Trong không gian với hệ trục tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian với hệ trục tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Trong không gian với hệ trục tọa độ , cho hai điểm
. Biết
là tâm đường tròn nội tiếp tam giác
. Tính giá trị biểu thức
?
Hình vẽ minh họa
Ta có:
Gọi D là chân đường phân giác kẻ từ O ta có:
. Do đó
Ta có:
Trong không gian với hệ tọa , cho vectơ
,
cùng phương với vectơ
. Biết vectơ
tạo với tia
một góc nhọn và
. Giá trị của tổng
bằng
Do cùng phương và nên ta có
.
Suy ra
.
Theo giả thiết vectơ tạo với tia
một góc nhọn nên
với
, do đó
.
Mà nên
.
Lại có , suy ra
.
Vậy .
Cho hệ trục tọa độ mặt phẳng
trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm
, chiếc thứ hai xuất phát từ điểm
. Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và
về phía Đông, đồng thời cách mặt đất
. Chiếc thứ hai cách điểm xuất phát
về phía Bắc và
về phía Đông, đồng thời cách mặt đất
. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao
? (kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 4,7
Cho hệ trục tọa độ mặt phẳng
trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm
, chiếc thứ hai xuất phát từ điểm
. Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và
về phía Đông, đồng thời cách mặt đất
. Chiếc thứ hai cách điểm xuất phát
về phía Bắc và
về phía Đông, đồng thời cách mặt đất
. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao
? (kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 4,7
Gọi vị trí chiếc khinh khí cầu thứ nhất và thứ hai sau khi bay phút lần lượt là
và
Gọi là vị trí của khinh khí cầu thứ nhất, thứ hai sau khi bay 10 phút tiếp theo.
Ta có
Ta có
Trong không gian với hệ tọa độ , cho
,
,
. Tìm tọa độ điểm
, biết
vuông góc với
, mặt cầu ngoại tiếp tứ diện
có bán kính bằng
và
có cao độ âm.
Hình vẽ minh họa
Ta có ,
Do vuông góc với nên một VTCP của đường thẳng
được chọn là
Đường thẳng qua
và có VTCP
nên có phương trình tham số là:
.
Do vuông tại
.
Gọi là trung điểm
khi đó
là tâm đường tròn ngoại tiếp tam giác
. Gọi
là đường thẳng qua
và song song với
nên
, suy ra
là trục đường tròn ngoại tiếp
.
Trong mặt phẳng vẽ đường trung trực của
cắt
tại
và cắt
tại
.
Mặt phẳng qua
và có một VTPT
nên có phương trình tổng quát là:
.
Ta có .
Do nên
, mà
, mà cao độ của
âm nên
thỏa mãn.
Trong không gian với hệ trục tọa độ , cho hai điểm
. Tìm giá trị tham số
để
?
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Ta có, vị trí thỏa mãn
Vậy OM = 3
Cho lăng trụ đứng , điểm
trên
sao cho
Đặt
Khẳng định nào dưới đây là đúng ?
Hình vẽ minh họa
Ta có
Trong một căn phòng dạng hình hộp chữ nhật với chiều dài 10 m có 1 cây quạt hộp Q đặt ở sàn nhà và 3 ổ cắm điện trên tường. Chọn hệ trục tọa độ như hình vẽ sau (đơn vị: mét). Biết cây quạt cách tường
3 m và cách tường
6 m; các ổ cắm điện cách mặt sàn 40 cm, ổ cắm A và B cách bức tường chứa ổ cắm C lần lượt 7 m và 1 m, ổ cắm C cách bức tường chứa 2 ổ cắm còn lại 1,5 m.
Dây điện của quạt hộp Q cần dài tối thiểu bao nhiêu để có thể cắm tới cả 3 ổ (Đáp án làm tròn đến hàng phần trăm)
Đáp án: 6,20||6,2
Trong một căn phòng dạng hình hộp chữ nhật với chiều dài 10 m có 1 cây quạt hộp Q đặt ở sàn nhà và 3 ổ cắm điện trên tường. Chọn hệ trục tọa độ như hình vẽ sau (đơn vị: mét). Biết cây quạt cách tường
3 m và cách tường
6 m; các ổ cắm điện cách mặt sàn 40 cm, ổ cắm A và B cách bức tường chứa ổ cắm C lần lượt 7 m và 1 m, ổ cắm C cách bức tường chứa 2 ổ cắm còn lại 1,5 m.
Dây điện của quạt hộp Q cần dài tối thiểu bao nhiêu để có thể cắm tới cả 3 ổ (Đáp án làm tròn đến hàng phần trăm)
Đáp án: 6,20||6,2
Tọa độ cây quạt Q là
Tọa độ các ổ cắm điện A, B, C lần lượt là:
.
Trong không gian với hệ tọa độ , cho hình thang
có hai đáy
; có tọa độ ba đỉnh
. Biết hình thang có diện tích bằng
. Giả sử đỉnh
, tìm mệnh đề đúng?
Hình vẽ minh họa
Ta có:
Ta có
//
nên
và
cùng phương, cùng chiều
So với điều kiện suy ra:
Một kho chứa hàng có dạng hình lăng trụ đứng với
là hình chữ nhật
và là tam giác cân tại
. Gọi
là trung điểm của
. Các kích thước của kho chứa lần lượt là
m;
m;
m;
m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm
thuộc đoạn
sao cho
m và các trục toạ độ tương ứng như hình vẽ dưới đây.
Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của và đầu thu dữ liệu đặt tại vị trí
, người ta thiết kế đường dây cáp nối từ
đến
sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm
. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).
Đáp án: 16,7
Một kho chứa hàng có dạng hình lăng trụ đứng với
là hình chữ nhật
và là tam giác cân tại
. Gọi
là trung điểm của
. Các kích thước của kho chứa lần lượt là
m;
m;
m;
m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm
thuộc đoạn
sao cho
m và các trục toạ độ tương ứng như hình vẽ dưới đây.
Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của và đầu thu dữ liệu đặt tại vị trí
, người ta thiết kế đường dây cáp nối từ
đến
sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm
. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).
Đáp án: 16,7
Với hệ trục toạ độ đã chọn ta có ,
,
,
,
.
Gọi là trung điểm của
, ta có
Do đó
;
.
Vậy độ dài đoạn cáp nối tối thiểu là: .
Trong không gian vói hệ trục tọa độ , cho hình thang cân
có hai đáy
,
thỏa mãn
và diện tích bằng
, đỉnh
, phương trình đường thẳng chứa cạnh
là
. Tìm tọa độ điểm
biết hoành độ điểm
lớn hơn hoành độ điểm
.
Hình vẽ minh họa
Gọi điểm là hình chiếu vuông góc của
lên đường thẳng
.
Khi đó .
Đường thẳng có vtcp là:
. Ta có:
.
Đường thẳng đi qua
và song song với
phương trình
là:
Theo bài ra ta có:
Với . Với
Ta có:
Trong không gian hệ trục tọa độ , cho tam giác
có
. Tính diện tích tam giác
?
Ta có:
Suy ra . Lại có:
Suy ra diện tích tam giác là:
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Hình vẽ minh họa
Giả sử
Vì là điểm trên đường bay (giữa
và
). Khi đó ta có ba điểm
thẳng hàng.
Ta lại có là điểm mà máy bay cần chuyển hướng để tránh cơn bão.
Khi đó
Ta có hệ phương trình:
Giải (*) ta có
Vì là điểm gần
hơn do đó chọn
hay
Vậy độ dài quãng đường:
Trong không gian , cho các vec tơ
và
. Có bao nhiêu giá trị nguyên dương của
để góc giữa hai vec tơ
và
là góc tù?
Ta có .
Góc giữa hai vec tơ và
là góc tù khi và chỉ khi
.
Vì nguyên dương nên
.
Vậy có 2 giá trị thỏa mãn yêu cầu bài toán.
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt , giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.
Tính tích vô hướng của (làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt , giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.
Tính tích vô hướng của (làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Ta có:
.
Suy ra, (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).
Do đó:
.
Mà .
Suy ra .
Từ đó .
Vậy .
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian , cho hình thang cân
có các đáy lần lượt là
. Biết
,
,
và
với
. Tính
.
Cách 1: Ta có
Do là hình thang cân nên
hay
. Vậy
.
Lại có
.
Với . Kiểm tra thấy:
.
Với .
Kiểm tra thấy: . Do đó,
.
Cách 2
Ta có
Do là hình thang cân nên
ngược hướng hay
. Vậy
với
.
Lại có
.
Với .
Do đó, .
Cách 3
+ Viết phương trình mặt phẳng trung trực của đoạn thẳng
+ Gọi mp là mặt phẳng trung trực của đoạn thẳng
, suy ra mp
đi qua trung điểm
của đoạn thẳng
và có một vectơ pháp tuyến là
, suy ra phương trình của mp
là:
.
+ Vì đối xứng nhau qua mp
nên
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: