Trong không gian hệ trục tọa độ , cho
. Gọi
là trọng tâm tam giác
. Tính độ dài đoạn thẳng
?
Vì là trọng tâm tam giác
nên tọa độ điểm
hay
Vậy .
Trong không gian hệ trục tọa độ , cho
. Gọi
là trọng tâm tam giác
. Tính độ dài đoạn thẳng
?
Vì là trọng tâm tam giác
nên tọa độ điểm
hay
Vậy .
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Trong không gian , cho hai điểm
. Tọa độ tâm đường tròn nội tiếp tam giác
là:
Ta có bài toán sau
Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: với
Hình vẽ minh họa
Gọi A’ là chân đường phân giác kẻ từ A
Áp dụng công thức trong tam giác OMN ta có:
Vậy đáp án cần tìm là
Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài , chiều rộng
và cao
. Người ta trang trí một chiếc đèn chùm
ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn
treo chính giữa bức tường
và cách trần nhà
. Hỏi hai chiếc bóng đèn
cách nhau bao nhiêu
? (Làm tròn đến hàng phần mười).
Đáp án: 5,1
Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài , chiều rộng
và cao
. Người ta trang trí một chiếc đèn chùm
ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn
treo chính giữa bức tường
và cách trần nhà
. Hỏi hai chiếc bóng đèn
cách nhau bao nhiêu
? (Làm tròn đến hàng phần mười).
Đáp án: 5,1
Hình vẽ minh họa
Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm .
Từ đó ta suy ra tọa độ các điểm .
Đèn chùm được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo
và
nên ta có
Gọi là hình chiếu của bóng đèn
lên nền nhà. Khi đó
là trung điểm của
nên
, do đó
.
Vậy ta tính được
Trong không gian với hệ tọa độ , cho
,
,
. Tìm tọa độ điểm
, biết
vuông góc với
, mặt cầu ngoại tiếp tứ diện
có bán kính bằng
và
có cao độ âm.
Hình vẽ minh họa
Ta có ,
Do vuông góc với nên một VTCP của đường thẳng
được chọn là
Đường thẳng qua
và có VTCP
nên có phương trình tham số là:
.
Do vuông tại
.
Gọi là trung điểm
khi đó
là tâm đường tròn ngoại tiếp tam giác
. Gọi
là đường thẳng qua
và song song với
nên
, suy ra
là trục đường tròn ngoại tiếp
.
Trong mặt phẳng vẽ đường trung trực của
cắt
tại
và cắt
tại
.
Mặt phẳng qua
và có một VTPT
nên có phương trình tổng quát là:
.
Ta có .
Do nên
, mà
, mà cao độ của
âm nên
thỏa mãn.
Trong không gian tọa độ cho ba điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành
Minh họa bằng hình vẽ sau:
Ta có .
là hình bình hành
.
Vậy .
Trong không gian , cho tọa độ ba điểm
. Góc giữa hai đường thẳng
và
là
Ta có: .
Trong không gian vói hệ trục tọa độ , cho hình thang cân
có hai đáy
,
thỏa mãn
và diện tích bằng
, đỉnh
, phương trình đường thẳng chứa cạnh
là
. Tìm tọa độ điểm
biết hoành độ điểm
lớn hơn hoành độ điểm
.
Hình vẽ minh họa
Gọi điểm là hình chiếu vuông góc của
lên đường thẳng
.
Khi đó .
Đường thẳng có vtcp là:
. Ta có:
.
Đường thẳng đi qua
và song song với
phương trình
là:
Theo bài ra ta có:
Với . Với
Ta có:
Trong không gian với hệ trục tọa độ cho vectơ
có độ dài
, gọi
lần lượt là góc tạo bởi ba vectơ đơn vị
trên ba trục
và vectơ
. Khi đó tọa độ điểm
là:
Gọi và
Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian , cho hình lập phương
có
,
,
,
. Gọi
lần lượt là trung điểm của
(xem hình vẽ bên dưới). Biết rằng
, tính giá trị
.
Đáp án: -10
Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian , cho hình lập phương
có
,
,
,
. Gọi
lần lượt là trung điểm của
(xem hình vẽ bên dưới). Biết rằng
, tính giá trị
.
Đáp án: -10
Ta có lần lượt là trung điểm của
, suy ra
Gọi thứ tự là hình chiếu của
trên
vuông góc với
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt , giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.
Tính tích vô hướng của (làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt , giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.
Tính tích vô hướng của (làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Ta có:
.
Suy ra, (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).
Do đó:
.
Mà .
Suy ra .
Từ đó .
Vậy .
Trong không gian với hệ trục tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian , cho ba điểm
. Các khẳng định sau là đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Đúng||Sai
Trong không gian , cho ba điểm
. Các khẳng định sau là đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Đúng||Sai
Ta có .
Ta có:
.
Ta có:
.
Ta có:
.
Ta có:
.
Trong không gian với hệ tọa độ , cho hình thang
có hai đáy
; có tọa độ ba đỉnh
. Biết hình thang có diện tích bằng
. Giả sử đỉnh
, tìm mệnh đề đúng?
Hình vẽ minh họa
Ta có:
Ta có
//
nên
và
cùng phương, cùng chiều
So với điều kiện suy ra:
Trong không gian cho
,
,
sao cho
nhỏ nhất. Tọa độ của
bằng
Hình vẽ minh họa
Gọi là trung điểm
.
Gọi là hình chiếu của
xuống mặt phẳng
.
Ta có
.
Do không đổi nên
nhỏ nhất khi
nhỏ nhất
.
Gọi là đường thẳng đi qua
và vuông góc với mặt phẳng
.
Khi đó nhận
làm vectơ chỉ phương.
Do đó có phương trình
.
.
.
Vậy .
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Giả sử .
Ta có
Vậy
Cho hai điểm và
. Tọa độ điểm
đối xứng với
qua
là:
Vì điểm đối xứng với
qua
nên
là trung điểm của
Trong không gian tọa độ , cho hai điểm
,
và
là điểm thay đổi trên mặt cầu
. Tập hợp các điểm
trên mặt cầu
thỏa mãn
có bao nhiêu phần tử?
Mặt cầu có tâm
, bán kính
.
Ta tìm điểm thỏa mãn
.
Có ,
;
.
Suy ra ,
.
Do đó
.
Ta thấy nên điểm
nằm ngoài mặt cầu
. Ta có
, suy ra có một điểm
thuộc đoạn
thỏa mãn đề bài.
Trong không gian cho hai điểm
,
và đường thẳng
. Điểm
thuộc đường thẳng
sao cho chu vi tam giác
nhỏ nhất. Khi đó biểu thức
bằng
Ta có không đổi.
Do đó chu vi tam giác nhỏ nhất khi
đạt giá trị nhỏ nhất.
.
,
.
Chọn .
Chọn
.
Theo tính chất vecto .
Dấu xảy ra khi và chỉ khi
cùng hướng với
.
Suy ra .
Do đó đạt giá trị nhỏ nhất bằng
khi
.
Vậy .
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: