
3^{+}}S(t) = + \infty, giới hạn tại vô cực: \lim_{t \rightarrow + \infty}S(t) = +
\infty.

    - Bảng biến thiên:

    Diện tích tam giác OBC nhỏ nhất với điểm B(6;0).

  • Câu 10: Vận dụng
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Hỏi chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm bằng bao nhiêu?

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

    Ta có:C'(90) = 2.90 + 80 =
260.

    Dựa vào kết quả đó, ta thấy chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm là 260\
USD.

  • Câu 11: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{nx + 1}{x^{2}
+ 3mx + 2n^{2}} có đồ thị có hình vẽ như hình dưới đây

    Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Đúng||Sai

    b) Đồ thị hàm số có 2 tiệm cận đứng. Đúng||Sai

    c) Đồ thị hàm số y =
\frac{1}{f(x)} không có tiệm cận đứng. Đúng||Sai

    d) Với \left\{ \begin{matrix}
m = 1 \\
n = - 1
\end{matrix} \right.thì hàm số có đồ thị như hình vẽ. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{nx + 1}{x^{2}
+ 3mx + 2n^{2}} có đồ thị có hình vẽ như hình dưới đây

    Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Đúng||Sai

    b) Đồ thị hàm số có 2 tiệm cận đứng. Đúng||Sai

    c) Đồ thị hàm số y =
\frac{1}{f(x)} không có tiệm cận đứng. Đúng||Sai

    d) Với \left\{ \begin{matrix}
m = 1 \\
n = - 1
\end{matrix} \right.thì hàm số có đồ thị như hình vẽ. Đúng||Sai

    Lời giải chi tiết bài toán, giải chi tiết từng ý

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Mệnh đề đúng.

    b) Ta có \lim_{x \rightarrow 1^{+}}f(x) =
- \infty nên x = 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x \rightarrow 2^{-}}f(x) = -
\infty nên x = 2 là tiệm cận đứng của đồ thị hàm số.

    suy ra mệnh đề đúng.

    c) Từ đồ thị hàm số ta có phương trình f(x) = 0 vô nghiệm nên hàm số y = \frac{1}{f(x)} không có tiệm cận đứng. Suy ra mệnh đề đúng.

    d) Từ đồ thị hàm số ta có hai tiệm cận đứng là x = 1x =
2, khi đó x = 1x = 2 là nghiệm bậc nhất của mẫu nhưng không là nghiệm của tử.

    Do đó ta có

    \left\{ \begin{matrix}
1 + 3m + 2n^{2} = 0 \\
4 + 6m + 2n^{2} = 0 \\
n + 1 \neq 0 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
3m + 2n^{2} = - 1 \\
6m + 2n^{2} = - 4 \\
n + 1 \neq 0 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
m = - 1 \\
n = \pm 1 \\
n \neq - 1 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
m = - 1 \\
n = 1
\end{matrix} \right.. Suy ra mệnh đề đúng

  • Câu 12: Thông hiểu
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = 6sin\left( 3t + \frac{\pi}{4}
\right) trong đó t > 0, ttính bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
\frac{\pi}{6}(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = 18cos\left( 3t + \frac{\pi}{4} \right).

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = \frac{\pi}{6}(s)là: v\left( \frac{\pi}{6} \right) = 18cos\left(
3.\frac{\pi}{6} + \frac{\pi}{4} \right) = - 9\sqrt{2}(cm/s)

  • Câu 13: Vận dụng
    Chọn kết quả đúng

    Một công ty chuyên sản xuất thùng phi nhận được đơn đặt hàng với yêu cầu là thùng phi phải có dạng hình trụ và chứa được 16\pi\left( m^{3} \right) mỗi chiếc. Hỏi chiếc thùng phải có chiều cao h và bán kính đáy Rbằng bao nhiêu để sản xuất ít tốn vật liệu nhất?

    Hướng dẫn:

    Do thùng phi có dạng hình trụ nên:

    V_{tru} = \pi R^{2}h = 16\pi
\Leftrightarrow h = \frac{16}{R^{2}}\ \ \ \ \ \ \ (1)

    Diện tích toàn phần của thùng phi là:

    S_{Tp} = 2\pi R^{2} + 2\pi Rh = 2\pi R(h
+ R)\ \ \ \ \ \ \ (2)

    Thay vào ta được:

    S_{Tp} = 2\pi\left( \frac{16}{R} + R^{2}
\right)

    \Rightarrow S'_{Tp} = 2\pi\left( -
\frac{16}{R^{2}} + 2R \right) = \frac{4\pi}{R^{2}}\left( R^{3} - 8
\right)

    \Rightarrow S'_{Tp} = 0
\Leftrightarrow R = 2

    Bảng biến thiên

    Ảnh có chứa hàng, ảnh chụp màn hình, Sơ đồ, văn bảnMô tả được tạo tự động

    Vậy để sản xuất thùng phi ít tốn vật liệu nhất thì R = 2(m) và chiều cao là h = 4(m).

  • Câu 14: Vận dụng
    Tính khoảng cách theo yêu cầu

    Một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với tốc độ ban đầu v_{0} = 196\ m/s (bỏ qua sức cản của không khí). Tìm thời điểm tại đó tốc độ của viên đạn bằng 0. Khi đó viên đạn cách mặt đất bao nhiêu mét (lấy g = 9,8\ m/s^{2} )?

    Hướng dẫn:

    Phương trình của viên đạn đi theo phương thẳng đứng được cho bởi:

    y = - \frac{1}{2}gt^{2} - v_{o}t < =
> y = - 4,9t^{2} + 196t

    Vận tốc viên đạn tại thời điểm t là:

    v = y' = - 9,8t + 196

    Từ đó, ta nhận thấy:

    Thời điểm tại đó tốc độ của viên đạn bằng 0 được cho bởi:

    - 9,8t + 196 = 0 \Leftrightarrow t =
20s

    Khi đó viên đạn cách mặt đất một khoảng cho bởi:

    y = - 4,9.20^{2} + 196.20 =
1960m

  • Câu 15: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Xét tính đúng sai của các khẳng định dưới đây:

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 2x + 4}{x -
2} có đồ thị (C). Xét tính đúng sai của các khẳng định dưới đây:

    a) Tập xác định của hàm số đã cho là \mathbb{R}. Sai||Đúng

    b) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 2 và có tiệm cận xiên là đường thẳng y = x. Đúng||Sai

    c) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng 4. Đúng||Sai

    d) Cho đường thẳng y = mx - 2. Khi đó có đúng 8 giá trị nguyên của tham số m không vượt quá 10 để đồ thị hàm số đã cho cắt đường thẳng y = mx - 2 tại hai điểm phân biệt nằm về hai phía so với tiệm cận đứng của đồ thị (C). Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}\backslash\left\{ 2
\right\}.

    b) ĐÚNG. Dễ thấy tiệm cận đứng là x = 2.

    Ta có \lim_{x \rightarrow + \infty}\left(
\frac{x^{2} - 2x + 4}{x - 2} - x \right) = \lim_{x \rightarrow +
\infty}\left( \frac{4}{x - 2} \right) = 0;

    \lim_{x \rightarrow - \infty}\left(\frac{x^{2} - 2x + 4}{x - 2} -x \right) = \lim_{x \rightarrow -\infty}\left( \frac{4}{x - 2} \right) = 0.

    Vậy phương trình tiệm cận xiên là y =
x.

    c) ĐÚNG. Ta có y' =
1 - \frac{4}{(x - 2)^{2}}.

    Ta thấy y' = 0 \Leftrightarrow x =
0;x = 4. y(0) = - 2;y(4) =
6.

    Vậy tổng các giá trị cực đại và giá trị cực tiểu là - 2 + 6 = 4.

    d) SAI. Phương trình hoành độ giao điểm

    \frac{x^{2} - 2x + 4}{x - 2} = mx -
2

    Dễ thấy phương trình không có nghiệm x =
2 nên phương trình tương đương

    (m - 1)x^{2} - 2mx = 0.

    Nếu m = 1 thì phương trình có nghiệm duy nhất x = 0.

    Nếu m \neq 1, phương trình đã cho có hai nghiệm x = 0;x = \frac{2m}{m -
1}.

    Yêu cầu bài toán tương đương \frac{2m}{m
- 1} > 2 \Leftrightarrow \frac{2}{m - 1} > 0 \Leftrightarrow m
> 1.

    Vậy có 9 giá trị nguyên của tham số m thỏa mãn là 2;3;4;5;6;7;8;9;10.

  • Câu 16: Vận dụng
    Tính thời gian theo yêu cầu

    Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được tính theo công thức c(t) = \frac{t}{t^{2} + 1} . Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

    Hướng dẫn:

    Với c(t) = \frac{t}{t^{2} + 1}, t > 0 ta có c'(t) = \frac{- t^{2} + 1}{\left( t^{2} + 1
\right)^{2}}.

    Cho c'(t) = 0 \Leftrightarrow \frac{-
t^{2} + 1}{\left( t^{2} + 1 \right)^{2}} = 0 \Leftrightarrow t =
1

    Bảng biến thiên

    A math problem with numbers and arrowsDescription automatically generated

    Vậy \max_{(0; + \infty)}c(t) =
\frac{1}{2} khi t = 1.

  • Câu 17: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)e^{x}. Các nhận định dưới đây là đúng hay sai?

    a) Hàm số nghịch biến trên ( -
\infty;\  - 1). Đúng||Sai

    b) Giá trị cực tiểu của hàm số là 0. Sai||Đúng

    c) Hàm số f\left( x^{2} \right) đồng biến trên ( - 1;\  + \infty). Sai||Đúng

    d) Có 2025 giá trị nguyên của tham số m trong \lbrack - 2024;\ 2025\rbrack để hàm số:

    g(x) = f\left( \ln x \right) - mx^{2} +
4mx - 2 nghịch biến trên \left( e;\
e^{2024} \right). Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    a) Đúng.

    b) Sai. Vì không đủ cơ sở để xác định hàm số f(x) nên không xác định được giá trị cực tiểu.

    c) Sai.

    Ta có: \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 2xf'\left( x^{2} \right) = 2x\left( x^{2} + 1
\right)e^{x^{2}}

    \left\lbrack f\left( x^{2} \right)
\right\rbrack' = 0 \Leftrightarrow x = 0

    Do đó, hàm số nghịch biến trên ( - 1;\
0).

    d) Sai.

    Ta có:

    g'(x) = \frac{1}{x}f'\left( \ln x
\right) - 2mx + 4m

    = \frac{1}{x}\left( \ln x + 1
\right)e^{\ln x} - 2mx + 4m = \ln x + 1 - 2mx + 4m

    Hàm số nghịch biến trong khoảng \left(
e;\ e^{2024} \right) khi và chỉ khi \ln x + 1 - mx + 4m \leq 0,\forall x \in \left(
e;\ e^{2024} \right)

    \Leftrightarrow 2m \geq \frac{\ln x +
1}{x - 2},\forall x \in \left( e;\ e^{2024} \right).

    Xét hàm số g(x) = \frac{\ln x + 1}{x -
2},x \in \left( e;\ e^{2024} \right)

    Ta có g'(x) = \frac{\frac{1}{x}(x +
1) - \ln x - 1}{(x - 2)^{2}} =
\frac{1 - x\ln x}{x(x - 2)^{2}},x \in \left( e;\ e^{2024}
\right)

    g'(x) < 0,\forall x \in \left(
e;\ e^{2024} \right)

    Bảng biến thiên:

    Ảnh có chứa hàng, ảnh chụp màn hình, biểu đồ, biên laiMô tả được tạo tự động

    Quan sát bảng biến thiên ta có 2m \geq
\frac{2}{e - 2} \Leftrightarrow m \geq \frac{1}{e - 2} \Rightarrow m
\geq 2.

    Do m \in \lbrack - 2024;\
2025\rbrack, m\mathbb{\in
Z} nên m \in \left\{ 2;\ 3;\ ...\
;\ 2025 \right\}.

    Vậy có 2024 giá trị nguyên của tham số m.

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Số dân của một thị trấn sau tnăm kể từ đầu năm 2020 được tính bởi công thức f(t) = t + \frac{9}{t + 1},\ f(t) được tính bằng vạn người. Xem f(t)là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) và đạo hàm của hàm số f(t) biểu thị tốc độ tăng dân số của thị trấn. Trong khoảng thời gian nào dưới đây thì dân số của thị trấn này giảm?

    Hướng dẫn:

    Tốc độ tăng dân số của thị trấn là f'(t) = 1 - \frac{9}{(t + 1)^{2}}

    Ta cần tìm t \geq 0 sao cho f'(t) = 1 - \frac{9}{(t + 1)^{2}} \leq
0.

    Ta có f'(t) \leq 0 \Leftrightarrow
t^{2} + 2t - 8 \leq 0 \Leftrightarrow - 4 \leq t \leq 2

    Kết hợp với điều kiện t \geq 0 ta có 0 \leq t \leq 2.

    Do đó dân số của thị trấn giảm trong khoảng thời gian từ đầu năm 2020 đến hết năm 2021.

  • Câu 19: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Điều kiện xác định: x^{2} - 4x + 5
> 0 .

    Vậy hàm số có tập xác định là D\mathbb{=
R}.

    b) Ta có y' = \frac{2x - 4}{\left(
x^{2} - 4x + 5 \right)ln2}.

    Do y' > 0 \Leftrightarrow x >
2 nên hàm số đồng biến trên khoảng (2\ ;\  + \infty).

    c) Ta có bảng biến thiên

    Suy ra hàm số đạt cực tiểu tại x =
2.

    d) Đồ thị hàm số (C) có điểm cực tiểu là M(2\ ;\ 0) và cắt đường thẳng (d):y = 1 tại hai điểm A\left( x_{1};1 \right),\ \ B\left( x_{2};1
\right) với x_{1},\ x_{2} là nghiệm của phương trình:

    log_{2}\left( x^{2} - 4x + 5 \right) = 1
\Leftrightarrow x^{2} - 4x + 5 = 2

    \Leftrightarrow x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3
\end{matrix} \right.

    \Rightarrow A(1;1),\ \
B(3;1).

    Khi đó \overrightarrow{MA} = ( - 1\ ;\
1),\ \overrightarrow{MB} = (1\ ;\ 1) \Rightarrow
\overrightarrow{MA}.\overrightarrow{MB} = 0.

    Suy ra tam giác MAB vuông tại M.

    Do đó, bán kính đường tròn ngoại tiếp tam giác MABR =
\frac{AB}{2} = 1.

  • Câu 20: Vận dụng
    Định số lượng sản phẩm theo yêu cầu

    Giả sử chi phí để sản xuất x sản phẩm của một nhà máy được cho bởi C(x) =
0,2x^{2} + 10x + 5(triệu đồng). Khi đó chi phí trung bình để sản xuất một đơn vị sản phẩm là f(x) =
\frac{C(x)}{x}. Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?

    Hướng dẫn:

    Khảo sát sự biến thiên của hàm số y =
f(x) = \frac{C(x)}{x} = \frac{0,2x^{2} + 10x + 5}{x}.

    Tập xác định: \lbrack 1; +
\infty).

    Sự biến thiên: Ta có f(x) = 0,2x + 10 +
\frac{5}{x}.

    - f'(x) = \frac{0,2x^{2} -
5}{x^{2}},f^{'}(x) = 0 \Leftrightarrow x = 5 (do x \geq 1 ).

    - Hàm số f(x) đồng biến trên khoảng (5; + \infty), nghịch biến trên khoàng (1;5).

    - Hàm số f(x) đạt cực tiều tại x = 5 với f_{CT} = 12.

    - Giới hạn tại vô cực: \lim_{x
\rightarrow + \infty}f(x) = + \infty.

    Bảng biến thiên:

    Số lượng sản phẩm cần sản xuất là x =
5 để chi phí trung bình là thấp nhất

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo