Trong không gian , cho hai điểm
,
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là
Gọi .
Vì điểm thuộc đoạn
sao cho
Vậy .
Trong không gian , cho hai điểm
,
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là
Gọi .
Vì điểm thuộc đoạn
sao cho
Vậy .
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Tính độ dài vectơ
?
Ta có:
Khi đó
Trong không gian , cho
,
. Tìm tọa độ điểm
thuộc trục tung sao cho
nhỏ nhất.
Khi đó:
.
Do đó đạt giá trị nhỏ nhất khi và chỉ khi
có độ dài ngắn nhất, điều này xảy ra khi và chỉ khi
là hình chiếu vuông góc của
trên trục tung.
Phương trình mặt phẳng đi qua
và vuông góc với trục tung là
hay
.
Phương trình tham số của trục tung là .
Tọa độ điểm cần tìm là nghiệm
của hệ phương trình:
.
Vậy .
Trong không gian với hệ tọa , cho vectơ
,
cùng phương với vectơ
. Biết vectơ
tạo với tia
một góc nhọn và
. Giá trị của tổng
bằng
Do cùng phương và nên ta có
.
Suy ra
.
Theo giả thiết vectơ tạo với tia
một góc nhọn nên
với
, do đó
.
Mà nên
.
Lại có , suy ra
.
Vậy .
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian , cho hình chóp
có đáy
là hình thoi cạnh bằng 5, giao điểm của hai đường chéo
và
trùng với gốc tọa độ
. Các véc tơ
,
,
lần lượt cùng hướng với các véc tơ
,
,
và
,
. Gọi
là trung điểm cạnh
. Tọa độ của véc tơ
là
Hình vẽ minh họa
Ta có .
Khi đó .
Vì là trung điểm của
nên ta có
.
Cho hình chóp có
là hình chữ nhật có
,
; giá trị của
là
Vì
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Trong không gian , cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Trong không gian , cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Ta có .
Vì là chân đường cao nên ta có
và
.
Do đó
Vậy .
Trong không gian , cho hai điểm
. Tọa độ tâm đường tròn nội tiếp tam giác
là:
Ta có bài toán sau
Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: với
Hình vẽ minh họa
Gọi A’ là chân đường phân giác kẻ từ A
Áp dụng công thức trong tam giác OMN ta có:
Vậy đáp án cần tìm là
Trong không gian cho hai điểm
,
và đường thẳng
. Điểm
thuộc đường thẳng
sao cho chu vi tam giác
nhỏ nhất. Khi đó biểu thức
bằng
Ta có không đổi.
Do đó chu vi tam giác nhỏ nhất khi
đạt giá trị nhỏ nhất.
.
,
.
Chọn .
Chọn
.
Theo tính chất vecto .
Dấu xảy ra khi và chỉ khi
cùng hướng với
.
Suy ra .
Do đó đạt giá trị nhỏ nhất bằng
khi
.
Vậy .
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Ở một sân bay, vị trí của máy bay được xác định bởi điểm trong không gian
như hình vẽ. Gọi
là hình chiếu vuông góc của
xuống mặt phẳng
. Cho biết
,
,
. Điểm
có toạ độ
. Tính giá trị
. (Làm tròn kết quả đến chữ số hàng đơn vị).
Đáp án: 6825
Ở một sân bay, vị trí của máy bay được xác định bởi điểm trong không gian
như hình vẽ. Gọi
là hình chiếu vuông góc của
xuống mặt phẳng
. Cho biết
,
,
. Điểm
có toạ độ
. Tính giá trị
. (Làm tròn kết quả đến chữ số hàng đơn vị).
Đáp án: 6825
Xét vuông tại
, ta có
Xét vuông tại
, ta có
Xét vuông tại
, ta có
.
Suy ra .
.
Trong không gian hệ trục tọa độ , cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Trong không gian , cho đường thẳng
và điểm
. Gọi
là hình chiếu vuông góc của
lên đường thẳng
. Độ dài đoạn thẳng
bằng
Cách 1: Phương trình tham số của đường thẳng là:
.
Một vtcp của là
.
Gọi là mặt phẳng đi qua điểm
và vuông góc với đường thẳng
. Khi đó
có vtpt là
.
Phương trình mặt phẳng :
.
là hình chiếu vuông góc của
lên đường thẳng
nên
là giao điểm của
và
.
Xét hệ phương trình:
Thay vào
ta được:
.
Suy ra .
Độ dài đoạn thẳng là:
.
Cách 2: Phương trình tham số của đường thẳng là:
.
Một vtcp của là
.
.
Ta có .
Suy ra
Độ dài đoạn thẳng là:
.
Trong không gian với hệ trục tọa độ cho vectơ
có độ dài
, gọi
lần lượt là góc tạo bởi ba vectơ đơn vị
trên ba trục
và vectơ
. Khi đó tọa độ điểm
là:
Gọi và
Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian , cho hình lập phương
có
,
,
,
. Gọi
lần lượt là trung điểm của
(xem hình vẽ bên dưới). Biết rằng
, tính giá trị
.
Đáp án: -10
Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian , cho hình lập phương
có
,
,
,
. Gọi
lần lượt là trung điểm của
(xem hình vẽ bên dưới). Biết rằng
, tính giá trị
.
Đáp án: -10
Ta có lần lượt là trung điểm của
, suy ra
Gọi thứ tự là hình chiếu của
trên
vuông góc với
Trong không gian , cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian , cho mặt phẳng
:
và hai điểm
,
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
,
.
với
.
Do đó khi
.
Khi đó ta có .
Trong hệ trục tọa độ Oxyz, cho điểm . Gọi các điểm
lần lượt ở trên các trục tọa độ
sao cho
là trực tâm của tam giác
. Khi đó hoành độ điểm
là:
Giả sử .
Khi đó mặt phẳng
Ta có:
Vì là trực tâm của tam giác
nên
Vậy
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: