Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Ứng dụng hình học của Tích phân (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính thời gian bơm nước theo yêu cầu

    Người ta thay nước mới cho một bể bơi có dạng hình hộp chữ nhật có độ sâu là 280cm. Giả sử h(t)là chiều cao (tính bằng cm) của mực nước bơm được tại thời điểm t giây, biết rằng tốc độ tăng của chiều cao mực nước tại giây thứ th'(t) = \frac{1}{500}\sqrt[3]{t} và lúc đầu hồ bơi không có nước. Hỏi sau bao lâu thì bơm được số nước bằng \frac{3}{4} độ sâu của hồ bơi?

    Hướng dẫn:

    Gọi x là thời điểm bơm được số nước bằng \frac{3}{4} độ sâu của bể (x tính bằng giây).

    Ta có: \int_{0}^{x}{\frac{1}{500}\sqrt[3]{t}dt} =
\frac{3}{4}.280\left. \  \Rightarrow \frac{3}{4}t^{\frac{4}{3}}
\right|_{0}^{x} = 105000

    \Rightarrow x\sqrt[3]{x} =
140000

    \Rightarrow \sqrt[3]{x^{4}} = 140000
\Rightarrow x \approx 7237,6242 giây

    Vậy sau 7237,6242 giây thì bơm được số nước bằng \frac{3}{4} độ sâu của hồ bơi.

  • Câu 2: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = - 2x^{3} + x^{2} + x + 5 và đồ thị (C') của hàm số y = x^{2} - x + 5?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    - 2x^{3} + x^{2} + x + 5 = x^{2} - x +
5

    \Leftrightarrow - 2x^{3} + 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{1}{\left| 2x^{3} - 2x
ight|dx}

    = \left| \int_{- 1}^{0}{\left( 2x^{3} -
2x ight)dx} ight| + \left| \int_{0}^{1}{\left( 2x^{3} - 2x
ight)dx} ight|

    = 1

  • Câu 3: Vận dụng
    Tính thể tích khối tròn xoay

    Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với A( - 2;3),B(3;6),C(3;0),D( - 2;0). Quay hình thang ABCD xung quanh trục Ox thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??

    Hướng dẫn:

    Phương trình các cạnh của hình thang là: \left\{ \begin{matrix}
AD:x = - 2 \\
CD:y = 0 \\
BC:x = 3 \\
AB:3x - 5y + 21 = 0 \\
\end{matrix} ight.

    Ta thấy ABCD là hình thang vuông có CD:y = 0 nên khối tròn xoay cần tính là

    V = \pi\int_{- 2}^{3}{\frac{(3x +
21)^{2}}{25}dx} = 105\pi

  • Câu 4: Vận dụng cao
    Tính thể tích V1

    Cho một vật thể bằng gỗ có dạng hình trụ với chiều cao và bán kính đáy cùng bằngR. Cắt khối gỗ đó bởi một mặt phẳng đi qua đường kính của một mặt đáy của khối gỗ và tạo với mặt phẳng đáy của khối gỗ một góc 30^{0} ta thu được hai khối gỗ có thể tích là V_{1}V_{2}, với V_{1} < V_{2}. Tính thể tích V_{1}.

    Hướng dẫn:

    Khi cắt khối gỗ hình trụ ta được một hình nêm có thể tích V_{1} như hình vẽ.

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Nửa đường tròn đường kính AB có phương trình là y = \sqrt{R^{2} -
x^{2}},x \in \lbrack -
R;R\rbrack.

    Một mặt phẳng vuông góc với trục Ox tại điểm M có hoành độ x, cắt hình nêm theo thiết diện là \Delta MNP vuông tại N và có \widehat{PMN} = 30^{0}.

    Ta có NM = y = \sqrt{R^{2} - x^{2}}
\Rightarrow NP = MN.tan30^{0} = \frac{\sqrt{R^{2} -
x^{2}}}{\sqrt{3}}.

    \Delta MNP có diện tích S(x) = \frac{1}{2}NM.NP = \frac{1}{2}.\frac{R^{2}
- x^{2}}{\sqrt{3}}.

    Thể tích hình nêm là

    V_{1} = \int_{-R}^{R}{S(x)}dx = \frac{1}{2}\int_{- R}^{R}\frac{R^{2} -x^{2}}{\sqrt{3}}dx= \frac{1}{2\sqrt{3}}\left. \ \left( R^{2}x -\frac{1}{3}x^{3} \right) \right|_{- R}^{R} =\frac{2\sqrt{3}R^{3}}{9}.

  • Câu 5: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Đáp án là:

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Gắn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình parabol có dạng (P):y =
ax^{2} + bx + c.

    Ta có:

    \left\{ \begin{matrix}
A( - 4;0) \in (P) \\
B(4;0) \in (P) \\
N(2;6) \in (P) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
16a - 4b + c = 0 \\
16a + 4b + c = 0 \\
4a + 2b + c = 6 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{2} \\
b = 0 \\
c = 8 \\
\end{matrix} ight.\  ight.\  ight.

    \Rightarrow (P):y = - \frac{1}{2}x^{2} +
8

    Diện tích để trang trí hoa là:

    S = \int_{- 4}^{4}{\left( -
\frac{1}{2}x^{2} + 8 ight)dx} - S_{MNPQ} = \frac{128}{3} - 4.6 =
\frac{56}{3}.

    Vậy số tiền để mua hoa trang trí: \frac{56}{3} \cdot 200000 \approx 3733300 \approx
3,7 triệu.

  • Câu 6: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Đáp án là:

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Gọi S là diện tích hình phẳng (H). Lúc dó S = 2S_{1} + 2S_{2}, trong đó S_{1} là diện tích phần gạch sọc ở bên phải OyS_{2} là diện tích phần gạch ca rô trong hình vẽ bên.

    GọiA,B là các giao diếm có hoành độ dương của đường thẳng y = k và đồ thị hàm sốy = \left| x^{2} - 1
ight|, trong đó A\left( \sqrt{1 -
k};k ight)B\left( \sqrt{1 +
k};k ight).

    Thco yêu cầu bài toán S = 2 \cdot 2S_{1}
\Leftrightarrow S_{1} = S_{2}.

    \Leftrightarrow \int_{0}^{\sqrt{1 -
k}}{\left( 1 - x^{2} - k ight)dx}\  = \int_{\sqrt{1 - k}}^{1}{\left( k
- 1 + x^{2} ight)dx} + \int_{1}^{\sqrt{1 + k}}{\left( k - x^{2} + 1
ight)dx}.

    \Leftrightarrow \ (1 - k)\sqrt{1 - k} -
\frac{1}{3}(1 - k)\sqrt{1 - k}

    = \frac{1}{3} - (1 - k) - \frac{1}{3}(1
- k)\sqrt{1 - k} + (1 - k)\sqrt{1 - k}

    \  + (1 + k)\sqrt{1 + k} - \frac{1}{3}(1
+ k)\sqrt{1 + k} - (1 + k) + \frac{1}{3}

    \Leftrightarrow \ \frac{2}{3}(1 +
k)\sqrt{1 + k} = \frac{4}{3}

    \Leftrightarrow \left( \sqrt{1 + k}
ight)^{3} = 2 \Leftrightarrow k = \sqrt[3]{4} - 1 \approx
0,59.

  • Câu 7: Vận dụng
    Tính giá trị biểu thức

    Cho (H) là hình phẳng giới hạn bởi parabol y =
\frac{\sqrt{3}}{2}x^{2} và nửa elip có phương trình y = \frac{1}{2}\sqrt{4 - x^{2}} (với - 2 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Gọi S là diện tích của, biết S = \frac{a\pi + b\sqrt{3}}{c} (với a;b;c\mathbb{\in R}). Tính P = a + b + c?

    Hướng dẫn:

    Hoành độ giao điểm của hai đồ thị: \frac{\sqrt{3}}{2}x^{2} = \frac{1}{2}\sqrt{4 -
x^{2}} \Leftrightarrow x = \pm 1

    Do tính chất đối xứng của đồ thị nên

    S = 2\left(
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} +
\frac{1}{2}\int_{1}^{2}{\sqrt{4 - x^{2}}dx} ight) = 2\left( S_{1} +
S_{2} ight)

    S_{1} =
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} =
\frac{\sqrt{3}}{6}

    S_{2} = \frac{1}{2}\int_{1}^{2}{\sqrt{4 -
x^{2}}dx}. Đặt x = 2\sin t\Rightarrow dx = 2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 1 \Rightarrow t = \dfrac{\pi}{6} \\x = 2 \Rightarrow t = \dfrac{\pi}{2} \\\end{matrix} ight.

    Với t \in \left\lbrack\frac{\pi}{6};\frac{\pi}{2} ightbrack \Rightarrow \cos t \geq 0\Rightarrow \sqrt{4 - x^{2}} = 2\sqrt{\cos^{2}t} = 2\cos t

    S_{2} =\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{4\cos^{2}tdt} =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{2\cos^{2}tdt}

    =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{(1 + \cos2t)dt} = \left. \ \left( t+ \frac{1}{2}\sin2t ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} =\frac{\pi}{3} - \frac{\sqrt{3}}{4}

    Suy ra S = \frac{4\pi - \sqrt{3}}{6}
\Rightarrow a = 4;b = - 1;c = 6

    Vậy P = a + b + c = 9

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Hướng dẫn:

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 9: Vận dụng
    Tính thể tích nước

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng
    Tính số tiền để mua vật dụng trang trí

    Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng 10 cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB = 5cm, OH
= 4 cm. Biết giá trang trí hoa văn 1cm^{2} là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.

    Hướng dẫn:

    Description: 28907191_574491819585491_67127502_n

    Đưa parabol vào hệ trục Oxy ta tìm được phương trình là: (P):y = -
\frac{16}{25}x^{2} + \frac{16}{5}x.

    Diện tích hình phẳng giới hạn bởi (P):y =
- \frac{16}{25}x^{2} + \frac{16}{5}x, trục hoành và các đường thẳng x = 0, x = 5 là:

    S = \int_{0}^{5}\left( -
\frac{16}{25}x^{2} + \frac{16}{5}x \right)dx =
\frac{40}{3}.

    Tổng diện tích phần bị khoét đi: S_{1} =
4S = \frac{160}{3} cm^{2}.

    Diện tích của hình vuông là: S_{hv} =
100\ cm^{2}.

    diện tích bề mặt hoa văn là: S_{2} =
S_{hv} - S_{1} = 100 - \frac{160}{3} = \frac{140}{3}\
cm^{2}.

    Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: \frac{140}{3}.50000 \approx 2333333 đồng

  • Câu 11: Vận dụng cao
    Tính thể tích V

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Gợi ý:

    Gắn hệ trục tọa độ mới.

    Cho hai hàm số y = f(x), y = g(x) liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số y = f(x), y = g(x) và hai đường thẳng x = a, x = b khi quay quanh trục Ox là V = \pi\int_{a}^{b}{\left|f^{2}(x) - g^{2}(x) ight|dx}

    Hướng dẫn:

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Đáp án là:

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Diện tích 1 cánh của hình trang trí là:

    S_{1} = \int_{0}^{1}\left( x^{2} -
ax^{3} - bx ight)dx = \left. \ \left( \frac{x^{3}}{3} -
\frac{ax^{4}}{4} - \frac{bx^{2}}{2} ight) ight|_{0}^{1} =
\frac{1}{2} - \frac{a}{4} - \frac{b}{2}

    \Rightarrow Diện tích hình trang trí là: S = 4S_{1} = \frac{4}{3} - a -
2b

    Vì diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn nên

    \frac{4}{3} - a - 2b = \frac{4}{3}
\Leftrightarrow a + 2b = 0

    Khi đó ta có: \left\{ \begin{matrix}
a + b = 1 \\
a + 2b = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 1 \\
\end{matrix} ight.\  ight.

    Vậy ab = - 2.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Một họa tiết hình cánh bướm như hình vẽ bên.

    Phần tô đậm được đính đá với giá thành 500.000đ/m^{2}. Phần còn lại được tô màu với giá thành 250.000đ/m^{2}.

    Cho AB = 4dm;BC = 8dm. Hỏi để trang trí 1000 họa tiết như vậy cần số tiền bỏ ra là bao nhiêu?

    Hướng dẫn:

    Vì AB = 4dm;BC = 8dm. \Rightarrow A( -
2;4),B(2;4),C(2; - 4),D( - 2; - 4).

    Parabol là: y = x^{2} hoặc y = - x^{2}

    Diện tích phần tô đậm là S_{1} =
4\int_{0}^{2}{x^{2}dx = \frac{32}{3}\begin{matrix}
\\
\end{matrix}(dm^{2})}

    Diện tích hình chữ nhật là S = 4.8 =
32\begin{matrix}
\\
\end{matrix}(m^{2})

    Diện tích phần trắng là S_{2} = S - S_{1}
= 32 - \frac{32}{3} = \frac{64}{3}\begin{matrix}
\\
\end{matrix}(dm^{2})

    Tổng chi phí trang chí là: T = \left(
\frac{32}{3}.5000 + \frac{64}{3}.2500 \right).1000 \approx
106666667đ

  • Câu 15: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Đáp án là:

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Cả hai bên cầu có tất cả 2.10 =
20 nhịp cầu.

    Chọn hệ trục tọa độ như hình vẽ với gốc O(0;0) là chân cầu, đỉnh I(25;2), điểm A(50;0)

    Gọi Parabol phía trên có phương trình: \left( P_{1} ight):y_{1} = ax^{2} + bx + c =
ax^{2} + bx (vì O \in \left( P_{1}
ight))

    \Rightarrow y_{2} = ax^{2} + bx -
\frac{1}{5} là phương trình parabol phía dưới

    (Vì bề dày nhịp cầu là 20cm =
\frac{1}{5}m)

    Ta có I,A \in \left( P_{1} ight)
\Rightarrow \left\{ \begin{matrix}
25^{2}a + 25b = 2 \\
50^{2}a + 50b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{625} \\
b = \frac{4}{25} \\
\end{matrix} ight.

    \Rightarrow \left( P_{1} ight):y_{1} =
- \frac{2}{625}x^{2} + \frac{4}{25}x \Rightarrow \left( P_{2} ight):\
\ \ y_{2} = - \frac{2}{625}x^{2} + \frac{4}{25}x -
\frac{1}{5}

    Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi y_{1};y_{2} và trục Ox nên ta có:

    S = 2\left( \int_{0}^{0,2}{\left( -
\frac{2}{625}x^{2} + \frac{4}{25}x ight)dx +
\int_{0,2}^{25}{\frac{1}{5}dx}} ight) \approx 9,926m^{2}

    Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là S.0,2 \approx 1,985m^{3}.

    Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là V = 20.S.0,2 \approx
40m^{3}

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi nhánh đường cong y = x^{2} với x \geq 0, đường thẳng y = 2 - x và trục hoành bằng

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    x^{2} = 2 - x \Leftrightarrow x^{2} + x
- 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2(ktm) \\
\end{matrix} ight.

    Ta có \Rightarrow S = \int_{0}^{1}{\left|
x^{2} - (2 - x) ight|d_{x}} = \frac{7}{6}

  • Câu 18: Vận dụng cao
    Ghi đáp án vào ô trống

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Đáp án là:

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình Parabol có dạng y = a.x^{2}\
\ \ (P).

    Do (P) đi qua điểm có tọa độ ( - 6; - 18) suy ra: - 18 = a.( - 6)^{2} \Leftrightarrow a = -
\frac{1}{2} \Rightarrow (P):y = -
\frac{1}{2}x^{2}.

    Từ hình vẽ ta có: \frac{AB}{CD} =
\frac{b}{d}.

    Diện tích hình phẳng giới bạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng AB:y = - \frac{1}{2}b^{2} là:

    S_{1} = 2\int_{0}^{b}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}b^{2} ight) ightbrack
dx}\left.= 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}b^{2}x
ight) ight|_{0}^{b} = \frac{2}{3}b^{3}.

    Diện tích hình phẳng giới hạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng CD :y =
- \frac{1}{2}d^{2} là :

    S_{2} = 2\int_{0}^{d}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}d^{2} ight) ightbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}d^{2}x
ight) ight|_{0}^{d} = \frac{2}{3}d^{3}

    Từ giả thiết suy ra S_{2} = 2S_{1}
\Leftrightarrow d^{3} = 2b^{3} \Leftrightarrow \frac{b}{d} =
\frac{1}{\sqrt[3]{2}}.

    Do đó \frac{AB}{CD} = \frac{b}{d} =
\frac{1}{\sqrt[3]{2}} \Rightarrow n = 3;a = 2 nên n + a = 5.

  • Câu 19: Vận dụng cao
    Tính tỉ số hai cạnh

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} bằng

    Hướng dẫn:

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình Parabol có dạng y =
a.x^{2} (P).

    (P) đi qua điểm có tọa độ ( - 6; - 18) suy ra: - 18 = a.( - 6)^{2} \Leftrightarrow a = -
\frac{1}{2}

    \Rightarrow (P):y = -
\frac{1}{2}x^{2}.

    Từ hình vẽ ta có: \frac{AB}{CD} =
\frac{x_{1}}{x_{2}}.

    Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng AB:y = - \frac{1}{2}x_{1}^{2}

    S_{1} = 2\int_{0}^{x_{1}}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}x_{1}^{2} \right) \right\rbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} +
\frac{1}{2}x_{1}^{2}x \right) \right|_{0}^{x_{1}} =
\frac{2}{3}x_{1}^{3}.

    Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng CD y = -
\frac{1}{2}x_{2}^{2}

    S_{2} = 2\int_{0}^{x_{2}}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}x_{2}^{2} \right) \right\rbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} +
\frac{1}{2}x_{2}^{2}x \right) \right|_{0}^{x_{2}} =
\frac{2}{3}x_{2}^{3}

    Từ giả thiết suy ra S_{2} = 2S_{1}
\Leftrightarrow x_{2}^{3} = 2x_{1}^{3} \Leftrightarrow
\frac{x_{1}}{x_{2}} = \frac{1}{\sqrt[3]{2}}.

    Vậy \frac{AB}{CD} = \frac{x_{1}}{x_{2}} =
\frac{1}{\sqrt[3]{2}}.

  • Câu 20: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số y = 2^{x}y = 3 - x, trục hoành và trục tung.

    Hướng dẫn:

    Giao điểm 2^{x} = 3 - x
\Rightarrow Nhẩm được nghiệm 1

    S = \int_{0}^{1}\left| 2^{x} + x - 3
ight|dx = \left| \frac{2^{x}}{\ln2} + \frac{x^{2}}{2} - 3x
ight|_{0}^{1}

    = \frac{2}{\ln2} + \frac{1}{2} - 3 -
\frac{1}{\ln2} = \frac{1}{\ln2} - \frac{5}{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo