Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 7 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm M(0;3; - 2)N(2; - 1;0). Vectơ \overrightarrow{MN} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{MN} = (2 - 0; - 1 - 3;0
+ 2) = (2; - 4;2)

    Vậy đáp án đúng là: \overrightarrow{MN} =
(2; - 4;2).

  • Câu 2: Nhận biết
    Xác định tọa độ điểm A

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}. Tọa độ của điểm A

    Hướng dẫn:

    Ta có: \overrightarrow{AO} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k} = (1; -
2;3)

    Khi đó A( - 1;2; - 3)

  • Câu 3: Nhận biết
    Tìm tọa độ hình chiếu vuông góc của A

    Trong không gian Oxyz, cho điểm A(1;1;1). Tìm tọa độ hình chiếu vuông góc của A trên mặt phẳng (Oxz).

    Hướng dẫn:

    A(1;1;1) nên tọa độ hình chiếu vuông góc của A trên mặt phẳng (Oxz)(1;0;1).

  • Câu 4: Thông hiểu
    Xác định tọa độ điểm C

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Hướng dẫn:

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

  • Câu 5: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A( - 1;2; - 3)B(2; - 1;0). Vectơ \overrightarrow{AB} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (2 + 1; - 1 - 2;0
+ 3) = (3; - 3;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(3; - 3;3).

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho \overrightarrow{a} = - \overrightarrow{i} +
2\overrightarrow{j} - 3\overrightarrow{k}. Tọa độ vectơ \overrightarrow{a} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} = -
\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k} suy ra tọa độ vectơ \overrightarrow{a} = ( -
1;2; - 3).

  • Câu 7: Nhận biết
    Tìm tọa độ hình chiếu điểm M

    Trong không gian Oxyz, tọa độ hình chiếu của M( - 2;1;4) lên Oyz

    Hướng dẫn:

    Tọa độ hình chiếu của M( -
2;1;4) lên Oyz(0;1;4).

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, mặt phẳng (\alpha):x - y + 2z - 3 = 0 đi qua điểm nào sau đây?

    Hướng dẫn:

    Xét điểm \left( 1;1;\frac{3}{2}
ight) ta có: 1 - 1 +
2.\frac{3}{2} - 3 = 0 đúng nên \left( 1;1;\frac{3}{2} ight) \in
(\alpha).

  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Hướng dẫn:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, điểm nào sau đây nằm trên mặt phẳng tọa độ (Oyz)?

    Hướng dẫn:

    Điểm thuộc (Oyz)x = 0. Vậy điểm cần tìm được là: N(0;4; - 1).

  • Câu 11: Nhận biết
    Chọn điểm thuộc mặt phẳng đã cho

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Hướng dẫn:

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 12: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;2; - 1),B(2; - 1;3),C( - 3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
2 - 1 = - 3 - x \\
- 1 - 2 = 5 - y \\
3 - ( - 1) = 1 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 8 \\
z = - 3 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4;8; - 3).

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, điểm nào dưới đây thuộc trục Oy?

    Hướng dẫn:

    Điểm A(x;y;z) \in Oy \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
z = 0 \\
\end{matrix} ight.. Suy ra trong bốn điểm đã cho điểm T(0; - 3;0) \in Oy.

  • Câu 15: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho \overrightarrow{u} = (1;2;0). Tọa độ vectơ \overrightarrow{u} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow\overrightarrow{u} = (x;y;z)

    Suy ra \overrightarrow{u} = (1;2;0)\Leftrightarrow \overrightarrow{u} = \overrightarrow{i} +2\overrightarrow{j}

  • Câu 16: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(2;3; - 1)B( - 4;1;9). Tìm tọa độ vectơ \overrightarrow{AB} ?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = ( - 4 - 2;1 - 3;9
+ 1) = ( - 6; - 2;10)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 6; - 2;10).

  • Câu 17: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thoả mãn: \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = - 5 \\
\overrightarrow{x}.\overrightarrow{b} = - 11 \\
\overrightarrow{x}.\overrightarrow{c} = 20 \\
\end{matrix} ight.. Tọa độ của vectơ \overrightarrow{x} là:

    Gợi ý:

    Áp dụng công thức tính tích vô hướng của hai vectơ để lập hệ phương trình.

    Hướng dẫn:

    Đặt \overrightarrow{x} =
(a;b;c).

    Ta có: \left\{ \begin{matrix}\overrightarrow{x}.\overrightarrow{a} = - 5 \\\overrightarrow{x}.\overrightarrow{b} = - 11 \\\overrightarrow{x}.\overrightarrow{c} = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}2a - b + 3c = - 5 \\a - 3b + 2c = - 11 \\3a + 2b - 4c = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 3 \\c = - 2 \\\end{matrix} ight.\  ight.\  ight.

    Vậy \overrightarrow{x} = (2;3; -
2).

  • Câu 18: Nhận biết
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho điểm M thỏa mãn \overrightarrow{MO} = 3\overrightarrow{k} -
2\overrightarrow{i} + 4\overrightarrow{j}. Tọa độ điểm M bằng

    Hướng dẫn:

    Ta có: \overrightarrow{MO} =3 \overrightarrow{k} - 2\overrightarrow{i} + 4\overrightarrow{j}\Rightarrow M(2; - 4; - 3)

     

  • Câu 19: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian hệ trục tọa độ Oxyzcho \overrightarrow{u} = 2\overrightarrow{i} +
\overrightarrow{k}. Khi đó tọa độ \overrightarrow{u} với hệ Oxyz là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}
+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (x;y;z)

    Lại có \overrightarrow{u} =
2\overrightarrow{i} + \overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (2;0;1)

  • Câu 20: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{a} = (2; - 3;3), \overrightarrow{b} = (0;2; - 1), \overrightarrow{c} = (3; - 1;5). Tìm tọa độ của vectơ \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} -
2\overrightarrow{c}.

    Hướng dẫn:

    Ta có:

    2\overrightarrow{a} = (4; -
6;6)

    3\overrightarrow{b} = (0;6; -
3)

    - 2\overrightarrow{c} = ( - 6;2; -
10)

    \Rightarrow \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} - 2\overrightarrow{c} = ( -
2;2; - 7).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo