Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 1 (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu đã cho

    Thống kê thời gian sử dụng mạng xã hội trong ngày của các bạn học sinh tổ 1 và tổ 2 lớp 12A thu được bảng sau:

    Tìm khoảng biến thiên R_{1},\
R_{2}cho thời gian sử dụng mạng xã hội của tổ 1 và tổ 2.

    Hướng dẫn:

    Khoảng biến thiên cho thời gian sử dụng mạng xã hội của tổ 1 là R_{1} = 90 - 0 = 90

    Khoảng biến thiên cho thời gian sử dụng mạng xã hội của tổ 2 là R_{2} = 60 - 0 = 60

  • Câu 2: Vận dụng
    Xác định tính đúng sai của các nhận định

    Bảng tần số ghép nhóm dưới đây thống kê số giờ ngủ buổi tối của các học sinh lớp 12A1 và 12A2:

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 5. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 2,09. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nữ trong khoảng (2;3). Đúng||Sai

    d) Học sinh nam có thời gian ngủ đồng đều hơn. Sai||Đúng

    Đáp án là:

    Bảng tần số ghép nhóm dưới đây thống kê số giờ ngủ buổi tối của các học sinh lớp 12A1 và 12A2:

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 5. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 2,09. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nữ trong khoảng (2;3). Đúng||Sai

    d) Học sinh nam có thời gian ngủ đồng đều hơn. Sai||Đúng

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là: 9 – 4 = 5

    Mệnh đề đúng.

    b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam:

    Cỡ mẫu n = 6 + 10 + 13 + 9 + 7 =
45

    Gọi x_{1};\ x_{2};\ \ldots;\
x_{45}là thời gian ngủ của 45 học sinh nam được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu là \frac{x_{11} + x_{12}}{2} thuộc nhóm \left\lbrack \mathbf{5;6} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{5;6} \right). Ta có: Q_{1} = 5 + \frac{6 - 5}{10}\left(
\frac{45}{4} - 6 \right) \approx 5,53

    Tứ phân vị thứ ba của mẫu số liệu là \frac{x_{34} + x_{35}}{2} thuộc nhóm \left\lbrack \mathbf{7;8} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{7;8}
\right). Ta có: Q_{3} = 7 + \frac{8 - 7}{9}\left( \frac{3.45}{4} -
29 \right) \approx 7,53

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = Q_{3} - Q_{1} = 7,53 - 5,53 =
2

    Mệnh đề sai.

    c) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nữ:

    Cỡ mẫu n = 4 + 8 + 10 + 11 + 8 =
41

    Gọi x_{1};\ x_{2};\ \ldots;\
x_{41}là thời gian ngủ của 41 học sinh nữ được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu là \frac{x_{10} + x_{11}}{2} thuộc nhóm \left\lbrack \mathbf{5;6} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{5;6} \right). Ta có: Q_{1} = 5 + \frac{6 - 5}{8}\left(
\frac{41}{4} - 4 \right) \approx 5,78

    Tứ phân vị thứ ba của mẫu số liệu là \frac{x_{31} + x_{32}}{2} thuộc nhóm \left\lbrack \mathbf{7;8} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{7;8}
\right). Ta có: Q_{3} = 7 + \frac{8 - 7}{11}\left( \frac{3.41}{4}
- 22 \right) \approx 7,80

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = Q_{3} - Q_{1} = 7,80 - 5,78 =
2,02

    Mệnh đề đúng.

    d) Vì khoảng tứ phân vị của mẫu số liệu ghép nhóm của học sinh nữ lớn hơn so với học sinh nam. Học sinh nữ có thời gian ngủ đồng đều hơn.

    Mệnh đề sai.

  • Câu 3: Thông hiểu
    Xác định trung vị của mẫu số liệu ghép nhóm

    Điểm thi giữa kỳ 1 môn toán của một lớp học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Điểm thi

    [1,5; 4,5)

    [4,5; 7,5)

    [7,5; 10,5)

    Số học sinh

    7

    18

    10

    Trung vị của mẫu số liệu ghép nhóm trên là

    Hướng dẫn:

    Cỡ mẫu là n = 7 + 18 + 10 =
35.

    Gọi x_{1},x_{2},\ldots,x_{35} là số điểm của 35 học sinh và giả sử dãy này được sắp xếp theo thứ tự không giảm. Khi đó, trung vị là x_{18} thuộc nhóm \lbrack 4,5;7,5).

    Ta xác định được n = 35,n_{m} = 18,C =
7,u_{m} = 4,5,u_{m + 1} = 7,5.

    Trung vị của mẫu số liệu ghép nhóm là:

    M_{e} = 4,5 + \dfrac{\dfrac{35}{2} -7}{18}(7,5 - 4,5) = 6,25.

  • Câu 4: Nhận biết
    So sánh mức độ phân tán của hai dữ liệu

    Thâm niên công tác của các công nhân hai nhà máy A và B được cho trong bảng sau:

    Thăm niên công tác (năm)

    [75; 80)

    [80; 85)

    [85; 90)

    [90; 95)

    [95; 100)

    Số công nhân nhà máy A

    35

    13

    12

    12

    8

    Số công nhân nhà máy B

    19

    20

    24

    11

    0

    Sử dụng khoảng biến thiên, hãy cho biết thâm niên công tác các công nhân của nhà máy nào có độ phân tán lớn hơn?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thâm niên công tác của các công nhân của nhà máy A là 25 - 0 = 25 năm.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thâm niên công tác của các công nhân của nhà máy B là 20 - 0 = 20 năm.

    Do vậy, nhà máy A có thâm niên công tác của các công nhân phân tán lớn hơn nhà máy B.

  • Câu 5: Thông hiểu
    Tìm khoảng tứ phân vị của bảng số liệu ghép nhóm

    Nhiệt độ trung bình hàng tháng trong một năm được ghi lại trong bảng sau:

    Tìm khoảng tứ phân vị của bảng số liệu trên.

    Hướng dẫn:

    Mẫu số liệu trên được sấp xếp theo thứ tự tăng dần như sau:

    16 16 18 20 20 24 25 25 28 29 30 30

    Trung vị của mẫu số liệu trên là:

    \frac{24 + 25}{2} = 25 \Rightarrow Q_{2} =
24,5

    Nửa dãy phía dưới số 24,5 (nghĩa là những số nhó hơn 24,5) gồm: 16 16 18 20 20 24 có trung vị là \frac{18 + 20}{2}
= 19 \Rightarrow Q_{1} =
19.

    Nứa dãy phía trên số 24,5 (nghĩa là những số lớn hơn 24,5) gồm: 25 25 28 29 30 30 có trung vị là \frac{28 + 29}{2}
= 28,5 \Rightarrow Q_{3} =
28,5.

    Do đó, tứ phân vị của mẫu số liệu:

    Q_{1}
= 19;Q_{2} = 24,5;Q_{3} = 28,5

    Vậy khoảng tứ phân vị của mẫu số liệu là:

    \Delta_{Q} = Q_{3} - Q_{1} = 28,5 - 19 =
9,5

  • Câu 6: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Hướng dẫn:

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 8: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    Đáp án là:

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    a) Đúng: Giá trị đại diện nhóm [50;60) là 55

    b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .

    c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).

    d) Sai: Khi đó

    u_{m} = 30;n_{m} = 16;n_{m- 1} = 12;n_{m + 1} = 7;u_{m + 1} - u_{m} = 40 - 30 = 10

    Ta có mốt là:

    M_{0} = 30 + \frac{16 - 12}{(16 - 2) +
(16 - 7)}.10 = \frac{430}{13} \approx 33,08

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.

  • Câu 9: Vận dụng
    Chọn khẳng định đúng

    Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Giống B

    13

    14

    24

    14

    Chọn đáp án có khẳng định đúng?

    Hướng dẫn:

    Đối với lợn con giống A

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Tần số tích lũy

    8

    36

    68

    85

    Cỡ mẫu N = 85

    Ta có: \frac{N}{4} = \frac{{85}}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 8,f = 28;c = 1,2
- 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{85}{4} - 8}{28}.0,1\approx 1,15

    Ta có: \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 36,f = 32;c =
1,3 - 1,2 = 0,1

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,2 + \dfrac{\dfrac{255}{4} - 36}{32}.0,1\approx 1,29.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là \Delta Q_{A} = Q_{3} - Q_{1} \approx
0,14

    Đối với lợn con giống B

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống B

    13

    14

    24

    14

    Tần số tích lũy

    13

    27

    51

    65

    Cỡ mẫu N = 65

    Ta có: \frac{N}{4} =
\frac{65}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 13;f = 14;c =
1,2 - 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{65}{4} - 13}{14}.0,1\approx 1,123

    Ta có: \frac{3N}{4} = \frac{3.65}{4} =
\frac{195}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 27;f = 24;c =
1,3 - 1,2 = 0,1

    \Rightarrow {Q_3} = l + \frac{{\frac{{3N}}{4} - m}}{f}.c= 1,2 + \frac{{\dfrac{{195}}{4} - 27}}{{24}}.0,1 \approx 1,29

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là \Delta Q_{B} = Q_{3} - Q_{1} \approx
0,167

    Ta thấy \Delta Q_{A} < \Delta
Q_{B} nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.

  • Câu 10: Nhận biết
    Tìm khoảng biến thiên

    Thống kê thời gian sử dụng mạng xã hội trong ngày của các bạn học sinh tổ 1 và tổ 2 lớp 12A thu được bảng sau:

    Tìm khoảng biến thiên R_{1},\
R_{2}cho thời gian sử dụng mạng xã hội của tổ 1 và tổ 2.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 1: R_{1} = 90

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 2: R_{2} = 60

  • Câu 11: Vận dụng
    Xét tính đúng sai của các khẳng định

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 12: Vận dụng
    Tìm khoảng biến thiên và khoảng tứ phân vị

    Điều tra 42 học sinh của một lớp 11 về số giờ tự học ở nhà, người ta có bảng sau đây:

    Lớp (Số giờ tự học)

    Tần số

    Tần số tích lũy

    \lbrack 1\ ;\ 2) 8 8
    \lbrack 2\ ;\ 3) 10 18
    \lbrack 3\ ;\ 4) 12 30
    \lbrack 4\ ;\ 5) 9 39
    \lbrack 5\ ;\ 6) 3 42
    n = 42

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 1, đầu mút phải của nhóm 5 là a_{6} = 6. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R = a_{6} -
a_{1} = 6 - 1 = 5(giờ)

    Số phần tử của mẫu là n = 42

    Ta có: \frac{n}{4} = \frac{42}{4} =
10,58 < 10,5 <
18.

    Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 10,5. Xét nhóm 2 là nhóm \lbrack 2\ ;\ 3)s = 2; h =
1; n_{2} = 10 và nhóm 1 là nhóm \lbrack 1\ ;\ 2)cf_{1} = 8.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 2 + \left( \frac{10,5 - 8}{10}
\right).1 = 2,25(giờ)

    Ta có: \frac{3n}{4} = \frac{3.42}{4} =
31,530 < 31,5 <
39. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 31,5. Xét nhóm 4 là nhóm \lbrack 4\ ;\ 5)t = 4; l =
1; n_{4} = 9 và nhóm 3 là nhóm \lbrack 3\ ;\ 4)cf_{3} = 30.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 4 + \left( \frac{31,5 - 30}{9}
\right).1 \approx 4,2(giờ)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 4,2 -2,25= 1,95(giờ)

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Điểm kiểm tra 15 phút của 36 học sinh lớp 11A được cho bởi bảng tần số ghép nhóm sau:

    Nhóm điểm

    Tần số

    Tần số tích lũy

    \lbrack 1;\ \ 3) 3 3
    \lbrack 3;\ \ 5) 2 5
    \lbrack 5;\ \ 7) 10 15
    \lbrack 7;\ \ 9) 14 29
    \lbrack 9;\ \ 11) 7 39
    n = 36

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 1, đầu mút phải của nhóm 5 là a_{6} = 11. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R =
a_{6} - a_{1} = 11 - 1 = 10(điểm)

    Số phần tử của mẫu là n = 36

    Ta có: \frac{n}{4} = \frac{36}{4} =
95 < 9 < 15. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 9.

    Xét nhóm 3 là nhóm \lbrack 5;\ \ 7)s = 5; h =
2; n_{3} = 10 và nhóm 2 là nhóm \lbrack 3;\ \ 5)cf_{2} = 5.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 5 + \left( \frac{9 - 5}{10}
\right).2 = 5,8(điểm)

    Ta có: \frac{3n}{4} = \frac{3.36}{4} =
2715 < 27 < 29. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 27.

    Xét nhóm 4 là nhóm \lbrack 7;\ \ 9)t = 7; l =
2; n_{4} = 14 và nhóm 3 là nhóm \lbrack 5;\ \ 7)cf_{3} = 15.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 7 + \left( \frac{27 - 15}{14}
\right).2 \approx 8,7(điểm)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 8,7 -
5,8 = 2,9(điểm)

  • Câu 14: Nhận biết
    Xác định sự chênh lệch độ biến thiên

    Cho mẫu số kiệu ghép nhóm như sau:

    Chiều cao(cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    [180; 185)

    A

    2

    7

    12

    1

    0

    B

    6

    10

    7

    0

    2

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng bao nhiêu?

    Hướng dẫn:

    Khoảng biến thiên của A: 180 – 155 = 25

    Khoảng biến thiên của B: 185 – 155 = 30

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng 5.

  • Câu 15: Vận dụng
    Xác định tính đúng sai của các nhận định

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    Đáp án là:

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    A.B.C.D.ĐÚNGĐÚNGSAISAI

    a) Giá trị đại diện của nhóm [5; 6) là 5,5.

    Giá trị đại diện của nhóm [6; 7) là 6,5.

    Giá trị đại diện của nhóm [7; 8) là 7,5.

    Giá trị đại diện của nhóm [8; 9) là 8,5.

    Giá trị đại diện của nhóm [9; 10) là 9,5.

    Từ biểu đồ, ta có bảng tần số ghép nhóm sau:

    b) Xét mẫu số liệu của trường A:

    Cỡ mẫu nA = 4 + 5 + 3 + 4 + 2 = 18.

    Gọi x_{1};...;x_{18}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường A được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{4} \in [5; 6),

    x_{5};...;x_{9} \in [6; 7),

    x_{10};...;x_{12} \in [7; 8),

    x_{13};...;x_{16} \in [8; 9),

    x_{17};x_{18} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 6
+ \frac{\frac{18}{4} - 4}{5}(7 - 6) = 6,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 8 +
\frac{\frac{3.18}{4} - (4 + 5 + 3)}{4}(9 - 8) = 8,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆Q = Q3 – Q1 = 8,375 – 6,1 = 2,275.

    Xét mẫu số liệu của trường B:

    Cỡ mẫu nB = 2 + 5 + 4 + 3 + 1 = 15.

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường B được xếp theo thứ tự không giảm.

    Ta có

    y_{1};y_{2} \in [5; 6),

    y_{3};...;y_{7} \in [6; 7),

    y_{8};...;y_{11} \in [7; 8),

     y_{12};...;y_{14} \in [8; 9),

    y_{15} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{4} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{\
_{1}}' = 6 + \frac{\frac{15}{4} - 2}{5}(7 - 6) = 6,35

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{12} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:  Q_{\
_{3}}' = 8 + \frac{\frac{3.15}{4} - (2 + 5 + 4)}{3}(9 - 8) =
\frac{97}{12}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{\ _{Q}}' = Q_{\ _{3}}' - Q_{\
_{1}}' = \frac{97}{12} - 6,35 \approx 1,73

    d) Vì ∆Q = 2,275 > ∆'Q ≈ 1,73 nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường B có điểm trung bình đồng đều hơn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (47%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo