Trong không gian , cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Trong không gian , cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Cho mặt phẳng qua điểm
và chắn trên ba trục tọa độ
theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của
khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.
Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2
Phương trình của
(P) qua
Trong không gian với hệ tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tỉ số
bằng
Ta có:
Trong không gian với hệ tọa độ , cho hai điểm
và
và mặt phẳng
. Viết phương trình mặt phẳng
qua
và vuông góc với
?
Mặt phẳng có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Từ đó, phương trình mặt phẳng là
.
Trong không gian với hệ toạ độ , mặt phẳng
đi qua hai điểm
và vuông góc với mặt phẳng
. Tính tổng
.
Từ giả thiết ta có hệ phương trình:
Cho tứ diện ABCD có . Mặt phẳng chứa BC và song song với AD có phương trình :
Theo đề bài, từ các điểm , ta tính được các vecto tương ứng là:
cùng phương với
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
Phương trình (P) có dạng:
Mặt khác, điểm
Vậy phương trình .
Trong không gian với hệ trục tọa độ , cho các điểm
. Viết phương trình mặt phẳng qua
và song song với mặt phẳng
.
Phương pháp tự luận
+).
+) Mặt phẳng đi qua có VTPT
có phương trình:
.
+) Thay tọa độ điểm vào phương trình mặt phẳng thấy không thỏa mãn.
Vậy phương trình mặt phẳng thỏa mãn yêu cầu bài toán là: .
Phương pháp trắc nghiệm
Gọi phương trình mặt phẳng có dạng
.
Sử dụng MTBT giải hệ bậc nhất 3 ẩn, nhập tọa độ 3 điểmvào hệ, chọn
ta được
. (Trong trường hợp chọn
vô nghiệm ta chuyển sang chọn
).
Suy ra mặt phẳng có VTPT
Mặt phẳng đi qua có VTPT
có phương trình:
.
Thay tọa độ điểm vào phương trình mặt phẳng thấy không thỏa mãn.
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Khoảng cách giữa hai mặt phẳng
và
là
Lấy .
Vì nên khoảng cách giữa hai mặt phẳng (P) và (Q) bằng khoảng cách từ điểm M đến mặt phẳng (Q).
.
Trong không gian , mặt phẳng
. Một véc tơ pháp tuyến của
có tọa độ là?
Mặt phẳng có VTPT là:
Trong không gian với hệ tọa độ , cho tam giác
có
. Độ dài đường cao của tam giác
kẻ từ
là:
Ta có:
Mà
Trong không gian với hệ trục toạ độ , cho điểm
thoả mãn
. Biết rằng khoảng cách từ
tới mặt phẳng
lần lượt là 2 và 3. Tính khoảng cách từ
đến mặt phẳng
.
Ta có:
Giả sử khi đó ta có:
Mà
Trong không gian với hệ toạ độ , cho hai điểm
. Phương trình mặt phẳng
vuông góc với
và hợp với các trục tọa độ một tứ diện có thể tích bằng
là
Ta có
Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz
Suy ra
Ta có thể tích tứ diện
Vậy đáp án cần tìm là:
Trong không gian với hệ toạ độ , viết phương trình mặt phẳng
đi qua hai điểm
,
đồng thời cắt các tia
lần lượt tại hai điểm
(không trùng với gốc tọa độ
) sao cho
Gọi lần lượt là giao điểm của
với các tia
Do .
Đặt
Gọi là môt vectơ pháp tuyến của mặt phẳng
Phương trình măt phẳng .
Trong không gian với hệ tọa độ , cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Trong không gian với hệ trục tọa độ , cho 4 mặt phẳng
,
,
,
. Có bao nhiêu cặp mặt phẳng song song với nhau.
Hai mặt phẳng song song khi
Xét và
:
Xét và
:
Xét và
:
Xét và
:
Xét và
:
.
Vậy có 3 cặp mặt phẳng song song.
Trong không gian với hệ tọa độ , cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Mặt phẳng có một vectơ pháp tuyến là
Từ đó phương trình mặt phẳng là
.
Trong không gian với hệ toạ độ , cho mặt phẳng (P) có phương trình
. Mặt phẳng (P) có một vectơ pháp tuyến là:
Mặt phẳng (P): có một vectơ pháp tuyến
Trong không gian với hệ trục tọa độ , cho
. Phương trình mặt phẳng
đi qua
cắt các trục tọa độ
lần lượt tại
(khác
) sao cho
là trực tâm tam giác
là:
Mặt phẳng cắt trục
lần lượt tại
suy ra
là trực tâm của tam giác
và
Phương trình mặt phẳng .
Trong không gian với hệ trục tọa độ , cho mặt phẳng
đi qua
,
và vuông góc với mặt phẳng
. Phương trình mặt phẳng
là:
Phương pháp tự luận
,
Mặt phẳng đi qua
và có vectơ pháp tuyến
có phương trình:
.
Vậy .
Phương pháp trắc nghiệm
Do , kiểm tra mp
nào có
.
Trong không gian với hệ tọa độ , viết phương trình mặt phẳng
chứa điểm
, cắt các tia
lần lượt tại
(khác
) sao cho
?
Giả sử với
.
Phương trình mặt phẳng (P) là . Theo giả thiết ta có:
Vậy phương trình mặt phẳng là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: