Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Ứng dụng hình học của Tích phân (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính thể tích quả bóng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Gợi ý:

    Sử dụng phương trình chính tắc của Elip: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với 2a là độ dài trục lớn, 2b là độ dài trục nhỏ.

    Hướng dẫn:

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 2: Vận dụng cao
    Tính giá trị thể tích nhỏ nhất

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 3: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: m3.

    Đáp án là:

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Cả hai bên cầu có tất cả 2.10 =
20 nhịp cầu.

    Chọn hệ trục tọa độ như hình vẽ với gốc O(0;0) là chân cầu, đỉnh I(25;2), điểm A(50;0)

    Gọi Parabol phía trên có phương trình: \left( P_{1} ight):y_{1} = ax^{2} + bx + c =
ax^{2} + bx (vì O \in \left( P_{1}
ight))

    \Rightarrow y_{2} = ax^{2} + bx -
\frac{1}{5} là phương trình parabol phía dưới

    (Vì bề dày nhịp cầu là 20cm =
\frac{1}{5}m)

    Ta có I,A \in \left( P_{1} ight)
\Rightarrow \left\{ \begin{matrix}
25^{2}a + 25b = 2 \\
50^{2}a + 50b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{625} \\
b = \frac{4}{25} \\
\end{matrix} ight.

    \Rightarrow \left( P_{1} ight):y_{1} =
- \frac{2}{625}x^{2} + \frac{4}{25}x \Rightarrow \left( P_{2} ight):\
\ \ y_{2} = - \frac{2}{625}x^{2} + \frac{4}{25}x -
\frac{1}{5}

    Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi y_{1};y_{2} và trục Ox nên ta có:

    S = 2\left( \int_{0}^{0,2}{\left( -
\frac{2}{625}x^{2} + \frac{4}{25}x ight)dx +
\int_{0,2}^{25}{\frac{1}{5}dx}} ight) \approx 9,926m^{2}

    Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là S.0,2 \approx 1,985m^{3}.

    Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là V = 20.S.0,2 \approx
40m^{3}

  • Câu 4: Vận dụng cao
    Tính số tiền cần xây cầu

    Trong chương trình nông thôn mới của tỉnh Phú Yên, tại xã Hòa Mỹ Tây có xây một cây cầu bằng bê tông như hình vẽ (đường cong trong hình vẽ là các đường Parabol). Biết 1\ m^{3} khối bê tông để đổ cây cầu có giá 5 triệu đồng. Tính số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu trên.

    Hướng dẫn:

    Chọn hệ trục Oxy như hình vẽ.

    .

    Gọi \left( P_{1} \right):y = a_{1}x^{2} +
b_{1} là Parabol đi qua hai điểm A\left( \frac{19}{2};0 \right),B(0;2)

    Nên ta có hệ phương trình sau: \left\{
\begin{matrix}
0 = a.\left( \frac{19}{2} \right)^{2} + 2 \\
2 = b \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a_{1} = - \frac{8}{361} \\
b_{1} = 2 \\
\end{matrix} \right.

    \Rightarrow \left( P_{1} \right):y = -
\frac{8}{361}x^{2} + 2.

    Gọi \left( P_{2} \right):y = a_{2}x^{2} +
b_{2} là Parabol đi qua hai điểm C(10;0),D\left( 0;\frac{5}{2} \right)

    Nên ta có hệ phương trình sau: \left\{
\begin{matrix}
0 = a_{2}.(10)^{2} + \frac{5}{2} \\
\frac{5}{2} = b_{2} \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a_{2} = - \frac{1}{40} \\
b_{2} = \frac{5}{2} \\
\end{matrix} \right.

    \Rightarrow \left( P_{2} \right):y = -
\frac{1}{40}x^{2} + \frac{5}{2}.

    Ta có thể tích của bê tông là:

    V = 5.2\left\lbrack \int_{0}^{10}\left( -
\frac{1}{40}x^{2} + \frac{5}{2} \right)dx -
\int_{0}^{\frac{19}{2}}\left( - \frac{8}{361}x^{2} + 2 \right)dx
\right\rbrack = 40\ m^{3}.

    Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: 5.40 = 200 triệu đồng

  • Câu 5: Vận dụng cao
    Tính diện tích các cánh hoa

    Một viên gạch hoa hình vuông cạnh 40cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới).

    Tính diện tích mỗi cánh hoa của viên gạch.

    Hướng dẫn:

    Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng 10cm = 1dm), các cánh hoa tạo bởi các đường parabol có phương trình y =
\frac{x^{2}}{2}, y = -
\frac{x^{2}}{2},x = -
\frac{y^{2}}{2},x =
\frac{y^{2}}{2}.

    Diện tích một cánh hoa (nằm trong góc phàn tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm sốy = \frac{x^{2}}{2},y = \sqrt{2x} và hai đường thẳng x = 0;x = 2.

    Do đó diện tích một cánh hoa bằng

    \int_{0}^{2}{\left( \sqrt{2x} -
\frac{x^{2}}{2} \right)dx} = \left.
\ \left. \ \left( \frac{2\sqrt{2}}{3}\sqrt{(2x)^{3}} - \frac{x^{3}}{6}
\right) \right| \right|_{0}^{2}

    = \frac{4}{3}\left( dm^{2} \right) =
\frac{400}{3}\left( cm^{2} \right) = \frac{4}{3}\left( dm^{2} \right) =
\frac{400}{3}\left( cm^{2} \right).

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x - 1)e^{2x}, trục hoành và các đường thẳng x = 0, x = 2.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm (x -
1).e^{2x} = 0 \Leftrightarrow x = 1.

    Vậy diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = (x - 1).e^{2x}, trục hoành và các đường thẳng x = 0, x = 2 được tính bởi công thức:

    S = - \int_{0}^{1}{(x - 1).e^{2x}dx} +
\int_{1}^{2}{(x - 1).e^{2x}dx}

    = \int_{1}^{0}{(x - 1).e^{2x}dx} +
\int_{1}^{2}{(x - 1).e^{2x}dx}

    Đặt I_{1} = \int_{1}^{0}{(x -
1).e^{2x}dx}; I_{2} =
\int_{1}^{2}{(x - 1)e^{2x}dx}

    Đặt x - 1 = u \Rightarrow dx = du;vdv =
e^{2x}dx \Rightarrow v = \frac{1}{2}.e^{2x}

    Khi đó I_{0} = \left. \
\frac{1}{2}.e^{2x}.(x - 1) ight|_{a}^{b} -
\frac{1}{2}\int_{a}^{b}{e^{2x}dx}

    = \left. \ \frac{1}{2}.e^{2x}.(x - 1)
ight|_{a}^{b} - \left. \ \frac{1}{4}.e^{2x}
ight|_{a}^{b}.

    Vậy từ đây ta có I_{1} = - \frac{1}{2} -
\left( \frac{1}{4}.e^{0} - \frac{1}{4}.e^{2} ight) = \frac{e^{2}}{4} -
\frac{3}{4}.

    I_{2} = \frac{1}{2}.e^{4} - \left(
\frac{1}{4}.e^{4} - \frac{1}{4}.e^{2} ight) = \frac{e^{4}}{4} +
\frac{e^{2}}{4}

    Suy ra I = I_{1} + I_{2} =
\frac{e^{4}}{4} + \frac{e^{2}}{2} - \frac{3}{4}

  • Câu 8: Thông hiểu
    Ghi đáp án vào ô trống

    Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là 2dm4dm. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số y = \sqrt{x - 1}. Tính thể tích bình cắm hoa?

    Đáp án là:

    Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là 2dm4dm. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số y = \sqrt{x - 1}. Tính thể tích bình cắm hoa?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 10: Thông hiểu
    Tính thể tích chiếc ly

    Một ly rượu thủy tinh có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của ly (bổ dọc cốc thành 2 phần bằng nhau) là một đường Parabol. Tính thể tích tối đa mà ly có thể chứa được (làm tròn 2 chữ số thập phân)

    Hướng dẫn:

    Parabol có phương trình y =
\frac{5}{8}x^{2} \Leftrightarrow x^{2} = \frac{8}{5}y

    Thể tích tối đa cốc: V =
\pi\int_{0}^{10}\left( \frac{8}{5}y \right)dy \approx
251,33.

  • Câu 11: Vận dụng
    Ghi đáp án vào ô trống

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Đáp án là:

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu
    Tính diện tích S của hình phẳng

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} và các trục tọa độ.

    Hướng dẫn:

    Đồ thị hàm số đã cho cắt hai trục Ox tại điểm A(−1; 0) và cắt trục Oy tại điểm B\left( 0; - \frac{1}{2}
ight), do đó diện tích cần tìm là

    S = \int_{- 1}^{0}{\left| \frac{x + 1}{x
- 2} ight|dx} = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = 3\ln\frac{3}{2} - 1

  • Câu 13: Vận dụng cao
    Tính kinh phí làm biển quảng cáo

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Hướng dẫn:

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

  • Câu 14: Thông hiểu
    Tính diện tích S

    Diện tích S của hình phẳng giới hạn bởi đường cong y = - x^{3} + 3x^{2} - 2, trục hoành và hai đường thẳng x = 0;x = 2

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    - x^{3} + 3x^{2} - 2 = 0 \Leftrightarrow
(1 - x)\left( x^{2} - 2x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 1 + \sqrt{3} \\
x = 1 - \sqrt{3} \\
\end{matrix} ight.

    Khi đó:

    S = \int_{0}^{2}{\left| - x^{3} + 3x^{2}
- 2 ight|dx}

    = \int_{0}^{1}{\left| - x^{3} + 3x^{2} -
2 ight|dx} + \int_{1}^{2}{\left| - x^{3} + 3x^{2} - 2
ight|dx}

    = \left| \int_{0}^{1}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight| + \left| \int_{1}^{2}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight|

    = \left| \left. \ \left( -
\frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{0}^{1} ight| + \left|
\left. \ \left( - \frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{1}^{2}
ight|

    = \frac{5}{2}

  • Câu 15: Vận dụng
    Tính thể tích khối tròn xoay

    Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với A( - 2;3),B(3;6),C(3;0),D( - 2;0). Quay hình thang ABCD xung quanh trục Ox thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??

    Hướng dẫn:

    Phương trình các cạnh của hình thang là: \left\{ \begin{matrix}
AD:x = - 2 \\
CD:y = 0 \\
BC:x = 3 \\
AB:3x - 5y + 21 = 0 \\
\end{matrix} ight.

    Ta thấy ABCD là hình thang vuông có CD:y = 0 nên khối tròn xoay cần tính là

    V = \pi\int_{- 2}^{3}{\frac{(3x +
21)^{2}}{25}dx} = 105\pi

  • Câu 16: Vận dụng
    Tính diện tích nhỏ nhất

    Diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2 là:

    Hướng dẫn:

    Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình

    x^{2} + 1 = mx + 2 \Leftrightarrow x^{2}
- mx - 1 = 0

    \Delta = m^{2} + 4 > 0;\forall
m\mathbb{\in R} nên phương trình luôn có 2 nghiệm phân biệt

    x_{1} = \frac{m - \sqrt{m^{2} +
4}}{2};x_{2} = \frac{m + \sqrt{m^{2} + 4}}{2} với x_{1} < x_{2}

    Ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 1 \\
x_{2} - x_{1} = \sqrt{m^{2} + 4} \\
\end{matrix} ight..

    Diện tích hình phẳng giới hạn bởi (P) và (d) là:

    S = \int_{x_{1}}^{x_{2}}{\left| \left(
x^{2} - mx - 1 ight) ight|dx}

    = \left| \int_{x_{1}}^{x_{2}}{\left(
x^{2} - mx - 1 ight)dx} ight| = \left| \left. \ \left(
\frac{x^{3}}{2} - \frac{mx^{2}}{2} - x ight) ight|_{x_{1}}^{x_{2}}
ight|

    = \left| \frac{1}{3}\left( {x_{2}}^{3} -
{x_{1}}^{3} ight) - \frac{m}{2}\left( {x_{2}}^{2} - {x_{1}}^{2}
ight) - \left( x_{2} - x_{1} ight) ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( {x_{2}}^{2} + x_{1}x_{2} + {x_{1}}^{2} ight) -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( x_{2} + x_{1} ight)^{2} - x_{2}x_{1} -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \sqrt{m^{2} + 4}.\left| \frac{m^{2} +
1}{3} - \frac{m^{2}}{2} - 1 ight|

    = \sqrt{m^{2} + 4}.\left|
\frac{m^{2}}{6} - \frac{2}{3} ight| = \sqrt{m^{2} + 4}.\frac{m^{2} +
4}{6} \geq \frac{4}{3};\forall m\mathbb{\in R}

    Vậy diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2\frac{4}{3}.

  • Câu 17: Vận dụng
    Tính thể tích của vật thể

    Cho một mô hình 3 - D mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài 5\ (cm); khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thứcy = 3 -
\frac{2}{5}x (cm), với x(cm) là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị cm^{3}) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )

    Hướng dẫn:

    Xét một thiết diện parabol có chiều cao là h và độ dài đáy 2h và chọn hệ trục Oxy như hình vẽ trên.

    Parabol (P) có phương trình (P):y = ax^{2} + h,(a < 0)

    B(h;0) \in (P) \Leftrightarrow 0 = ah^{2} + h \Leftrightarrow a = - \frac{1}{h}(do\ h >
0)

    Diện tích S của thiết diện: S = \int_{- h}^{h}{\left( - \frac{1}{h}x^{2}
+ h \right)dx} = \frac{4h^{2}}{3}, h = 3 - \frac{2}{5}x

    \Rightarrow S(x) = \frac{4}{3}\left( 3 -
\frac{2}{5}x \right)^{2}

    Suy ra thể tích không gian bên trong của đường hầm mô hình: V = \int_{0}^{5}{S(x)dx} =
\int_{0}^{5}{\frac{4}{3}\left( 3 - \frac{2}{5}x \right)^{2}dx} \approx
28,888

    \Rightarrow V \approx 29\ \ \left(
cm^{3} \right)

  • Câu 18: Vận dụng
    Tính giá trị biểu thức

    Cho (H) là hình phẳng giới hạn bởi parabol y =
\frac{\sqrt{3}}{2}x^{2} và nửa elip có phương trình y = \frac{1}{2}\sqrt{4 - x^{2}} (với - 2 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Gọi S là diện tích của, biết S = \frac{a\pi + b\sqrt{3}}{c} (với a;b;c\mathbb{\in R}). Tính P = a + b + c?

    Hướng dẫn:

    Hoành độ giao điểm của hai đồ thị: \frac{\sqrt{3}}{2}x^{2} = \frac{1}{2}\sqrt{4 -
x^{2}} \Leftrightarrow x = \pm 1

    Do tính chất đối xứng của đồ thị nên

    S = 2\left(
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} +
\frac{1}{2}\int_{1}^{2}{\sqrt{4 - x^{2}}dx} ight) = 2\left( S_{1} +
S_{2} ight)

    S_{1} =
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} =
\frac{\sqrt{3}}{6}

    S_{2} = \frac{1}{2}\int_{1}^{2}{\sqrt{4 -
x^{2}}dx}. Đặt x = 2\sin t\Rightarrow dx = 2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 1 \Rightarrow t = \dfrac{\pi}{6} \\x = 2 \Rightarrow t = \dfrac{\pi}{2} \\\end{matrix} ight.

    Với t \in \left\lbrack\frac{\pi}{6};\frac{\pi}{2} ightbrack \Rightarrow \cos t \geq 0\Rightarrow \sqrt{4 - x^{2}} = 2\sqrt{\cos^{2}t} = 2\cos t

    S_{2} =\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{4\cos^{2}tdt} =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{2\cos^{2}tdt}

    =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{(1 + \cos2t)dt} = \left. \ \left( t+ \frac{1}{2}\sin2t ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} =\frac{\pi}{3} - \frac{\sqrt{3}}{4}

    Suy ra S = \frac{4\pi - \sqrt{3}}{6}
\Rightarrow a = 4;b = - 1;c = 6

    Vậy P = a + b + c = 9

  • Câu 19: Vận dụng
    Tính số tiền để mua vật dụng trang trí

    Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng 10 cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB = 5cm, OH
= 4 cm. Biết giá trang trí hoa văn 1cm^{2} là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.

    Hướng dẫn:

    Description: 28907191_574491819585491_67127502_n

    Đưa parabol vào hệ trục Oxy ta tìm được phương trình là: (P):y = -
\frac{16}{25}x^{2} + \frac{16}{5}x.

    Diện tích hình phẳng giới hạn bởi (P):y =
- \frac{16}{25}x^{2} + \frac{16}{5}x, trục hoành và các đường thẳng x = 0, x = 5 là:

    S = \int_{0}^{5}\left( -
\frac{16}{25}x^{2} + \frac{16}{5}x \right)dx =
\frac{40}{3}.

    Tổng diện tích phần bị khoét đi: S_{1} =
4S = \frac{160}{3} cm^{2}.

    Diện tích của hình vuông là: S_{hv} =
100\ cm^{2}.

    diện tích bề mặt hoa văn là: S_{2} =
S_{hv} - S_{1} = 100 - \frac{160}{3} = \frac{140}{3}\
cm^{2}.

    Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: \frac{140}{3}.50000 \approx 2333333 đồng

  • Câu 20: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án:

    Đáp án là:

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Gọi S là diện tích hình phẳng (H). Lúc dó S = 2S_{1} + 2S_{2}, trong đó S_{1} là diện tích phần gạch sọc ở bên phải OyS_{2} là diện tích phần gạch ca rô trong hình vẽ bên.

    GọiA,B là các giao diếm có hoành độ dương của đường thẳng y = k và đồ thị hàm sốy = \left| x^{2} - 1
ight|, trong đó A\left( \sqrt{1 -
k};k ight)B\left( \sqrt{1 +
k};k ight).

    Thco yêu cầu bài toán S = 2 \cdot 2S_{1}
\Leftrightarrow S_{1} = S_{2}.

    \Leftrightarrow \int_{0}^{\sqrt{1 -
k}}{\left( 1 - x^{2} - k ight)dx}\  = \int_{\sqrt{1 - k}}^{1}{\left( k
- 1 + x^{2} ight)dx} + \int_{1}^{\sqrt{1 + k}}{\left( k - x^{2} + 1
ight)dx}.

    \Leftrightarrow \ (1 - k)\sqrt{1 - k} -
\frac{1}{3}(1 - k)\sqrt{1 - k}

    = \frac{1}{3} - (1 - k) - \frac{1}{3}(1
- k)\sqrt{1 - k} + (1 - k)\sqrt{1 - k}

    \  + (1 + k)\sqrt{1 + k} - \frac{1}{3}(1
+ k)\sqrt{1 + k} - (1 + k) + \frac{1}{3}

    \Leftrightarrow \ \frac{2}{3}(1 +
k)\sqrt{1 + k} = \frac{4}{3}

    \Leftrightarrow \left( \sqrt{1 + k}
ight)^{3} = 2 \Leftrightarrow k = \sqrt[3]{4} - 1 \approx
0,59.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng