Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CD Biểu thức tọa độ của các phép toán vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng cao
    Tìm số phần tử của tập hợp các điểm M

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;6;0)M là điểm thay đổi trên mặt cầu (S):x^{2} + y^{2} + z^{2} = 1. Tập hợp các điểm M trên mặt cầu (S) thỏa mãn 3MA^{2} + MB^{2} = 48 có bao nhiêu phần tử?

    Hướng dẫn:

    Mặt cầu (S):x^{2} + y^{2} + z^{2} =
1 có tâm O(0;0;0), bán kính R = 1.

    Ta tìm điểm I(x;y;z) thỏa mãn 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

    \overrightarrow{IA} = (1 - x\ ;\  - y\
;\  - z), \overrightarrow{IB} = (5
- x\ ;\ 6 - y\ ;\  - z); 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
3(1 - x) + 5 - x = 0 \\
3( - y) + 6 - y = 0 \\
3( - z) - z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4x + 8 = 0 \\
- 4y + 6 = 0 \\
- 4z = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight.\  \Leftrightarrow I\left( 2;\frac{3}{2};0
ight).

    Suy ra IA = \frac{\sqrt{13}}{2}, IB = \frac{3\sqrt{13}}{2}.

    Do đó 3MA^{2} + MB^{2} = 48
\Leftrightarrow 3{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2} =
48

    \Leftrightarrow 3\left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} + \left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2} = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} + 2\overrightarrow{MI}\left( 3\overrightarrow{IA} +
\overrightarrow{IB} ight) = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} = 48 \Leftrightarrow MI = \frac{3}{2}.

    Ta thấy OI = \frac{5}{2} nên điểm I nằm ngoài mặt cầu (S). Ta có OI
= R + MI = OM + MI, suy ra có một điểm M thuộc đoạn OI thỏa mãn đề bài.

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm M trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ Oxyz, có bốn vệ tinh lần lượt đặt tại các điểm A(3;1;0),B(3;6;6), C(4;6;2),D(6;2;14); vị trí M(a;b;c) thỏa mãn MA = 3,MB = 6,MC = 5,MD = 13. Khoảng cách từ điểm M đến điểm O bằng bao nhiêu?

    Đáp án: 3

    Đáp án là:

    Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm M trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ Oxyz, có bốn vệ tinh lần lượt đặt tại các điểm A(3;1;0),B(3;6;6), C(4;6;2),D(6;2;14); vị trí M(a;b;c) thỏa mãn MA = 3,MB = 6,MC = 5,MD = 13. Khoảng cách từ điểm M đến điểm O bằng bao nhiêu?

    Đáp án: 3

    Ta có, vị trí M(a;b;c) thỏa mãn \left\{ \begin{matrix}
MA = 3 \\
MB = 6 \\
MC = 5 \\
MD = 13 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} - 6a - 2b = - 1 \\
a^{2} + b^{2} + c^{2} - 6a - 12b - 12c = - 45 \\
a^{2} + b^{2} + c^{2} - 8a - 12b - 4c = - 31 \\
a^{2} + b^{2} + c^{2} - 12a - 4b - 28c = - 67 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 10b - 12c = - 44 \\
- 2a - 10b - 4c = - 30 \\
- 6a - 2b - 28c = - 66 \\
\end{matrix} ight.

    Vậy OM = 3

  • Câu 4: Vận dụng
    Ghi đáp án đúng vào ô trống

    Ở một sân bay, vị trí của máy bay được xác định bởi điểm M trong không gian Oxyznhư hình vẽ. Gọi H là hình chiếu vuông góc của Mxuống mặt phẳng Oxy. Cho biết OM = 40, \left( \overrightarrow{i},\overrightarrow{OH}
\right) = 60{^\circ}, \left(
\overrightarrow{OH},\overrightarrow{OM} \right) = 60{^\circ} . Điểm M có toạ độ (a;b;c). Tính giá trị P = abc. (Làm tròn kết quả đến chữ số hàng đơn vị).

    Đáp án: 6825

    Đáp án là:

    Ở một sân bay, vị trí của máy bay được xác định bởi điểm M trong không gian Oxyznhư hình vẽ. Gọi H là hình chiếu vuông góc của Mxuống mặt phẳng Oxy. Cho biết OM = 40, \left( \overrightarrow{i},\overrightarrow{OH}
\right) = 60{^\circ}, \left(
\overrightarrow{OH},\overrightarrow{OM} \right) = 60{^\circ} . Điểm M có toạ độ (a;b;c). Tính giá trị P = abc. (Làm tròn kết quả đến chữ số hàng đơn vị).

    Đáp án: 6825

    Xét \Delta MHO vuông tại H, ta có

    OH = OM.cos60{^\circ} = 40.cos60{^\circ}
= 20

    OC = MH = OM.sin60{^\circ} =
40.sin60{^\circ} = 20\sqrt{3}

    Xét \Delta OAH vuông tại A , ta có OA =
OH.cos50{^\circ} = 20.cos50{^\circ} \approx 12,86

    Xét \Delta OBH vuông tại B , ta có OB =
OH.cos40{^\circ} = 20.cos40{^\circ} \approx 15,32

    \overrightarrow{OM} = \overrightarrow{OA}
+ \overrightarrow{OB} + \overrightarrow{OC} = 12,86\overrightarrow{i} +
15,32\overrightarrow{j} + 20\sqrt{3}\overrightarrow{k} .

    Suy ra M\left( 12,86\ ;\ \ 15,32\ ;\ \
20\sqrt{3} ight) .

    P = 12,86.15,32.20\sqrt{3} \approx
6825 .

  • Câu 5: Vận dụng
    Ghi đáp án đúng vào ô trống

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Đáp án là:

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Chọn hệ trục tọa độ Oxyz, với gốc đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng (Oxy) trùng với mặt đất, trục Ox hướng về phía Bắc, trục Oy hướng về phía Tây, trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).

    Chiếc máy bay thứ nhất có tọa độ ( - 40;
- 60;2).

    Chiếc máy bay thứ hai có tọa độ (80;50;4).

    Do chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng nên ở vị trí trung điểm, suy ra chiếc máy bay thứ ba có tọa độ \left( \frac{- 40 + 80}{2};\frac{- 60 +
50}{2};\frac{2 + 4}{2} ight) = (20; - 5;3).

    Khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó là:

    \sqrt{20^{2} + ( - 5)^{2} + 3^{2}}
\approx 20,8(km).

  • Câu 6: Vận dụng cao
    Tìm tọa độ điểm M thỏa mãn điều kiện

    Trong không gian Oxyz, cho \overrightarrow{OA} = \overrightarrow{i} +
\overrightarrow{j} - 3\overrightarrow{k}, B(2;2;1). Tìm tọa độ điểm M thuộc trục tung sao cho MA^{2} + MB^{2} nhỏ nhất.

    Hướng dẫn:

    Khi đó:

    MA^{2} + MB^{2} =
{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2}

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} ight)^{2}

    = 2{\overrightarrow{MI}}^{2} +
{\overrightarrow{IA}}^{2} + {\overrightarrow{IB}}^{2} +
2\overrightarrow{MI}.\left( \overrightarrow{IA} + \overrightarrow{IB}
ight)

    = 2MI^{2} + IA^{2} + IB^{2} = 2MI^{2} +
9.

    Do đó MA^{2} + MB^{2} đạt giá trị nhỏ nhất khi và chỉ khi MI có độ dài ngắn nhất, điều này xảy ra khi và chỉ khi M là hình chiếu vuông góc của I trên trục tung.

    Phương trình mặt phẳng (P) đi qua I và vuông góc với trục tung là

    0.\left( x - \frac{3}{2} ight) +
1.\left( y - \frac{3}{2} ight) + 0.(z + 1) = 0 hay (P):y - \frac{3}{2} = 0.

    Phương trình tham số của trục tung là \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
\end{matrix} ight..

    Tọa độ điểm M cần tìm là nghiệm (x\ ;y\ ;z) của hệ phương trình:

    \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
y - \frac{3}{2} = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 0 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight..

    Vậy M\left( 0\ ;\frac{3}{2}\ ;0
ight).

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết x_{B} > x_{A}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)\Rightarrow \overrightarrow{AH} = (3 + 2t;2t;3 + t) .

    Đường thẳng CD có vtcp là: \overrightarrow{u}(2;2;1).

    Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Rightarrow 2(3 + 2t) + 2.2t + 3 + t = 0

    \Leftrightarrow t = - 1 \Rightarrow H(0; -
3;2) \Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a|
\Rightarrow CD = 6|a|

    Theo bài ra ta có:

    S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 =
27 \Leftrightarrow |a| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) .

    Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
\frac{1}{2}\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 9: Vận dụng
    Tính độ dài đoạn thẳng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 1}{1} =
\frac{z - 1}{2} và điểm M(1\ ;2\
;\  - 3). Gọi M_{1} là hình chiếu vuông góc của M lên đường thẳng d. Độ dài đoạn thẳng OM_{1} bằng

    Hướng dẫn:

    Cách 1: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    Gọi (\alpha) là mặt phẳng đi qua điểm M(1\ ;2\ ;\  - 3) và vuông góc với đường thẳng d. Khi đó (\alpha) có vtpt là \overrightarrow{n} = \overrightarrow{u} = (2\ ;\
1\ ;\ 2).

    Phương trình mặt phẳng (\alpha): 2(x - 1) + 1(y - 2) + 2(z + 3) = 0 \Leftrightarrow 2x + y + 2z + 2 =
0.

    M_{1} là hình chiếu vuông góc của M lên đường thẳng d nên M_{1} là giao điểm của d(\alpha).

    Xét hệ phương trình: \left\{
\begin{matrix}
x = 3 + 2t\ \ \ \ \ (1) \\
y = - 1 + t\ \ \ \ \ (2) \\
z = 1 + 2t\ \ \ \ \ \ (3) \\
2x + y + 2z + 2 = 0\ (4) \\
\end{matrix} ight.

    Thay (1),(2),(3) vào (4) ta được: 2(3 + 2t) - 1 + t + 2(1 + 2t) + 2 = 0

    \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t = - 1.

    Suy ra \left\{ \begin{matrix}
x = 1 \\
y = - 2 \\
z = - 1 \\
\end{matrix} ight.\  \Rightarrow M_{1}(1\ ;\  - 2\ ;\  -1).

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

    Cách 2: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    M_{1} \in d \Rightarrow M_{1}(3 + 2t\
;\  - 1 + t\ ;\ 1 + 2t)

    \Rightarrow \overrightarrow{MM_{1}} = (2
+ 2t\ ;\  - 3 + t\ ;\ 4 + 2t).

    Ta có \overrightarrow{MM_{1}}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{MM_{1}}.\overrightarrow{u} = 0\Leftrightarrow 4 + 4t - 3 + t + 8 + 4t = 0 \Leftrightarrow t = -
1.

    Suy ra M_{1}(1\ ;\  - 2\ ;\  -
1)

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (P):y = 0 \Leftrightarrow 0x + 1y
+ 0z = 0 có vectơ pháp tuyến \overrightarrow{n_{1}} = (0;1;0).

    b) \overrightarrow{n_{2}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (Q):\sqrt{3}x - y - 2024 = 0
\Leftrightarrow \sqrt{3}x - y + 0z - 2024 = 0 = 0 có vectơ pháp tuyến \overrightarrow{n_{2}} = \left(
\sqrt{3}; - 1;0 ight).

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} =
0.\sqrt{3} + 1.( - 1) + 0.0 = - 1.

    d) Gọi \varphi là góc giữa hai mặt phẳng (P)(Q)

    \cos\varphi = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|}

    = \frac{| - 1|}{\sqrt{0^{2} + 1^{2} +
0^{2}}.\sqrt{\left( \sqrt{3} ight)^{2} + ( - 1)^{2} + 0^{2}}} =
\frac{1}{2} \Rightarrow \varphi = 60{^\circ}.

  • Câu 11: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 13: Vận dụng
    Ghi đáp án đúng vào ôtrống

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (4 - a;1 - b;5 - c) \\
\overrightarrow{MB} = (3 - a; - b;1 - c) \\
\overrightarrow{MC} = ( - 1 - a;2 - b; - c) \\
\end{matrix} ight.

    \overrightarrow{MA}.\overrightarrow{MB}
+ 2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA}

    = (4 - a)(3 - a) + (1 - b)( - b) + (5 -
c)(1 - c)

    + 2(3 - a)( - 1 - a) + 2( - b)(2 - b) +
2(1 - c)( - c)

    - 5(4 - a)( - 1 - a) - 5(1 - b)(2 - b) -
5(5 - c)( - c)

    = - 2a^{2} - 2b^{2} - 2c^{2} + 4a + 10b
+ 17c + 21

    = - 2(a - 1)^{2} - 2\left( b -
\frac{5}{2} ight)^{2} - 2\left( c - \frac{17}{4} ight)^{2} +
\frac{573}{8} \leq \frac{573}{8}

    Dấu bằng xảy ra khi và chỉ khi\left\{
\begin{matrix}
a = 1 \\
b = \frac{5}{2} \\
c = \frac{17}{4} \\
\end{matrix} ight.. Khi đó P =
a - 2b + 4c = 13.

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho A(0;\  - 1;\ 1), B( - 2;\ 1;\  - 1), C( - 1;\ 3;\ 2). Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D

    Hướng dẫn:

    Gọi D(x;\ y;\ z), ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
\begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
\end{matrix} \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight..

    Vậy D(1;\ 1;\ 4).

  • Câu 15: Thông hiểu
    Xác định tọa độ trọng tâm tam giác

    Trong không gian Oxyz, cho \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}, điểm B(3\ ;\  - 4\ ;\ 1) và điểm C(2\ ;\ 0\ ;\  - 1). Tọa độ trọng tâm tam giác ABC

    Hướng dẫn:

    Từ \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}
\Rightarrow A(1\ ;\  - 2\ ;\ 3)

    Tọa độ trọng tâm G của tam giác ABC\left\{ \begin{matrix}
x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = 2 \\
y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = - 2 \\
z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = 1 \\
\end{matrix} ight.

    Vậy tọa độ trọng tâm (2\ ;\  - 2\ ;\
1).

  • Câu 16: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 17: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho M(2;1;4)M'(a;b;c) là điểm đối xứng cới điểm M qua Oy. Khi đó a
+ b + c bằng:

    Hướng dẫn:

    Gọi H là hình chiếu của M trên Oy ta có H(0;1;0). Do M' đối xứng với M qua Oy, khi đó H là trung điểm của M'M

    Suy ra M'( - 2;1; - 4) từ đó a + b + c = - 5.

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A( - 2;3;1),B(5;6;2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tính tỉ số \frac{AM}{BM}?

    Hướng dẫn:

    Ta có: M \in (Oxz) \Rightarrow
M(x;0;z)

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (7;3;1) \Rightarrow AB = \sqrt{59} \\
\overrightarrow{AM} = (x + 2; - 3;z - 1) \\
\end{matrix} ight. và ba điểm A;B;M thẳng hàng

    \overrightarrow{AM} =
k.\overrightarrow{AB};\left( k\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x + 2 = 7k \\
- 3 = 3k \\
z - 1 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 9 \\
k = - 1 \\
z = 0 \\
\end{matrix} ight.

    \Rightarrow M( - 9;0;0) \Rightarrow
\left\{ \begin{matrix}
\overrightarrow{BM} = ( - 14; - 6; - 2) \\
\overrightarrow{AM} = ( - 7; - 3; - 1) \\
\end{matrix} ight.\  \Rightarrow BM = 2AB

    Vậy đáp án đúng là \frac{AM}{BM} =
\frac{1}{2}.

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Cách 1. Gọi P là trung điểm CD, I = MP \cap AD, J = IN \cap DD', K = AC \cap MP.

    Ta có MP//BD \Rightarrow MP//B'D'
\Rightarrow d(B'D';MN) = d\left\lbrack B'D';(MNP)
ightbrack = d\left\lbrack D';(MNP) ightbrack.

    Lại có d\left\lbrack D';(MNP)
ightbrack = \frac{D'J}{DJ}d\left\lbrack D;(MNP) ightbrack =
5.d\left\lbrack D;(MNP) ightbrack.

    Mặt khác d\left\lbrack D;(MNP)
ightbrack = \frac{DI}{AI}d\left\lbrack A;(MNP) ightbrack =
\frac{1}{3}d\left\lbrack A;(MNP) ightbrack.

    Dễ thấy \left\{ \begin{matrix}
(NAK)\bot(MNP) \\
(NAK) \cap (MNP) = AK \\
AH\bot NK\ (H \in NK)\ trong\ (NAK) \\
\end{matrix} ight.

    \Rightarrow AH\bot(MNP) \Rightarrow
d\left\lbrack A;(MNP) ightbrack = AH.

    Suy ra d(MN;B'D') =
\frac{5}{3}d\left\lbrack A;(MNP) ightbrack = \frac{5}{3}AH với AN = \frac{AA'}{2} = 2 ; AK = \frac{3}{4}\sqrt{2}AB =
\frac{3\sqrt{2}}{2}.

    Vậy d(MN;B'D') = \frac{5}{3}AH =
\frac{5}{3}.\frac{AN.AK}{\sqrt{AN^{2} + AK^{2}}} =
\frac{5}{3}.\frac{\frac{3\sqrt{2}}{2}.2}{\sqrt{\left(
\frac{3\sqrt{2}}{2} ight)^{2} + 2^{2}}} = \frac{10.\sqrt{17}}{17}
\simeq 2,43.

    Cách 2. Đặt các trục Ox, OyOz vào hình như sau

    Ta có M(1;2;0), N(0;0;2), B'(0;2;4)D'(2;0;4).

    Ta có \overrightarrow{MN} = ( - 1; -
2;2), \overrightarrow{B'D'}
= (2; - 2;0)\overrightarrow{MB'} = ( - 1;0;4) \Rightarrow
\left\lbrack \overrightarrow{MN},\overrightarrow{B'D'}
ightbrack = (4;4;6).

    Khi đó :

    d\left( MN;B^{'}D^{'} ight) =
\frac{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}}
ightbrack.\overrightarrow{MB^{'}} ight|}{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}} ightbrack
ight|}

    = \frac{\left| ( - 1).4 + 0.4 + 4.6
ight|}{\sqrt{4^{2} + 4^{2} + 6^{2}}} = \frac{10\sqrt{17}}{17} \simeq
2,43.

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Đáp án là:

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Hình vẽ minh họa

    Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm A(6;0;0),B(0;10;0),C(0;0;4).

    Từ đó ta suy ra tọa độ các điểm D(6;10;0),F(6;10;4).

    Đèn chùm I được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo CFEG nên ta có I(3;5;4)

    Gọi J_{1} là hình chiếu của bóng đèn J lên nền nhà. Khi đó J_{1} là trung điểm của BD nên J_{1}(3;10;0), do đó J(3;10;3).

    Vậy ta tính được

    \overrightarrow{IJ} = (0;5; - 1)
\Rightarrow IJ = \left| \overrightarrow{IJ} ight| = \sqrt{5^{2} + ( -
1)^{2}} = \sqrt{26} \approx 5,1\ (m)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo