Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 7 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm tọa độ điểm D theo yêu cầu

    Trong không gian Oxyz, cho ba điểm A( - 1\ ;\ 0\ ;\ 2), B(2\ ;\ 1\ ;\  - 3)C(1\ ;\  - 1\ ;\ 0). Tìm tọa độ điểm D sao cho ABCD là hình bình hành.

    Hướng dẫn:

    Gọi D(a\ ;\ b\ ;\ c); \overrightarrow{AB} = (3\ ;\ 1\ ;\  - 5); \overrightarrow{AC} = (2\ ;\  - 1\ ;\  -
2)

    \frac{3}{2} eq \frac{1}{-
1} nên \overrightarrow{AB} không cùng phương \overrightarrow{AC}
\Rightarrow tồn tại hình bình hành ABCD.

    Suy ra ABCD là hình bình hành khi \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
3 = 1 - a \\
1 = - 1 - b \\
- 5 = - c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = - 2 \\
c = 5 \\
\end{matrix} ight..

    Vậy D( - 2\ ;\  - 2\ ;\ 5).

  • Câu 2: Nhận biết
    Xác định điểm thuộc trục tung

    Trong không gian Oxyz, điểm nào sau đây thuộc trục tung Oy?

    Hướng dẫn:

    Điểm thuộc trục tung Oy là M(0; -
10;0).

  • Câu 3: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A( - 1;2; - 3)B(2; - 1;0). Vectơ \overrightarrow{AB} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (2 + 1; - 1 - 2;0
+ 3) = (3; - 3;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(3; - 3;3).

  • Câu 4: Nhận biết
    Tìm tọa độ hình chiếu

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 5: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyzcho \overrightarrow{a} = 2\overrightarrow{i} -
3\overrightarrow{k}. Tọa độ của \overrightarrow{a}

    Hướng dẫn:

    Ta có: \overrightarrow{a} = (2;0; -
3)

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, điểm nào dưới đây thuộc trục Oy?

    Hướng dẫn:

    Điểm A(x;y;z) \in Oy \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
z = 0 \\
\end{matrix} ight.. Suy ra trong bốn điểm đã cho điểm T(0; - 3;0) \in Oy.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyzvới \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị trên các trục Ox,\ \ Oy,\ \ Oz. Tính tọa độ của vecto \overrightarrow{i} + \overrightarrow{j} -
\overrightarrow{k}.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0;0) \\
\overrightarrow{j} = (0;1;0) \\
\overrightarrow{k} = (0;0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{i} +
\overrightarrow{j} - \overrightarrow{k} = (1;1; - 1)

  • Câu 8: Nhận biết
    Tìm tọa độ hình chiếu vuông góc của A

    Trong không gian Oxyz, cho điểm A(1;1;1). Tìm tọa độ hình chiếu vuông góc của A trên mặt phẳng (Oxz).

    Hướng dẫn:

    A(1;1;1) nên tọa độ hình chiếu vuông góc của A trên mặt phẳng (Oxz)(1;0;1).

  • Câu 9: Nhận biết
    Chọn khẳng định đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(3;0;1). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Vì tọa độ điểm A(3;0;1)x = 3;y = 0;z = 1 nên A \in (Oxz).

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, điểm nào sau đây nằm trên mặt phẳng tọa độ (Oyz)?

    Hướng dẫn:

    Điểm thuộc (Oyz)x = 0. Vậy điểm cần tìm được là: N(0;4; - 1).

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox có tọa độ là

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox (8;0;0).

  • Câu 12: Nhận biết
    Tìm tọa độ hình chiếu

    Trong không gian tọa độ Oxyz cho điểm A(3; - 2;5). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxz) là:

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(3; -
2;5) trên mặt phẳng (Oxz) là điểm có tọa độ (3;0;5).

  • Câu 13: Nhận biết
    Tìm tọa độ vecto

    Trong không gian O xyz, cho A(2; - 1;0)B(1;1; - 3). Vectơ \overrightarrow{AB} có tọa độ là

    Hướng dẫn:

    Ta có:

    A(2; - 1;0)B(1;1; - 3) khi đó:

    \overrightarrow{AB} = (1 - 2;1 + 1; - 3
- 0) = ( - 1;2; - 3)

  • Câu 14: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

  • Câu 15: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 2;3;1),B(4;2; - 1),C(5; - 2;0). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD. Khi đó giá trị biểu thức H = 2a + b + c có giá trị bằng bao nhiêu?

    Hướng dẫn:

    Gọi tọa độ điểm D(a;b;c)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (6; - 1; - 2) \\
\overrightarrow{DC} = (5 - a; - 2 - b; - c) \\
\end{matrix} ight.

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
5 - a = 6 \\
- 2 - b = - 1 \\
- c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = 2 \\
\end{matrix} ight. suy ra điểm D( - 1; - 1;2)

    Khi đó H = 2a + b + c = 2.( - 1) - 1 + 2
= - 1.

  • Câu 16: Thông hiểu
    Ghi đáp án đúng vào ô trống

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Đáp án là:

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Ta có

    IM = \sqrt{(7 - 3)^{2} + (10 - 4)^{2} +
(17 - 5)^{2}}

    = \sqrt{4^{2} + 6^{2} + 12^{2}} =
\sqrt{196} = 14 (m).

    Đáp số 14(m).

  • Câu 17: Thông hiểu
    Chọn phát biểu sai

    Trong không gian Oxyz, cho điểm M(2; - 5;4). Trong các phát biểu sau, phát biểu nào sai?

    Hướng dẫn:

    +) Ta có khoảng cách từ M đến mặt phẳng tọa độ (xOz) bằng | - 5| = 5 nên Khoảng cách từ M đến mặt phẳng tọa độ (xOz) bằng 5 đúng.

    +) Khoảng cách từ M đến trục Oz bằng \sqrt{2^{2} + ( - 5)^{2}} = \sqrt{29} nên Khoảng cách từ M đến trục Oz bằng \sqrt{29}” đúng.

    +) Tọa độ hình chiếu vuông góc của điểm Mlên mặt phẳng (yOz)I(0;
- 5;4).

    Suy ra tọa độ điểm M' đối xứng với M qua mặt phẳng (yOz)M'( - 2; - 5;4) nên Tọa độ điểm M' đối xứng với M qua mặt phẳng (yOz)M'(2;5; - 4)sai.

    +) Tọa độ hình chiếu vuông góc của điểm Mlên trục OyJ(0; -
5;0).

    Suy ra tọa độ điểm M' đối xứng với M qua trục OyM'(
- 2; - 5; - 4) nên Tọa độ điểm M' đối xứng với M qua trục OyM'(
- 2; - 5; - 4)” đúng.

  • Câu 18: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho \overrightarrow{u} = (1;2;0). Tọa độ vectơ \overrightarrow{u} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow\overrightarrow{u} = (x;y;z)

    Suy ra \overrightarrow{u} = (1;2;0)\Leftrightarrow \overrightarrow{u} = \overrightarrow{i} +2\overrightarrow{j}

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm P

    Trong không gian Oxyz, cho hai điểm M(2;1;2), N(4; 2; 1), tọa độ điểm P thuộc trục Oz sao cho M;N; Pthẳng hàng là

    Hướng dẫn:

    Vì điểm Pthuộc trục Oz nên P có tọa độ P(0;0;z).

    Ta có \overrightarrow{MN}(2;1; -
1); \overrightarrow{NP}( - 4; - 2;z
- 1)

    M;\ N;\ P thẳng hàng\Leftrightarrow\overrightarrow{MN};\overrightarrow{NP} cùng phương

    \Leftrightarrow \frac{- 4}{2} = \frac{-
2}{1} = \frac{z - 1}{- 1} \Leftrightarrow z - 1 = 2 \Leftrightarrow z =
3

    Vậy điểm P(0;0;3).

  • Câu 20: Nhận biết
    Xác định tọa độ điểm A

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}. Tọa độ của điểm A

    Hướng dẫn:

    Ta có: \overrightarrow{AO} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k} = (1; -
2;3)

    Khi đó A( - 1;2; - 3)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo