Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm phương trình mặt phẳng (Q)

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 5z - 3 = 0 và hai điểm A(3;1;1),B(4;2;3). Gọi (Q) là mặt phẳng qua AB và vuông góc với (P). Phương trình nào là phương trình của mặt phẳng (Q)?

    Hướng dẫn:

    (Q) là mặt phẳng đi qua A, B và vuông góc với (P) nên mặt phẳng (Q) nhận \overrightarrow{AB} =
(1;1;2);\overrightarrow{n_{(P)}} = (1;2; - 5) làm hai vectơ chỉ phương.

    Vectơ pháp tuyến của mặt phẳng (Q)\overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{n_{(P)}} ightbrack = ( -
9;7;1)

    Phương trình mặt phẳng

    (Q): - 9(x - 3) + 7(y - 1) + 1(z - 1) =
0

    \Leftrightarrow 9x - 7y - z - 19 =
0

  • Câu 2: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3; - 2) \\
\overrightarrow{AC} = ( - 2; - 1; - 1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Phương trình mặt phẳng (ABC) là: x + 6y -
8z + 10 = 0.

    Phương trình mặt phẳng qua B và vuông góc với AC là: 2x + y + z - 2 = 0.

    Phương trình mặt phẳng qua C và vuông góc với AB là: 2x - 3y - 2z + 6 = 0.

    Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight).

    Mặt phẳng (P) đi qua A, H nên \overrightarrow{n_{P}}\bot\overrightarrow{AH} =
\left( \frac{- 22}{101}; - \frac{31}{101}; - \frac{26}{101} ight) = -
\frac{1}{101}(22;31;26)

    Mặt phẳng (P) ⊥ (ABC) nên \overrightarrow{n_{P}}\bot\overrightarrow{n_{(ABC)}}
= (1;6; - 8).

    Vậy \left\lbrack
\overrightarrow{n_{(ABC)}};\overrightarrow{u_{AH}} ightbrack = (404;
- 202; - 101) là một vectơ pháp tuyến của (P).

    Chọn \overrightarrow{n_{P}} = (4; - 2; -
1) nên phương trình mặt phẳng (P) là 4x - 2y - z + 4 = 0.

  • Câu 3: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 4: Thông hiểu
    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1; - 2;0),B(0; - 4;0),C(0;0; - 3). Phương trình mặt phẳng (P) nào dưới đây đi qua A, gốc tọa độ O và cách đều hai điểm BC?

    Hướng dẫn:

    (P) đi qua O nên phương trình mặt phẳng (P) có dạng ax + by + cz = 0\left( a^{2} + b^{2} + c^{2} >
0 ight).

    Vì A ∈ (P) và B, C cách đều (P) nên \left\{ \begin{matrix}
- a - 2b = 0 \\
|4b| = |3c| \\
\end{matrix} ight.

    Chọn a = −6, ta có b = 3, suy ra c = ±4.

    Vậy có hai mặt phẳng thỏa mãn là −6x + 3y − 4z = 0 hoặc −6x + 3y + 4z = 0.

  • Câu 5: Vận dụng
    PT mp trong hệ trục tọa độ Oxyz

    Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi \alpha ,\,\,\beta ,\,\,\gamma lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là ( OH = p):

    Hướng dẫn:

    Theo đề bài, ta có: H\left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight) \Rightarrow \overrightarrow {OH}  = \left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight)

    Gọi M\left( {x,y,z} ight) \in \left( P ight)

    \Rightarrow \overrightarrow {HM}  = \left( {x - p\cos \alpha ,y - p\cos \beta ,z - c\cos \gamma } ight)

    Ta có:

    \overrightarrow {OH}  \bot \overrightarrow {HM}

    \Leftrightarrow \left( {x - p\cos \alpha } ight)p\cos \alpha  + \left( {y - p\cos \beta } ight)p\cos \beta  + \left( {z - p\cos \gamma } ight)p\cos \gamma \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,

    \Leftrightarrow \left( P ight):x\cos \alpha  + y\cos \beta  + z\cos \gamma  - p = 0

  • Câu 6: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; - 1;1) và vectơ \overrightarrow{n} = (1;3;4). Viết phương trình mặt phẳng (P) đi qua điểm M(2; - 1;1) và có vectơ pháp tuyến \overrightarrow{n}.

    Hướng dẫn:

    Phương trình tổng quát của mặt phẳng (P) có dạng:

    (x - 2) + 3(y - 1) + 4(z - 1) =
0

    \Leftrightarrow x + 3y + 4z - 3 =
0

  • Câu 7: Thông hiểu
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng có phương trình (P)x + 2y + 2z - 1 = 0(Q):x + 2y - z - 3 =
0 và mặt cầu (S):(x - 1)^{2} + (y +
2)^{2} + z^{2} = 5. Mặt phẳng (\alpha) vuông với mặt phẳng (P),(Q) đồng thời tiếp xúc với mặt cầu (S).

    Hướng dẫn:

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 5 có tâm I(1; -
2;0) và bán kính R =
\sqrt{5}

    Gọi \overrightarrow{n_{\alpha}} là một vectơ pháp tuyến của mặt phẳng (\alpha)

    Ta có : {\overrightarrow{n}}_{\alpha} =
\overrightarrow{n_{P}} \land {\overrightarrow{n}}_{Q} \Rightarrow
\overrightarrow{n_{\alpha}} = ( - 6;3;0) = - 3(2; - 1;0) = -
3\overrightarrow{n_{1}}

    Lúc đó mặt phẳng (\alpha) có dạng :2x - y + m = 0.

    Do mặt phẳng (\alpha) tiếp xúc với mặt cầu (S)

    \Rightarrow d\left( I,(\alpha) \right) =
\sqrt{5} \Leftrightarrow \frac{|m + 4|}{\sqrt{5}} = \sqrt{5}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 9 \\
\end{matrix} \right.

    Vậy phương trình mặt phẳng (\alpha):2x -
y + 1 = 0 hoặc 2x - y - 9 =
0.

  • Câu 8: Thông hiểu
    Tìm độ dài đường cao tứ diện

    Cho tứ diện ABCDA(2;0;0),B(0;4;0),C(0;0; - 2),D(2;1;3). Tính độ dài đường cao của tứ diện ABCD kẻ từ đỉnh D?

    Hướng dẫn:

    Phương trình mặt phẳng (ABC) là:

    \frac{x}{2} + \frac{y}{4} + \frac{x}{-
2} = 1 \Leftrightarrow 2x + y - 2z - 4 = 0

    Khoảng cách từ đỉnh D đến mặt phẳng (ABC) là

    d = \frac{|2.2 + 1 - 2.3 -
4|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} = \frac{5}{3}.

  • Câu 9: Nhận biết
    Chọn đáp án chính xác

    Trong không gian với hệ trục toạ độ Oxyz. Biết A,B,C là số thực khác 0, mặt phẳng chứa trục Oz có phương trình là:

    Hướng dẫn:

    Trục Oz là giao tuyến của 2 mặt phẳng (Ozx),(Oyz) nên mặt phẳng chứa Oz thuộc chùm mặt phẳng tạo bởi 2 mặt (Ozx),(Oyz) \Rightarrow Ax + By =
0

    Vậy Ax + By = 0.

  • Câu 10: Thông hiểu
    Tìm tất cả các giá trị thực của tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD với A( -
3;1; - 1),B(1;2;m), C(0;2; -
1),D(4;3;0). Tìm tất cả các giá trị thực của m để thể tích khối tứ diện ABCD bằng 10.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (3;1;0) \\
\overrightarrow{AD} = (7;2;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = (1; - 3; -
1)

    Lại có: \overrightarrow{AB} = (4;1;m + 1)
\Rightarrow \overrightarrow{AB}.\left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = - m

    Khi đó ta có:

    V_{ABCD} = \frac{1}{6}\left|
\overrightarrow{AB}.\left\lbrack \overrightarrow{AC};\overrightarrow{AD}
ightbrack ight| = \frac{|m|}{6}

    Theo đề ta có: V_{ABCD} = 10
\Leftrightarrow \frac{|m|}{6} = 10 \Leftrightarrow m = \pm
60

  • Câu 11: Thông hiểu
    Chọn mặt phẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P),(Q) lần lượt có phương trình là x + y - z = 0,\ x - 2y + 3z = 4 và cho điểm M(1; - 2;5). Tìm phương trình mặt phẳng (\alpha) đi qua điểm M và đồng thời vuông góc với hai mặt phẳng (P),(Q)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (1;1; - 1) \\
\overrightarrow{n_{(Q)}} = (1; - 2;3) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (1; -
4; - 3)

    Do (\alpha) vuông góc với (P),(Q) nên \left\{ \begin{matrix}
\overrightarrow{n_{(\alpha)}}\bot\overrightarrow{n_{(P)}} \\
\overrightarrow{n_{(\alpha)}}\bot\overrightarrow{n_{(Q)}} \\
\end{matrix} ight.

    Chọn \overrightarrow{n_{(\alpha)}} =
\left\lbrack \overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}}
ightbrack = (1; - 4; - 3)

    Hơn nữa (\alpha) đi qua M(1; - 2;5) nên có phương trình là:

    (x - 1) - 4(y + 2) - 3(z - 5) =
0

    \Leftrightarrow x - 4y - 3z + 6 =
0

  • Câu 12: Thông hiểu
    Tìm M để biểu thức có giá trị nhỏ nhất

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;0; - 1),B(1; - 1;3),C(0;1;3). Viết phương trình mặt phẳng đi qua ba điểm A;B;C.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2; - 1;4) \\
\overrightarrow{AC} = ( - 3;1;4) \\
\end{matrix} ight.

    Mặt phẳng (ABC) có một vectơ pháp tuyến là \overrightarrow{n} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
8; - 4; - 5)

    Từ đó phương trình mặt phẳng (ABC)8x +
4y + 5z - 19 = 0.

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian Oxyz, điểm M thuộc trục Oy và cách đều hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 có tọa độ là?

    Hướng dẫn:

    Ta có M \in Oy suy ra M(0;m;0).

    Theo đề bài ra ta có:

    d\left( M,(P) ight) = d\left( M,(Q)
ight)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0).

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi (\alpha) là mặt phẳng chứa trục Oy và cách M một khoảng lớn nhất. Phương trình của (\alpha) là:

    Hướng dẫn:

    Hình vẽ minh họa

    +) Gọi H,Klần lượt là hình chiếu vuông góc của Mtrên mặt phẳng(\alpha) và trục Oy.

    Ta có : K(0;2;0)

    d(M,(\alpha)) = MH \leq MK

    Vậy khoảng cách từ M đến mặt phẳng(\alpha) lớn nhất khi mặt phẳng(\alpha)qua K và vuông góc với MK.

    Phương trình mặt phẳng: x + 3z =
0

  • Câu 16: Nhận biết
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Hướng dẫn:

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 17: Thông hiểu
    Viết PT mp song song

    Viết phương trình tổng quát của mặt phẳng (P) qua M (-2, 1, 3) và song song với mặt phẳng (Q): 2x\,\, + \,\,5y\,\, - \,\,3z\,\, + \,\,7 = \,\,0.

    Hướng dẫn:

    Vì mp (P) // (Q) nên ta có PTTQ mp (P) sẽ có dạng là:

    \left( P ight):2x + 5y - 3z + D = 0

    Mặt khác, (P) qua M\left( { - 2,1,3} ight) \Rightarrow D = 8

    \Rightarrow \left( P ight):2x + 5y - 3z + 8 = 0

  • Câu 18: Thông hiểu
    Tính tổng hai ẩn số a và b

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu
    Tìm các giá trị thực của tham số m thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 2 = 0, (Q):2x - y + 3z - 4 = 0. Giá trị số thực m để hai mặt phẳng (P),(Q) vuông góc

    Hướng dẫn:

    Để 2 mặt phẳng (P),(Q) vuông góc

    \Rightarrow
{\overrightarrow{n}}_{p}.\overrightarrow{n_{Q}} = 0 \Leftrightarrow 1.2
+ m.( - 1) + (m - 1).3 = 0 \Leftrightarrow m = \frac{1}{2}.

    Vậy m = \frac{1}{2}.

  • Câu 20: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo