Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Ứng dụng hình học của Tích phân (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính số tiền để mua vật dụng trang trí

    Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng 10 cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB = 5cm, OH
= 4 cm. Biết giá trang trí hoa văn 1cm^{2} là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.

    Hướng dẫn:

    Description: 28907191_574491819585491_67127502_n

    Đưa parabol vào hệ trục Oxy ta tìm được phương trình là: (P):y = -
\frac{16}{25}x^{2} + \frac{16}{5}x.

    Diện tích hình phẳng giới hạn bởi (P):y =
- \frac{16}{25}x^{2} + \frac{16}{5}x, trục hoành và các đường thẳng x = 0, x = 5 là:

    S = \int_{0}^{5}\left( -
\frac{16}{25}x^{2} + \frac{16}{5}x \right)dx =
\frac{40}{3}.

    Tổng diện tích phần bị khoét đi: S_{1} =
4S = \frac{160}{3} cm^{2}.

    Diện tích của hình vuông là: S_{hv} =
100\ cm^{2}.

    diện tích bề mặt hoa văn là: S_{2} =
S_{hv} - S_{1} = 100 - \frac{160}{3} = \frac{140}{3}\
cm^{2}.

    Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: \frac{140}{3}.50000 \approx 2333333 đồng

  • Câu 2: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 3: Thông hiểu
    Tính diện tích hình phẳng

    Cho hàm số f(x) = x^{3} - 3x^{2} +
2x. Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục tung, trục hoành và đường thẳng x = 3

    Hướng dẫn:

    Ta có:

    S = \int_{0}^{1}\left| x^{3} - 3x^{2} +
2x ight|dx

    = \int_{0}^{3}{\left( x^{3} - 3x^{2} + 2x
ight)dx} - \int_{1}^{2}{\left( x^{3} - 3x^{2} + 2x
ight)dx}

    + \int_{2}^{3}{\left( x^{3} - 3x^{2} + 2x
ight)dx}

    = \frac{1}{4} + \frac{1}{4} + \frac{9}{4}
= \frac{11}{4}

  • Câu 4: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Đáp án là:

    Một khối cầu có bán kính là 6\
dm, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng 3\ dm để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu dm^{3}(làm tròn đến hàng đơn vị)

    Đáp án: 622

    Trên hệ trục tọa độ Oxy, xét đường tròn (C): (x - 6)^{2} + y^{2} = \ 36

    Nếu cho nửa trên trục Ox của (C) quay quanh trục Ox ta được mặt cầu có bán kính bằng 6.

    Nếu cho hình phẳng (H) giới hạn bởi nửa trên trục Ox của (C), trục Ox, hai đường thẳng x = 0;\ x = 3 quay xung quanh Ox ta sẽ được khối tròn xoay chính là 1 phần cắt đi của khối cầu trong đề bài.

    Ta có (x - 6)^{2} + y^{2} = \ 36
\Leftrightarrow y = \pm \sqrt{36 - (x - 6)^{2}}

    Suy ra nửa trên trục Ox của (C) có phương trình y = \sqrt{36 - (x - 6)^{2}} = \sqrt{12x -
x^{2}}

    Thể tích vật thể tròn xoay khi cho (H) quay quanh OxV_{1} =
\pi\int_{0}^{3}\left( 12x - x^{2} ight) = 45\pi.

    Thể tích khối cầu là V_{2} =
\frac{4}{3}\pi.6^{3} = 288\pi.

    Thể tích cần tìm là V = V_{2} - 2V_{1} =
198\pi \approx 622.

  • Câu 5: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho đường thẳng y = \frac{3}{4}x và parabol y = \frac{1}{2}x^{2} +
a, (a là tham số thực dương). Gọi S_{1}, S_{2} lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì giá trị biểu thức 128a + 3 bằng bao nhiêu?

    Đáp án: 30

    Đáp án là:

    Cho đường thẳng y = \frac{3}{4}x và parabol y = \frac{1}{2}x^{2} +
a, (a là tham số thực dương). Gọi S_{1}, S_{2} lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì giá trị biểu thức 128a + 3 bằng bao nhiêu?

    Đáp án: 30

    Ta có phương trình hoành độ giao điểm \frac{1}{2}x^{2} - \frac{3}{4}x + a = 0 \Leftrightarrow 2x^{2} - 3x + 4a =
0.

    Theo đề bài phương trình có hai nghiệm 0
< x_{1} < x_{2} thỏa mãn \left\{ \begin{matrix}
x_{1} + x_{2} = \frac{3}{2}\ \ \ \ (*) \\
x_{1}x_{2} = 2a\ \ \ \ \ \ (**) \\
\end{matrix} ight..

    S_{1} - S_{2} = 0

    \Leftrightarrow \int_{0}^{x_{1}}{\left|
\frac{1}{2}x^{2} - \frac{3}{4}x + a ight|dx} +
\int_{x_{1}}^{x_{2}}{\left| \frac{1}{2}x^{2} - \frac{3}{4}x + a
ight|dx} = 0

    \Leftrightarrow \int_{0}^{x_{2}}{\left|
\frac{1}{2}x^{2} - \frac{3}{4}x + a ight|dx} = 0

    \Leftrightarrow \left. \ \left|
\frac{1}{6}x^{3} - \frac{3}{8}x^{2} + ax ight| ight|_{0}^{x_{2}} =
0 \Leftrightarrow \left|
\frac{1}{6}x_{2}^{3} - \frac{3}{8}x_{2}^{2} + ax_{2} ight| =
0 \Rightarrow a = -
\frac{x_{2}^{2}}{6} + \frac{3x_{2}}{8} (***).

    Từ (*) \Rightarrow x_{1} = \frac{3}{2} -
x_{2}, thay vào (**)

    \Rightarrow \left( \frac{3}{2} - x_{2}
ight)x_{2} = - \frac{x_{2}^{2}}{3} + \frac{3x_{2}}{4}

    \Leftrightarrow \frac{2x_{2}^{2}}{3} -
\frac{3x_{2}}{4} = 0 \Rightarrow
x_{2} = \frac{9}{8} \overset{(***)}{ightarrow}a =
\frac{27}{128}.

  • Câu 6: Vận dụng cao
    Tính giá trị thể tích nhỏ nhất

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 7: Vận dụng
    Tính thể tích quả bóng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Gợi ý:

    Sử dụng phương trình chính tắc của Elip: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với 2a là độ dài trục lớn, 2b là độ dài trục nhỏ.

    Hướng dẫn:

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 8: Vận dụng
    Tính thể tích nước

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng
    Chọn kết luận đúng

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Các biểu thức E;F;G;H xác định bởi E = \int_{0}^{3}{f(x)dx};F =
\int_{3}^{5}{f(x)dx};G = \int_{2}^{4}{f(x)dx};H = f'(x). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Dựa vào hình vẽ và diện tích hình phẳng ta có:

    E = \int_{0}^{3}{f(x)dx} = -
\int_{0}^{3}{\left| f(x) ight|dx} < - 2

    F = \int_{3}^{5}{f(x)dx} >
3

    0 < G = \int_{2}^{4}{f(x)dx} <
2

    - 1 < H = f'(1) < 0 (hệ số góc của tiếp tuyến tại x = 1)

    Như vậy E < H < G <
F

  • Câu 10: Vận dụng cao
    Xác định thể tích V

    Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1 như hình vẽ:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1)thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.?

    Hướng dẫn:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1) thì được thiết diện là một tam giác đều có cạnh bằng 2\sqrt{1 - x^{2}}

    Do đó, diện tích của thiết diện: S(x) =\frac{\left( 2\sqrt{1 - x^{2}} ight)^{2}\sqrt{3}}{4} = \sqrt{3}\left(1 - x^{2} ight)

    V = \int_{- 1}^{1}{S(x)dx} = \int_{-1}^{1}{\left\lbrack \sqrt{3}\left( 1 - x^{2} ight) ightbrackdx}

    = \sqrt{3}\left. \ \left( x -\frac{x^{3}}{3} ight) ight|_{- 1}^{1} =\frac{4\sqrt{3}}{3}

  • Câu 11: Vận dụng cao
    Tính diện tích các cánh hoa

    Một viên gạch hoa hình vuông cạnh 40cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới).

    Tính diện tích mỗi cánh hoa của viên gạch.

    Hướng dẫn:

    Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng 10cm = 1dm), các cánh hoa tạo bởi các đường parabol có phương trình y =
\frac{x^{2}}{2}, y = -
\frac{x^{2}}{2},x = -
\frac{y^{2}}{2},x =
\frac{y^{2}}{2}.

    Diện tích một cánh hoa (nằm trong góc phàn tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm sốy = \frac{x^{2}}{2},y = \sqrt{2x} và hai đường thẳng x = 0;x = 2.

    Do đó diện tích một cánh hoa bằng

    \int_{0}^{2}{\left( \sqrt{2x} -
\frac{x^{2}}{2} \right)dx} = \left.
\ \left. \ \left( \frac{2\sqrt{2}}{3}\sqrt{(2x)^{3}} - \frac{x^{3}}{6}
\right) \right| \right|_{0}^{2}

    = \frac{4}{3}\left( dm^{2} \right) =
\frac{400}{3}\left( cm^{2} \right) = \frac{4}{3}\left( dm^{2} \right) =
\frac{400}{3}\left( cm^{2} \right).

  • Câu 12: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số y = 2^{x}y = 3 - x, trục hoành và trục tung.

    Hướng dẫn:

    Giao điểm 2^{x} = 3 - x
\Rightarrow Nhẩm được nghiệm 1

    S = \int_{0}^{1}\left| 2^{x} + x - 3
ight|dx = \left| \frac{2^{x}}{\ln2} + \frac{x^{2}}{2} - 3x
ight|_{0}^{1}

    = \frac{2}{\ln2} + \frac{1}{2} - 3 -
\frac{1}{\ln2} = \frac{1}{\ln2} - \frac{5}{2}

  • Câu 13: Vận dụng cao
    Tính thể tích V

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Gợi ý:

    Gắn hệ trục tọa độ mới.

    Cho hai hàm số y = f(x), y = g(x) liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số y = f(x), y = g(x) và hai đường thẳng x = a, x = b khi quay quanh trục Ox là V = \pi\int_{a}^{b}{\left|f^{2}(x) - g^{2}(x) ight|dx}

    Hướng dẫn:

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x - 1)e^{2x}, trục hoành và các đường thẳng x = 0, x = 2.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm (x -
1).e^{2x} = 0 \Leftrightarrow x = 1.

    Vậy diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = (x - 1).e^{2x}, trục hoành và các đường thẳng x = 0, x = 2 được tính bởi công thức:

    S = - \int_{0}^{1}{(x - 1).e^{2x}dx} +
\int_{1}^{2}{(x - 1).e^{2x}dx}

    = \int_{1}^{0}{(x - 1).e^{2x}dx} +
\int_{1}^{2}{(x - 1).e^{2x}dx}

    Đặt I_{1} = \int_{1}^{0}{(x -
1).e^{2x}dx}; I_{2} =
\int_{1}^{2}{(x - 1)e^{2x}dx}

    Đặt x - 1 = u \Rightarrow dx = du;vdv =
e^{2x}dx \Rightarrow v = \frac{1}{2}.e^{2x}

    Khi đó I_{0} = \left. \
\frac{1}{2}.e^{2x}.(x - 1) ight|_{a}^{b} -
\frac{1}{2}\int_{a}^{b}{e^{2x}dx}

    = \left. \ \frac{1}{2}.e^{2x}.(x - 1)
ight|_{a}^{b} - \left. \ \frac{1}{4}.e^{2x}
ight|_{a}^{b}.

    Vậy từ đây ta có I_{1} = - \frac{1}{2} -
\left( \frac{1}{4}.e^{0} - \frac{1}{4}.e^{2} ight) = \frac{e^{2}}{4} -
\frac{3}{4}.

    I_{2} = \frac{1}{2}.e^{4} - \left(
\frac{1}{4}.e^{4} - \frac{1}{4}.e^{2} ight) = \frac{e^{4}}{4} +
\frac{e^{2}}{4}

    Suy ra I = I_{1} + I_{2} =
\frac{e^{4}}{4} + \frac{e^{2}}{2} - \frac{3}{4}

  • Câu 15: Vận dụng cao
    Tính thể tích V1

    Cho một vật thể bằng gỗ có dạng hình trụ với chiều cao và bán kính đáy cùng bằngR. Cắt khối gỗ đó bởi một mặt phẳng đi qua đường kính của một mặt đáy của khối gỗ và tạo với mặt phẳng đáy của khối gỗ một góc 30^{0} ta thu được hai khối gỗ có thể tích là V_{1}V_{2}, với V_{1} < V_{2}. Tính thể tích V_{1}.

    Hướng dẫn:

    Khi cắt khối gỗ hình trụ ta được một hình nêm có thể tích V_{1} như hình vẽ.

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Nửa đường tròn đường kính AB có phương trình là y = \sqrt{R^{2} -
x^{2}},x \in \lbrack -
R;R\rbrack.

    Một mặt phẳng vuông góc với trục Ox tại điểm M có hoành độ x, cắt hình nêm theo thiết diện là \Delta MNP vuông tại N và có \widehat{PMN} = 30^{0}.

    Ta có NM = y = \sqrt{R^{2} - x^{2}}
\Rightarrow NP = MN.tan30^{0} = \frac{\sqrt{R^{2} -
x^{2}}}{\sqrt{3}}.

    \Delta MNP có diện tích S(x) = \frac{1}{2}NM.NP = \frac{1}{2}.\frac{R^{2}
- x^{2}}{\sqrt{3}}.

    Thể tích hình nêm là

    V_{1} = \int_{-R}^{R}{S(x)}dx = \frac{1}{2}\int_{- R}^{R}\frac{R^{2} -x^{2}}{\sqrt{3}}dx= \frac{1}{2\sqrt{3}}\left. \ \left( R^{2}x -\frac{1}{3}x^{3} \right) \right|_{- R}^{R} =\frac{2\sqrt{3}R^{3}}{9}.

  • Câu 16: Thông hiểu
    Tính thể tích khối tròn xoay

    Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2xy = - x^{2} quay quanh trục Ox.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    x^{2} - 2x = - x^{2} \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Khi đó thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đồ thị hàm số

    y = x^{2} - 2x;y = - x^{2} quay quanh trục Ox được tính bởi công thức

    V = \pi\int_{0}^{1}\left| \left( x^{2} -
2x ight)^{2} - \left( - x^{2} ight)^{2} ight|dx

    Ta thấy trên \lbrack 0;1brack thì \left( - x^{2} ight)^{2} \leq \left(
x^{2} - 2x ight)^{2}, do vậy ta có công thức

    V = \pi\int_{0}^{1}\left\lbrack - x^{4} +
\left( x^{4} - 4x^{3} + 4x^{2} ight) ightbrack dx

    = \pi\int_{0}^{1}\left( - 4x^{3} + 4x^{2}
ight)dx = \left. \ \pi.\left( - x^{4} + \frac{4}{3}x^{3} ight)
ight|_{0}^{1} = \frac{\pi}{3} (đvtt)

  • Câu 17: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} và các trục tọa độ. Chọn kết quả đúng?

    Hướng dẫn:

    Ta có:

    S = \int_{- 1}^{0}{\left| \frac{x + 1}{x
- 2} ight|dx} = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ x ight|_{- 1}^{0} +
\left. \ 3ln|x - 2| ight|_{- 1}^{0} ight|

    = |1 + 3ln2 - 3ln3|

    = \left| 1 + 3ln\frac{2}{3} ight| =
3ln\frac{3}{2} - 1

  • Câu 18: Vận dụng
    Tìm giá trị tham số k

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = ax^{3} (a
> 0), trục hoành và hai đường thẳng x = - 1, x =
k (k > 0) bằng \frac{15a}{4}. Tìm k.

    Hướng dẫn:

    Kí hiệu đồ thị hàm số như sau:

    Ta thấy hàm số y = ax^{3};(a >
0) luôn đồng biến trên \mathbb{R} và có tâm đối xứng là O(0;0). Hình vẽ minh họa ở bên ta thấy với x \in ( - 1;0) thì ax^{3} < 0, với x \in (0;k) thì ax^{3} > 0.

    Vậy S = \int_{- 1}^{k}{\left| ax^{3}
ight|dx = \frac{15a}{4}}

    \Leftrightarrow \int_{- 1}^{0}{\left(
ax^{3} ight)dx} + \int_{0}^{k}{\left( ax^{3} ight)dx} =
\frac{15a}{4}

    \Leftrightarrow \frac{- ax^{4}}{4}|_{-
1}^{0} + \frac{ax^{4}}{4}|_{0}^{k} = \frac{15a}{4};(k >
0)

    \Leftrightarrow \frac{a}{4} +
\frac{ak^{4}}{4} = \frac{15a}{414} \Leftrightarrow k^{4} = 14
\Leftrightarrow k = \sqrt[4]{14}

  • Câu 19: Vận dụng
    Tính thể tích khối tròn xoay

    Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với A( - 2;3),B(3;6),C(3;0),D( - 2;0). Quay hình thang ABCD xung quanh trục Ox thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??

    Hướng dẫn:

    Phương trình các cạnh của hình thang là: \left\{ \begin{matrix}
AD:x = - 2 \\
CD:y = 0 \\
BC:x = 3 \\
AB:3x - 5y + 21 = 0 \\
\end{matrix} ight.

    Ta thấy ABCD là hình thang vuông có CD:y = 0 nên khối tròn xoay cần tính là

    V = \pi\int_{- 2}^{3}{\frac{(3x +
21)^{2}}{25}dx} = 105\pi

  • Câu 20: Vận dụng
    Tính thể tích của vật thể

    Cho một mô hình 3 - D mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài 5\ (cm); khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thứcy = 3 -
\frac{2}{5}x (cm), với x(cm) là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị cm^{3}) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )

    Hướng dẫn:

    Xét một thiết diện parabol có chiều cao là h và độ dài đáy 2h và chọn hệ trục Oxy như hình vẽ trên.

    Parabol (P) có phương trình (P):y = ax^{2} + h,(a < 0)

    B(h;0) \in (P) \Leftrightarrow 0 = ah^{2} + h \Leftrightarrow a = - \frac{1}{h}(do\ h >
0)

    Diện tích S của thiết diện: S = \int_{- h}^{h}{\left( - \frac{1}{h}x^{2}
+ h \right)dx} = \frac{4h^{2}}{3}, h = 3 - \frac{2}{5}x

    \Rightarrow S(x) = \frac{4}{3}\left( 3 -
\frac{2}{5}x \right)^{2}

    Suy ra thể tích không gian bên trong của đường hầm mô hình: V = \int_{0}^{5}{S(x)dx} =
\int_{0}^{5}{\frac{4}{3}\left( 3 - \frac{2}{5}x \right)^{2}dx} \approx
28,888

    \Rightarrow V \approx 29\ \ \left(
cm^{3} \right)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo