Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 1 (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định tính đúng sai của các nhận định

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn. (ảnh 1)

    a) Khoảng biến thiên của mẫu số liệu trên là 20. Sai||Đúng

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Nha Trang bằng 45. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Quy Nhơn bằng 39. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn Nha Trang. Đúng||Sai

    Đáp án là:

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn. (ảnh 1)

    a) Khoảng biến thiên của mẫu số liệu trên là 20. Sai||Đúng

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Nha Trang bằng 45. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Quy Nhơn bằng 39. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn Nha Trang. Đúng||Sai

    A.

    B.

    C.

    D.

    SAI

    SAI

    SAI

    ĐÚNG

    a) Khoảng biến thiên của mẫu số liệu trên là : 310 - 130 = 180.

    b) Xét mẫu số liệu của trạm quan trắc ở Nha Trang:

    Gọi x_{1};...;x_{20}là mẫu số liệu gốc về tổng số giờ nắng trong tháng 6 của các năm 2022 đến 2021 tại trạm quan trắc đặt ở Nha Trang được xếp theo thứ tự không giảm.

    Ta có

    x_{1} \in [130; 160),

    x_{2} \in [160; 190),

    x_{3} \in [190; 220),

    x_{4};...;x_{11} \in  [220; 250),

    x_{12};...; x_{18} \in [250; 280),

    x_{19};x_{20} \in [280; 310).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{5} + x_{6}}{2} \in [220; 250). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: 

    Q_{1} = 220 + \frac{\frac{20}{4} - (1 + 1 +
1)}{8}(250 - 220) = 227,5

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{15} + x_{16}}{2} \in [250; 280).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 250 + \frac{\frac{3.20}{4} - (1 + 1 + 1 +
8)}{7}(280 - 250) = \frac{1870}{7}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} = \frac{1870}{7} -
227,5 \approx 39,64

    c) Xét mẫu số liệu của trạm quan trắc ở Quy Nhơn:

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về tổng số giờ nắng trong tháng 6 của các năm 2022 đến 2021 tại trạm quan trắc đặt ở Quy Nhơn được xếp theo thứ tự không giảm.

    Ta có

    y_{1} \in [160; 190),

    y_{2};y_{3} \in [190; 220),

    y_{4};...;y_{7} \in [220; 250),

    y_{8};...;y_{17} \in [250; 280),

    y_{18};...;y_{20} \in [280; 310).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{y_{5} + y_{6}}{2} \in [220; 250). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1}' = 200 + \frac{\frac{20}{4} - (1 +
2)}{4}(250 - 200) = 235

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{y_{15} + y_{16}}{2} \in [250; 280). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{1}' = 250 + \frac{\frac{3.20}{4} - (1 + 2 +
4)}{10}(280 - 250) = 274

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆'Q = Q'3 – Q'1 = 274 – 235 = 39.

    d) Vì ∆Q ≈ 39,64 > ∆'Q = 39 nên nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn Nha Trang.

  • Câu 2: Nhận biết
    Xác định tính đúng sai

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đáp án là:

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đúng vì giá trị 200 là khoảng biến thiên của mẫu số liệu ghép nhóm.

  • Câu 3: Thông hiểu
    Xác định tứ phân vị thứ ba của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Tần số tích lũy

    6

    12

    16

    17

    28

    Cỡ mẫu N = 18

    Cỡ mẫu \Rightarrow \frac{N}{4} =
\frac{18}{4}

    => Nhóm chứa Q_{1} là [20;25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 6;c =
5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{\dfrac{18}{4} - 0}{6}.5 =23,75

    Cỡ mẫu N = 18 \Rightarrow \frac{3N}{4} =
\frac{3.18}{4}

    => Nhóm chứa Q_{3} là [30;35)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 30;m = 12,f = 4;c =
5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 30 + \dfrac{\dfrac{3.18}{4} - 12}{4}.5 =31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 8,125

  • Câu 5: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:

    Chiều cao (cm)

    Số học sinh

    (149,5; 154,5]

    5

    (154,5; 159,5]

    2

    (159,5; 164,5]

    6

    (164,5; 169,5]

    8

    (169,5; 174,5]

    9

    (174,5; 179,5]

    11

    (179,5; 184,5]

    6

    (184,5; 189,5]

    3

    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    R = 189,5 - 149,5 = 40.

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 8: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu đó

    Một mẫu số liệu ghép nhóm về chiều cao của một lớp (đơn vị là centimét) có phương sai là 6,25. Độ lệch chuẩn của mẫu số liệu đó bằng:

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu là: \sqrt{6,25} = 2,5.

  • Câu 9: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khoảng biến thiên của mẫu số liệu ghép nhóm được cho ở bảng sau là bao nhiêu?

    Nhóm

    \lbrack 15;22) \lbrack 22;29) \lbrack 29;36) \lbrack 36;43) \lbrack 43;50)

    Tần số

    1 6 21 21 11
    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là 50 – 15 = 35

  • Câu 10: Vận dụng
    Tìm khoảng biến thiên và khoảng tứ phân vị

    Điều tra 42 học sinh của một lớp 11 về số giờ tự học ở nhà, người ta có bảng sau đây:

    Lớp (Số giờ tự học)

    Tần số

    Tần số tích lũy

    \lbrack 1\ ;\ 2) 8 8
    \lbrack 2\ ;\ 3) 10 18
    \lbrack 3\ ;\ 4) 12 30
    \lbrack 4\ ;\ 5) 9 39
    \lbrack 5\ ;\ 6) 3 42
    n = 42

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 1, đầu mút phải của nhóm 5 là a_{6} = 6. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R = a_{6} -
a_{1} = 6 - 1 = 5(giờ)

    Số phần tử của mẫu là n = 42

    Ta có: \frac{n}{4} = \frac{42}{4} =
10,58 < 10,5 <
18.

    Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 10,5. Xét nhóm 2 là nhóm \lbrack 2\ ;\ 3)s = 2; h =
1; n_{2} = 10 và nhóm 1 là nhóm \lbrack 1\ ;\ 2)cf_{1} = 8.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 2 + \left( \frac{10,5 - 8}{10}
\right).1 = 2,25(giờ)

    Ta có: \frac{3n}{4} = \frac{3.42}{4} =
31,530 < 31,5 <
39. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 31,5. Xét nhóm 4 là nhóm \lbrack 4\ ;\ 5)t = 4; l =
1; n_{4} = 9 và nhóm 3 là nhóm \lbrack 3\ ;\ 4)cf_{3} = 30.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 4 + \left( \frac{31,5 - 30}{9}
\right).1 \approx 4,2(giờ)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 4,2 -2,25= 1,95(giờ)

  • Câu 11: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho ở bảng sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a. Khoảng biến thiên của mẫu số liệu là 15. Đúng||Sai

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5). Sai||Đúng

    c. Tứ phân vị thứ nhất là Q_{1} =
15. Đúng||Sai

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6. Đúng||Sai

    Đáp án là:

    Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho ở bảng sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a. Khoảng biến thiên của mẫu số liệu là 15. Đúng||Sai

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5). Sai||Đúng

    c. Tứ phân vị thứ nhất là Q_{1} =
15. Đúng||Sai

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6. Đúng||Sai

    a. Khoảng biến thiên của mẫu số liệu là 15.

    R = a_{6} - a_{1} = 24,5 - 9,5 =
15 .

    Mệnh đề đúng.

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5).

    Cỡ mẫu n = 4 + 12 + 14 + 23 + 3 =
56.

    Tứ phân vị thứ nhất Q_{1}\frac{x_{14} + x_{15}}{2} nên nhóm chứa tứ phân vị thứ nhất là \lbrack
12,5;15,5).

    Mệnh đề sai.

    c. Tứ phân vị thứ nhất là Q_{1} =
15.

    Q_{1} = 12,5 + \frac{\frac{56 }{4} -4}{12}.3 = 15.

    Mệnh đề đúng.

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6.

    Tứ phân vị thứ ba Q_{3}\frac{x_{42} + x_{43}}{2} nên nhóm chứa tứ phân vị thứ ba là \lbrack
18,5;21,5).

    Q_{3} = 18,5 + \frac{\frac{3.56}{4} -
30}{23}.3 = \frac{923}{46}.

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = \frac{233}{46} < 6.

    Mệnh đề đúng.

  • Câu 12: Vận dụng
    Tìm giá trị ngoại lệ của mẫu số liệu

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 13: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Đáp án là:

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy A là 20 - 5 = 15 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy B là 20 - 8 = 12 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy C là 17 – 5 = 12 triệu đồng.

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng.

    Chọn ĐÚNG.

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng.

    Chọn SAI.

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B.

    Chọn ĐÚNG.

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A.

    Chọn SAI.

  • Câu 14: Vận dụng
    Tìm giá trị ngoại lệ

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tìm giá trị ngoại lệ của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\frac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Suy ra khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

    Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \left\lbrack \begin{matrix}
x < Q_{1} - 1,5\Delta_{Q} \\
x > Q_{3} + 1,5\Delta_{Q} \\
\end{matrix} ight.

    Ta có: x < Q_{1} - 1,5\Delta_{Q} =
8,435

    Vậy giá trị ngoại lệ cần tìm là 8,4.

  • Câu 15: Vận dụng
    Xác định tính đúng sai của các nhận định

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    Đáp án là:

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    A.B.C.D.ĐÚNGĐÚNGSAISAI

    a) Giá trị đại diện của nhóm [5; 6) là 5,5.

    Giá trị đại diện của nhóm [6; 7) là 6,5.

    Giá trị đại diện của nhóm [7; 8) là 7,5.

    Giá trị đại diện của nhóm [8; 9) là 8,5.

    Giá trị đại diện của nhóm [9; 10) là 9,5.

    Từ biểu đồ, ta có bảng tần số ghép nhóm sau:

    b) Xét mẫu số liệu của trường A:

    Cỡ mẫu nA = 4 + 5 + 3 + 4 + 2 = 18.

    Gọi x_{1};...;x_{18}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường A được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{4} \in [5; 6),

    x_{5};...;x_{9} \in [6; 7),

    x_{10};...;x_{12} \in [7; 8),

    x_{13};...;x_{16} \in [8; 9),

    x_{17};x_{18} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 6
+ \frac{\frac{18}{4} - 4}{5}(7 - 6) = 6,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 8 +
\frac{\frac{3.18}{4} - (4 + 5 + 3)}{4}(9 - 8) = 8,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆Q = Q3 – Q1 = 8,375 – 6,1 = 2,275.

    Xét mẫu số liệu của trường B:

    Cỡ mẫu nB = 2 + 5 + 4 + 3 + 1 = 15.

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường B được xếp theo thứ tự không giảm.

    Ta có

    y_{1};y_{2} \in [5; 6),

    y_{3};...;y_{7} \in [6; 7),

    y_{8};...;y_{11} \in [7; 8),

     y_{12};...;y_{14} \in [8; 9),

    y_{15} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{4} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{\
_{1}}' = 6 + \frac{\frac{15}{4} - 2}{5}(7 - 6) = 6,35

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{12} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:  Q_{\
_{3}}' = 8 + \frac{\frac{3.15}{4} - (2 + 5 + 4)}{3}(9 - 8) =
\frac{97}{12}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{\ _{Q}}' = Q_{\ _{3}}' - Q_{\
_{1}}' = \frac{97}{12} - 6,35 \approx 1,73

    d) Vì ∆Q = 2,275 > ∆'Q ≈ 1,73 nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường B có điểm trung bình đồng đều hơn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (47%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo