Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho bốn điểm A( - 1;3;1),B(1; - 1;2),C(2;1;3),D(0;1;
- 1). Mặt phẳng (P) chứa AB và song song với CD có phương trình là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 4;1) \\
\overrightarrow{CD} = ( - 2;0; - 4) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{CD} ightbrack = (8;3; -
4).

    Mặt phẳng (P) đi qua A( -
1;3;1), nhận \overrightarrow{n} =
\left\lbrack \overrightarrow{AB};\overrightarrow{CD} ightbrack =
(8;3; - 4) là vectơ pháp tuyến, có phương trình là

    \ 8(x + 1) + 3(y - 3) - 4(z - 1) =
0

    \Leftrightarrow 8x + 3y - 4z + 3 =
0

    (Thỏa mãn song song CD nên thỏa mãn đề bài).

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):(m - 1)x + y - 2z + m
= 0(Q):2x - z + 3 = 0. Tìm m để (P) vuông góc với (Q)?

    Hướng dẫn:

    Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là (m - 1;1; -
2).(2;0; - 1) = 0 \Leftrightarrow m = 0.

  • Câu 4: Vận dụng
    Tính tổng P

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;2;5),B(0;4; - 3),C(2; - 3;7). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tính tổng P = x + y + z.

    Hướng dẫn:

    Vì M ∈ (Oxy) nên M(x;y;0).

    Gọi G là trọng tâm của tam giác ABC.

    Ta có G(2; 1; 3).

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \left|
\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} +
\overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}
ight|

    = \left| 3\overrightarrow{MG} ight| =
3MG = 3\sqrt{(x - 2)^{2} + (y - 1)^{2} + 3^{2}} \geq 9

    Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).

    Vậy P = 3

  • Câu 5: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3; - 2) \\
\overrightarrow{AC} = ( - 2; - 1; - 1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Phương trình mặt phẳng (ABC) là: x + 6y -
8z + 10 = 0.

    Phương trình mặt phẳng qua B và vuông góc với AC là: 2x + y + z - 2 = 0.

    Phương trình mặt phẳng qua C và vuông góc với AB là: 2x - 3y - 2z + 6 = 0.

    Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight).

    Mặt phẳng (P) đi qua A, H nên \overrightarrow{n_{P}}\bot\overrightarrow{AH} =
\left( \frac{- 22}{101}; - \frac{31}{101}; - \frac{26}{101} ight) = -
\frac{1}{101}(22;31;26)

    Mặt phẳng (P) ⊥ (ABC) nên \overrightarrow{n_{P}}\bot\overrightarrow{n_{(ABC)}}
= (1;6; - 8).

    Vậy \left\lbrack
\overrightarrow{n_{(ABC)}};\overrightarrow{u_{AH}} ightbrack = (404;
- 202; - 101) là một vectơ pháp tuyến của (P).

    Chọn \overrightarrow{n_{P}} = (4; - 2; -
1) nên phương trình mặt phẳng (P) là 4x - 2y - z + 4 = 0.

  • Câu 6: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, (\alpha)là mặt phẳng đi qua điểm A(2; - 1;5) và vuông góc với hai mặt phẳng (P):3x - 2y + z + 7 = 0(Q):5x - 4y + 3z + 1 = 0. Phương trình mặt phẳng (\alpha) là:

    Hướng dẫn:

    Mặt phẳng (P) có một VTPT\overrightarrow{n_{P}} = (3; - 2;1)

    Mặt phẳng (Q) có một VTPT\overrightarrow{n_{Q}} = (5; - 4;3)

    Mặt phẳng (\alpha)vuông góc với 2 mặt phẳng (P):3x - 2y + z + 7 = 0,(Q):5x - 4y + 3z + 1 = 0 nên có một VTPT\overrightarrow{n_{P}} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{n_{Q}} \right\rbrack
= ( - 2; - 4; - 2).

    Phương trình mặt phẳng (\alpha) là: x + 2y + z - 5 = 0

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 8: Thông hiểu
    Xác định số điểm M thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0. Có bao nhiêu điểm M trên trục Oy thỏa mãn M cách đều hai mặt phẳng (P)(Q)?

    Hướng dẫn:

    M \in Oy nên M(0;y;0)

    Ta có: \left\{ \begin{matrix}d\left( M;(P) ight) = \dfrac{|y + 1|}{\sqrt{3}} \\d\left( M;(Q) ight) = \dfrac{| - y - 5|}{\sqrt{3}} \\\end{matrix} ight..

    Theo giả thiết:

    d\left( M;(P) ight) = d\left( M;(Q)
ight) \Leftrightarrow \frac{|y + 1|}{\sqrt{3}} = \frac{| - y -
5|}{\sqrt{3}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y + 1 = - y - 5 \\
y + 1 = y + 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
y = - 3(TM) \\
0y = 4(L) \\
\end{matrix} ight.

    \Rightarrow M(0; - 3;0)

    Vậy có 1 điểm M thỏa mãn bài.

  • Câu 9: Vận dụng
    Tính khoảng cách từ điểm đến mặt phẳng

    Cho tứ diện OABC, có OA,OB,OC đôi một vuông góc và OA = 5,OB = 2,OC = 4. Gọi M,N lần lượt là trung điểm của OBOC. Gọi G là trọng tâm của tam giác ABC. Khoảng cách từ G đến mặt phẳng (AMN) là:

    Hướng dẫn:

    Chọn hệ trục tọa độ Oxyznhư hình vẽ.

    Ta có O(0;0;0), A \in Oz,\ \ B \in Ox,\ \ C \in Oy sao cho AO = 5,\ \ OB = 2,\ \ OC = 4

    \Rightarrow A(0;0;5),\ \ B(2;0;0),\ \
C(0;4;0).

    Khi đó: G là trọng tâm tam giácABC nên G\left( \frac{2}{3};\frac{4}{3};\frac{5}{3}
\right)

    Mlà trung điểm OBnên M(1;0;0)

    Nlà trung điểm OCnên N(0;2;0).

    Phương trình mặt phẳng (AMN) là: \frac{x}{1} + \frac{y}{2} + \frac{z}{5} =
1 hay 10x + 5y + 2z - 10 =
0

    Vậy khoảng cách từ G đến mặt phẳng (AMN) là:

    d\left( G,(AMN) \right) = \dfrac{\left|
\dfrac{20}{3} + \dfrac{20}{3} + \dfrac{10}{3} - 10 \right|}{\sqrt{100 + 25
+ 4}} = \dfrac{20}{3\sqrt{129}}.

  • Câu 10: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Hướng dẫn:

    Mặt phẳng (P)đi qua A(0;1;1)và nhận vecto \overrightarrow{AB} = (1;1;2)là vectơ pháp tuyến

    (P):1(x - 0) + 1(y - 1) + 2(z - 1) =
0

    \Leftrightarrow x + y + 2z - 3 =
0.

  • Câu 11: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Đáp án là:

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Ta có: \overrightarrow{n_{P}} = (2; -1;2);\overrightarrow{n_{Q}} = (1;m;1)

    Để hai mặt phẳng (P)(Q)vuông góc với nhau thì \overrightarrow{n_{P}}\bot\overrightarrow{n_{Q}}.

    \Leftrightarrow 2.1 - 1.m + 2.1 = 0
\Leftrightarrow m = 4.

  • Câu 12: Nhận biết
    Giao điểm 3 mp

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y + 3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Tọa độ của điểm A đó là:

    Hướng dẫn:

     Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}x + 2y - z - 6 = 0\left( 1 ight)\\2x - y + 3z + 13 = 0\left( 2 ight)\\3x - 2y + 3z + 16 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x =  - z - 4;y = z + 5.

    Thế vào phương trình (3) được z=-3 , từ đó có x =  - 1,y = 2

    Vậy  A(-1,2,-3).

  • Câu 13: Thông hiểu
    Xác định diện tích tam giác ABC

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 14: Thông hiểu
    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Hướng dẫn:

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 15: Thông hiểu
    PT Mặt phẳng trung trực

    Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với A\left( {\,1,\,\,4,\,\,3\,} ight);\,\,B\left( {\,3,\,\, - 6,\,\,5\,} ight).

    Hướng dẫn:

    Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là: I\left( {2, - 1,4} ight)

    Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận \vec{AB} làm 1 VTPT. Ta có VTPT của \left( P ight):\,\,\overrightarrow {AB}  = 2\left( {1, - 5,1} ight)

    \Rightarrow \left( P ight):\left( {x - 2} ight)1 + \left( {y + 1} ight)\left( { - 5} ight) + \left( {z - 4} ight).1 = 0

    \Leftrightarrow x - 5y + z - 11 = 0

  • Câu 16: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x + 2y - z + 1 = 0. Gọi mặt phẳng (Q) là mặt phẳng đối xứng của mặt phẳng (P) qua trục tung. Khi đó phương trình mặt phẳng (Q) là?

    Hướng dẫn:

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P).

    Điểm M'( - x,y, - z) là điểm đối xứng của Mqua trục tung \Rightarrow (Q): - x + 2y + z + 1 = 0 là mặt phẳng đi qua M' và là mặt phẳng đối xứng của(P)

    Vậy x - 2y - z - 1 = 0.

  • Câu 17: Vận dụng
    PT mp có hệ số là CSN

    Cho mặt phẳng (P) qua điểm M\left( {2, - 4,1} ight) và chắn trên ba trục tọa độ Ox, Oy, Oz theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của (P) khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.

    Hướng dẫn:

    Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2

    \Rightarrow a,\,b = 2a;c = 4a;\,a e 0

    Phương trình của \left( P ight):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    \Leftrightarrow \frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{4a}} = 1 \Leftrightarrow 4x + 2y + z - 4a = 0

    (P) qua M\left( {2, - 4,1} ight) \Rightarrow 8 - 8 + 1 - 4a = 0 \Leftrightarrow a = \frac{1}{4}

    \Rightarrow \left( P ight):4x + 2y + z - 1 = 0

     

  • Câu 18: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 19: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1; - 2;1), B( - 1;3;3), C(2; - 4;2). Một vectơ pháp tuyến \overrightarrow{n} của mặt phẳng (ABC) là:

    Hướng dẫn:

    Phưowng pháp tự luận

    Ta có \overrightarrow{AB} = ( -
2;5;2), \overrightarrow{AC} = (1; -
2;1)

    \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(9;4; - 1).

    Phương pháp trắc nghiệm

    Sử dụng MTBT tính tích có hướng.

    \overrightarrow{AB} = ( -
2;5;2), \overrightarrow{AC} = (1; -
2;1).

    Chuyển sang chế độ Vector: Mode 8.

    Ấn tiếp 1 – 1: Nhập tọa độ \overrightarrow{AB} vào vector A.

    Sau đó ấn AC. Shift – 5 – 1 – 2 – 1 Nhập tọa độ \overrightarrow{AC} vào vector B.

    Sau đó ấn AC.

    Để nhân \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} \right\rbrack ấn Shift – 5 –3 – X Shift - 5 – 4 - =

  • Câu 20: Nhận biết
    Viết phương trình mặt phẳng (ABC)

    Trong không gian với hệ toạ độ Oxyz, cho A(a;0;0), B(0;b;0), C(0;0;c), (abc \neq 0). Khi đó phương trình mặt phẳng (ABC) là:

    Hướng dẫn:

    Phương trình mặt phẳng (ABC) cần tìm là: \frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo