Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CD Biểu thức tọa độ của các phép toán vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, cho A(a;0;0),B(0;b;0),C(0;0;c). Gọi G là trọng tâm tam giác ABC. Tính độ dài đoạn thẳng OG?

    Hướng dẫn:

    G là trọng tâm tam giác ABC nên tọa độ điểm G\left( \frac{a}{3};\frac{b}{3};\frac{c}{3}
ight) hay \overrightarrow{OG} =
\left( \frac{a}{3};\frac{b}{3};\frac{c}{3} ight)

    Vậy OG = \frac{1}{3}\sqrt{a^{2} + b^{2} +
c^{2}}.

  • Câu 2: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.

    Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.

    Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)

    Ta có \overrightarrow{OH} = ( - 688 +
91t; - 185 + 75t;8)

    OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0

    ⟺13906t - 76483 = 0 ⟺ t =
\frac{11}{2}.

    Suy ra H(\frac{-
375}{2};\frac{455}{2};8).

    Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

    OH = \sqrt{\left( \frac{- 375}{2}
ight)^{2} + \left( \frac{455}{2} ight)^{2} + 8^{2})} \approx
294,92(km).

  • Câu 3: Vận dụng cao
    Tìm tọa độ tâm đường tròn nội tiếp tam giác

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Hướng dẫn:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Đáp án là:

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Hình vẽ minh họa

    Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm A(6;0;0),B(0;10;0),C(0;0;4).

    Từ đó ta suy ra tọa độ các điểm D(6;10;0),F(6;10;4).

    Đèn chùm I được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo CFEG nên ta có I(3;5;4)

    Gọi J_{1} là hình chiếu của bóng đèn J lên nền nhà. Khi đó J_{1} là trung điểm của BD nên J_{1}(3;10;0), do đó J(3;10;3).

    Vậy ta tính được

    \overrightarrow{IJ} = (0;5; - 1)
\Rightarrow IJ = \left| \overrightarrow{IJ} ight| = \sqrt{5^{2} + ( -
1)^{2}} = \sqrt{26} \approx 5,1\ (m)

  • Câu 5: Vận dụng
    Chọn phương án thíchhợp

    Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3; - 2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng \frac{3\sqrt{11}}{2}S có cao độ âm.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} =
(2;1;2), \overrightarrow{AC} = (2;
- 2; - 1) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (3;6; -
6).

    Do SA vuông góc với nên một VTCP của đường thẳng SA được chọn là \overrightarrow{u} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6).

    Đường thẳng SA qua A(1;0;2) và có VTCP \overrightarrow{u} = (3;6; - 6) nên có phương trình tham số là:

    \left\{ \begin{matrix}
x = 1 + 3t \\
y = 6t \\
z = 2 - 6t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Do \overrightarrow{AB}.\overrightarrow{AC} = 4 - 2 -
2 = 0 \Rightarrow AB\bot AC \Rightarrow \Delta ABC vuông tại A.

    Gọi M là trung điểm BC, khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với SA nên d\bot(ABC), suy ra d là trục đường tròn ngoại tiếp \Delta ABC.

    Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.

    Mặt phẳng (ABC) qua A và có một VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6) nên có phương trình tổng quát là:

    3(x - 1) + 6y - 6(z - 2) = 0
\Leftrightarrow x + 2y - 2z + 3 = 0

    \overrightarrow{BC} = (0; - 3; - 3)
\Rightarrow BC = \sqrt{18} \Rightarrow BC^{2} = 18.

    Ta có R^{2} = IA^{2} + AM^{2}
\Leftrightarrow \frac{99}{4} = IM^{2} + \frac{1}{4}BC^{2} \Rightarrow IM
= \frac{9}{2}.

    Do S \in SA nên S(1 + 3t;6t;2 - 6t), mà SA = 2IM \Rightarrow SA = 9

    \Leftrightarrow d\left( S,(ABC) ight)
= 9

    \Leftrightarrow \frac{\left| 1 + 3t +
12t - 2(2 - 6t) + 3 ight|}{\sqrt{1^{2} + ( - 2)^{2} + 2^{2}}} =
9

    \Leftrightarrow |27t| = 27
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \Rightarrow S(4;6; - 4) \\
t = - 1 \Rightarrow S( - 2; - 6;8) \\
\end{matrix} ight., mà cao độ của S âm nên S(4;6; - 4) thỏa mãn.

  • Câu 6: Thông hiểu
    Xác định tọa độ điểm Q

    Trong không gian tọa độ Oxyzcho ba điểm M(1;1;1),\ N(2;3;4),\
P(7;7;5). Tìm tọa độ điểm Q để tứ giác MNPQ là hình bình hành

    Hướng dẫn:

    Minh họa bằng hình vẽ sau:

    Ta có \overrightarrow{MN} = (1;2;3),\
\overrightarrow{QP} = \left( 7 - x_{Q};7 - y_{Q};5 - z_{Q}
ight).

    MNPQ là hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = 7 - x_{Q} \\
2 = 7 - y_{Q} \\
3 = 5 - z_{Q} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{Q} = 6 \\
y_{Q} = 5 \\
z_{Q} = 2 \\
\end{matrix} ight..

    Vậy Q(6;5;2).

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho tọa độ ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Góc giữa hai đường thẳng ABAC

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;2) \\
\overrightarrow{AC} = (1;2; - 1) \\
\end{matrix} ight..

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = (AB;AC) =
60^{0}

  • Câu 8: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết hoành độ điểm B lớn hơn hoành độ điểm A .

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)
\Rightarrow \overrightarrow{AH}(3 + 2t;2t;3 + t) .

    Đường thẳng CDcó vtcp là: \overrightarrow{u}(2;2;1). Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0 \Rightarrow 2(3 +
2t) + 2.2t + 3 + t = 0 \Leftrightarrow t = - 1 \Rightarrow H(0; - 3;2)
\Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a| \Rightarrow CD = 6|a|

    Theo bài ra ta có: S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 = 27\Leftrightarrow
|a| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) . Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
2\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Hướng dẫn:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 10: Vận dụng
    Ghi đáp án đúng vào ô trống

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Đáp án là:

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Ta có M,\ N lần lượt là trung điểm của CD,AA', suy ra M(1;\ 2;\ 0),\ N(0;\ 0;\ 1)

    \Rightarrow \overrightarrow{MN} = ( -
1;\  - 2;\ 1)

    \Rightarrow MN:\left\{ \begin{matrix}
x = t \\
y = 2t \\
z = 1 - t \\
\end{matrix} ight.

    Gọi H(t;2t;1 - t);H'(u;2u;1 -
u) thứ tự là hình chiếu của B ; D ' trên MN

    \overrightarrow{BH}(t - 2;2t;1 -
t);\overrightarrow{D'H'}(u;2u - 2; - 1 - u) vuông góc với \overrightarrow{MN} = ( - 1;\  - 2;\
1)

    \Leftrightarrow \left\{ \begin{matrix}
2 - t - 4t + 1 - t = 0 \\
- u - 4u + 4 - 1 - u = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
u = \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{BH}\left( -
\frac{3}{2};1;\frac{1}{2} ight);\overrightarrow{D'H'}\left(
\frac{1}{2}; - 1; - \frac{3}{2} ight)

    \Rightarrow \cos\lbrack
B,MN,D'brack = \cos\left(
\overrightarrow{BH},\overrightarrow{D'H'} ight)= \frac{-
\frac{3}{4} - 1 - \frac{3}{4}}{\sqrt{\frac{9}{4} + 1 +
\frac{1}{4}}.\sqrt{\frac{9}{4} + 1 + \frac{1}{4}}} = -
\frac{5}{7}

    \Rightarrow \cos\lbrack
B,MN,D'brack = - \frac{5}{7} = m \Rightarrow 14m = -
10

  • Câu 11: Vận dụng cao
    Ghi đáp án vào ô trống

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Đáp án là:

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Ta có: \left\{ \begin{matrix}\overrightarrow{EA_{1}} = (0;1; - 6) \\\overrightarrow{EA_{2}} = \left( \frac{\sqrt{3}}{2}; - \frac{1}{2}; - 6ight) \\\overrightarrow{EA_{3}} = \left( - \frac{\sqrt{3}}{2}; - \frac{1}{2}; -6 ight) \\\end{matrix} ight.

    \Rightarrow EA_{1} = EA_{2} = EA_{3} =\sqrt{37}.

    Suy ra, \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{2}} ight| = \left|\overrightarrow{F_{3}} ight| (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).

    Do đó: \left\{ \begin{matrix}\overrightarrow{F_{1}} = k\overrightarrow{EA_{1}} = (0;k; - 6k) \\\overrightarrow{F_{2}} = k\overrightarrow{EA_{2}} = \left(\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\overrightarrow{F_{3}} = k\overrightarrow{EA_{3}} = \left( -\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\end{matrix} ight.

    \Rightarrow \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = (0;0; -18k).

    \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = \overrightarrow{P} =(0;0; - 240).

    Suy ra - 18k = - 240 \Leftrightarrow k =\frac{40}{3}.

    Từ đó \left\{ \begin{matrix}\overrightarrow{F_{1}} = \left( 0;\frac{40}{3}; - 80 ight) \\\overrightarrow{F_{2}} = \left( \frac{20\sqrt{3}}{3}; - \frac{20}{3}; -80 ight) \\\overrightarrow{F_{3}} = \left( - \frac{20\sqrt{3}}{3}; - \frac{20}{3};- 80 ight) \\\end{matrix} ight..

    Vậy \overrightarrow{F_{1}}.\overrightarrow{F_{3}} =0.\left( \frac{- 20\sqrt{3}}{3} ight) + \frac{40}{3}\left( -\frac{20}{3} ight) + ( - 80).( - 80) \approx 6311.

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A( - 2;3;1),B(5;6;2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tính tỉ số \frac{AM}{BM}?

    Hướng dẫn:

    Ta có: M \in (Oxz) \Rightarrow
M(x;0;z)

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (7;3;1) \Rightarrow AB = \sqrt{59} \\
\overrightarrow{AM} = (x + 2; - 3;z - 1) \\
\end{matrix} ight. và ba điểm A;B;M thẳng hàng

    \overrightarrow{AM} =
k.\overrightarrow{AB};\left( k\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x + 2 = 7k \\
- 3 = 3k \\
z - 1 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 9 \\
k = - 1 \\
z = 0 \\
\end{matrix} ight.

    \Rightarrow M( - 9;0;0) \Rightarrow
\left\{ \begin{matrix}
\overrightarrow{BM} = ( - 14; - 6; - 2) \\
\overrightarrow{AM} = ( - 7; - 3; - 1) \\
\end{matrix} ight.\  \Rightarrow BM = 2AB

    Vậy đáp án đúng là \frac{AM}{BM} =
\frac{1}{2}.

  • Câu 13: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Ta có \overrightarrow{AB} = (1;5; -
2),\overrightarrow{AC} = (5;4; - 1),\overrightarrow{AC} = (4; -
1;1).

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} = 5 + 20 +
2 = 27.

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB} = 5.( - 4)
+ 4.1 + ( - 1).( - 1) = - 15.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB} ight|.|\overrightarrow{AC}|} =\frac{27}{\sqrt{30}.\sqrt{42}} = \frac{9}{2\sqrt{35}}.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{\overrightarrow{AB}.\overrightarrow{BC}}{\left|\overrightarrow{AB} ight||\overrightarrow{BC}|} =\frac{15}{\sqrt{42}.\sqrt{18}} = \frac{5}{2\sqrt{21}}.

  • Câu 14: Vận dụng
    Xác định mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho hình thang ABCD có hai đáy AB,\ CD; có tọa độ ba đỉnh A(1;2;1),\ B(2;0; - 1),\ C(6;1;0). Biết hình thang có diện tích bằng 6\sqrt{2}. Giả sử đỉnh D(a;b;c), tìm mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} = (1; - 2; -
2);\overrightarrow{AC} = (5; - 1; - 1);\overrightarrow{DC} = (6 - a;1 -
b; - c).

    Ta có S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{9\sqrt{2}}{2}

    \Rightarrow S_{ACD} = 6\sqrt{2} -
\frac{9\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}.

    AB//CD nên \overrightarrow{AB}\overrightarrow{DC} cùng phương, cùng chiều \Leftrightarrow \frac{6 - a}{1} =
\frac{1 - b}{- 2} = \frac{c}{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
c = 12 - 2a \\
b = 13 - 2a \\
a < 6 \\
b > 1 \\
c > 0 \\
\end{matrix} ight.

    \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack = (0;9a - 54;54 -
9a).

    S_{\Delta ACD} = \frac{3\sqrt{2}}{2}
\Leftrightarrow \frac{1}{2}\left| \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack ight| =
\frac{3\sqrt{2}}{2}

    \Leftrightarrow |54 - 9a| = 3
\Leftrightarrow \left\lbrack \begin{matrix}
a = \frac{19}{3} \\
a = \frac{17}{3} \\
\end{matrix} ight.\ .

    So với điều kiện suy ra: a = \frac{17}{3}
\Rightarrow a + b + c = 8.

  • Câu 15: Vận dụng
    Định tọa độ điểm M

    Trong không gian Oxyzcho A(4; - 2;6), B(2;4;2),M
\in (\alpha)\ :\ x + 2y - 3z - 7 = 0 sao cho\overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất. Tọa độ của M bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm AB \Rightarrow I(3;1;4).

    Gọi H là hình chiếu của I xuống mặt phẳng (\alpha).

    Ta có \overrightarrow{MA}.\overrightarrow{MB} = \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)

    = MI^{2} + \overrightarrow{MI}.\left(
\overrightarrow{IA} + \overrightarrow{IB} ight) - IA^{2} = MI^{2} -
IA^{2}.

    Do IA không đổi nên \overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất khi MI nhỏ nhất \Leftrightarrow MI = IH \Leftrightarrow M \equiv
H.

    Gọi \Delta là đường thẳng đi qua I và vuông góc với mặt phẳng (\alpha).

    Khi đó \Delta nhận \overrightarrow{n_{(\alpha)}} = (1;2; -
3)làm vectơ chỉ phương.

    Do đó \Delta có phương trình \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 2t \\
z = 4 - 3t \\
\end{matrix} ight..

    H \in \Delta \Leftrightarrow H(3 + t;1 +
2t;4 - 3t).

    H \in (\alpha) \Leftrightarrow (3 + t) +
2(1 + 2t) - 3(4 - 3t) - 7 = 0

    \Leftrightarrow t = 1 \Leftrightarrow
H(4;3;1).

    Vậy M(4;3;1).

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 17: Thông hiểu
    Tìm tọa độ điểm đối xứng

    Cho hai điểm A(5;1;3)H(3; - 3; - 1). Tọa độ điểm A' đối xứng với A qua H là:

    Hướng dẫn:

    Vì điểm A' đối xứng với A qua H nên H là trung điểm của AA'

    \Rightarrow \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} = 1 \\
y_{A'} = 2y_{H} - y_{A} = - 7 \\
z_{A'} = 2z_{H} - z_{A} = 5 \\
\end{matrix} ight.\  \Rightarrow A'(1; - 7; - 5)

  • Câu 18: Vận dụng cao
    Tìm số phần tử của tập hợp các điểm M

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;6;0)M là điểm thay đổi trên mặt cầu (S):x^{2} + y^{2} + z^{2} = 1. Tập hợp các điểm M trên mặt cầu (S) thỏa mãn 3MA^{2} + MB^{2} = 48 có bao nhiêu phần tử?

    Hướng dẫn:

    Mặt cầu (S):x^{2} + y^{2} + z^{2} =
1 có tâm O(0;0;0), bán kính R = 1.

    Ta tìm điểm I(x;y;z) thỏa mãn 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

    \overrightarrow{IA} = (1 - x\ ;\  - y\
;\  - z), \overrightarrow{IB} = (5
- x\ ;\ 6 - y\ ;\  - z); 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
3(1 - x) + 5 - x = 0 \\
3( - y) + 6 - y = 0 \\
3( - z) - z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4x + 8 = 0 \\
- 4y + 6 = 0 \\
- 4z = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight.\  \Leftrightarrow I\left( 2;\frac{3}{2};0
ight).

    Suy ra IA = \frac{\sqrt{13}}{2}, IB = \frac{3\sqrt{13}}{2}.

    Do đó 3MA^{2} + MB^{2} = 48
\Leftrightarrow 3{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2} =
48

    \Leftrightarrow 3\left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} + \left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2} = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} + 2\overrightarrow{MI}\left( 3\overrightarrow{IA} +
\overrightarrow{IB} ight) = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} = 48 \Leftrightarrow MI = \frac{3}{2}.

    Ta thấy OI = \frac{5}{2} nên điểm I nằm ngoài mặt cầu (S). Ta có OI
= R + MI = OM + MI, suy ra có một điểm M thuộc đoạn OI thỏa mãn đề bài.

  • Câu 19: Vận dụng
    Tính giá trị biểu thức

    Trong không gian Oxyz cho hai điểm A(1\ ;\ \ 5\ ;\ 0), B(3\ ;\ 3\ ;\ 6) và đường thẳng d:\ \frac{x + 1}{2} = \frac{y - 1}{- 1} =
\frac{z}{2}. Điểm M(a\ ;\ b\ ;\
c) thuộc đường thẳng d sao cho chu vi tam giác MAB nhỏ nhất. Khi đó biểu thức a + 2b + 3c bằng

    Hướng dẫn:

    Ta có AB = \sqrt{44} không đổi.

    Do đó chu vi tam giác MAB nhỏ nhất khi (MA + MB) đạt giá trị nhỏ nhất.

    M \in (d) \Rightarrow M( - 1 + 2t\ ;\ 1 -
t\ ;\ 2t).

    MA = \sqrt{9t^{2} + 20} = \sqrt{(3t)^{2}
+ \left( 2\sqrt{5} ight)^{2}}, MB
= \sqrt{9t^{2} - 36t + 56} = \sqrt{(6 - 3t)^{2} + \left( 2\sqrt{5}
ight)^{2}}.

    Chọn \overrightarrow{u} = \left( 3t\ ;\
2\sqrt{5}\ ;\ 0 ight) \Rightarrow \left| \overrightarrow{u} ight| =
\sqrt{(3t)^{2} + \left( 2\sqrt{5} ight)^{2}}.

    Chọn \overrightarrow{v} = \left( 6 - 3t\
;\ 2\sqrt{5}\ ;\ 0 ight) \Rightarrow \left| \overrightarrow{v} ight|
= \sqrt{(6 - 3t)^{2} + \left( 2\sqrt{5} ight)^{2}}

    \Rightarrow \overrightarrow{u} +
\overrightarrow{v} = \left( 6\ ;\ 4\sqrt{5}\ ;\ 0 ight) \Rightarrow
\left| \overrightarrow{u} + \overrightarrow{v} ight| =
2\sqrt{29}.

    Theo tính chất vecto \left|
\overrightarrow{u} ight| + \left| \overrightarrow{v} ight| \geq
\left| \overrightarrow{u} + \overrightarrow{v} ight| =
2\sqrt{29}.

    Dấu " = " xảy ra khi và chỉ khi \overrightarrow{u} cùng hướng với \overrightarrow{v} \Leftrightarrow t = 1.

    Suy ra MA + MB = \left|
\overrightarrow{u} ight| + \left| \overrightarrow{v} ight| \geq
2\sqrt{29}.

    Do đóMA + MB đạt giá trị nhỏ nhất bằng 2\sqrt{29} khi t = 1 \Rightarrow M(1\ ;\ 0\ ;\ 2).

    Vậy a + 2b + 3c = 1 + 2.0 + 3.2 =
7.

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Cách 1. Gọi P là trung điểm CD, I = MP \cap AD, J = IN \cap DD', K = AC \cap MP.

    Ta có MP//BD \Rightarrow MP//B'D'
\Rightarrow d(B'D';MN) = d\left\lbrack B'D';(MNP)
ightbrack = d\left\lbrack D';(MNP) ightbrack.

    Lại có d\left\lbrack D';(MNP)
ightbrack = \frac{D'J}{DJ}d\left\lbrack D;(MNP) ightbrack =
5.d\left\lbrack D;(MNP) ightbrack.

    Mặt khác d\left\lbrack D;(MNP)
ightbrack = \frac{DI}{AI}d\left\lbrack A;(MNP) ightbrack =
\frac{1}{3}d\left\lbrack A;(MNP) ightbrack.

    Dễ thấy \left\{ \begin{matrix}
(NAK)\bot(MNP) \\
(NAK) \cap (MNP) = AK \\
AH\bot NK\ (H \in NK)\ trong\ (NAK) \\
\end{matrix} ight.

    \Rightarrow AH\bot(MNP) \Rightarrow
d\left\lbrack A;(MNP) ightbrack = AH.

    Suy ra d(MN;B'D') =
\frac{5}{3}d\left\lbrack A;(MNP) ightbrack = \frac{5}{3}AH với AN = \frac{AA'}{2} = 2 ; AK = \frac{3}{4}\sqrt{2}AB =
\frac{3\sqrt{2}}{2}.

    Vậy d(MN;B'D') = \frac{5}{3}AH =
\frac{5}{3}.\frac{AN.AK}{\sqrt{AN^{2} + AK^{2}}} =
\frac{5}{3}.\frac{\frac{3\sqrt{2}}{2}.2}{\sqrt{\left(
\frac{3\sqrt{2}}{2} ight)^{2} + 2^{2}}} = \frac{10.\sqrt{17}}{17}
\simeq 2,43.

    Cách 2. Đặt các trục Ox, OyOz vào hình như sau

    Ta có M(1;2;0), N(0;0;2), B'(0;2;4)D'(2;0;4).

    Ta có \overrightarrow{MN} = ( - 1; -
2;2), \overrightarrow{B'D'}
= (2; - 2;0)\overrightarrow{MB'} = ( - 1;0;4) \Rightarrow
\left\lbrack \overrightarrow{MN},\overrightarrow{B'D'}
ightbrack = (4;4;6).

    Khi đó :

    d\left( MN;B^{'}D^{'} ight) =
\frac{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}}
ightbrack.\overrightarrow{MB^{'}} ight|}{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}} ightbrack
ight|}

    = \frac{\left| ( - 1).4 + 0.4 + 4.6
ight|}{\sqrt{4^{2} + 4^{2} + 6^{2}}} = \frac{10\sqrt{17}}{17} \simeq
2,43.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo