Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho hình thang ABCD có hai đáy AB,\ CD; có tọa độ ba đỉnh A(1;2;1),\ B(2;0; - 1),\ C(6;1;0). Biết hình thang có diện tích bằng 6\sqrt{2}. Giả sử đỉnh D(a;b;c), tìm mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} = (1; - 2; -
2);\overrightarrow{AC} = (5; - 1; - 1);\overrightarrow{DC} = (6 - a;1 -
b; - c).

    Ta có S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{9\sqrt{2}}{2}

    \Rightarrow S_{ACD} = 6\sqrt{2} -
\frac{9\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}.

    AB//CD nên \overrightarrow{AB}\overrightarrow{DC} cùng phương, cùng chiều \Leftrightarrow \frac{6 - a}{1} =
\frac{1 - b}{- 2} = \frac{c}{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
c = 12 - 2a \\
b = 13 - 2a \\
a < 6 \\
b > 1 \\
c > 0 \\
\end{matrix} ight.

    \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack = (0;9a - 54;54 -
9a).

    S_{\Delta ACD} = \frac{3\sqrt{2}}{2}
\Leftrightarrow \frac{1}{2}\left| \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack ight| =
\frac{3\sqrt{2}}{2}

    \Leftrightarrow |54 - 9a| = 3
\Leftrightarrow \left\lbrack \begin{matrix}
a = \frac{19}{3} \\
a = \frac{17}{3} \\
\end{matrix} ight.\ .

    So với điều kiện suy ra: a = \frac{17}{3}
\Rightarrow a + b + c = 8.

  • Câu 2: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Đáp án là:

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Hình vẽ minh họa

    Ta có: A(0;\ 0;\ 0), B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) nên \overrightarrow{AB} = (m;0;0)

    AB = m (do m;n > 0); AD = m; AA' = n.

    V_{ACB'D'} =\frac{1}{3}V_{ABCD.A'B'C'D'} =\frac{1}{3}.m.m.n

    V_{ACB'D'} = \frac{1}{3}.m.m.n =\frac{1}{3}m^{2}(4 - m).

    Xét hàm số f(m) = \frac{1}{3}m^{2}(4 - m)= - \frac{1}{3}m^{3} + \frac{4}{3}m^{2} trên (0;4)

    f'(m) = - m^{2} + \frac{8}{3}m =0\left\lbrack \begin{matrix}m = 0 \\m = \frac{8}{3} \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy MaxV_{ACB'D'} =\frac{256}{81} \simeq 3,16.

  • Câu 3: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Đáp án là:

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Với hệ trục toạ độ đã chọn ta có O(0;0;0), K(0;0;5), F(2;6;5), G(
- 6;6;5), Q( - 6;3;7).

    Gọi I là trung điểm của FG, ta có I(
- 2;6;5)

    Do đó OK = 5; \overrightarrow{KI} = ( - 2;6;0) \Rightarrow KI =
\sqrt{4 + 36} = 2\sqrt{10}; \overrightarrow{IQ} = ( - 4; - 3;2) \Rightarrow IQ
= \sqrt{16 + 9 + 4} = \sqrt{29}.

    Vậy độ dài đoạn cáp nối tối thiểu là: OK
+ KI + IQ = 5 + 2\sqrt{10} + \sqrt{29} \approx 16,7\ m.

  • Câu 4: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5, giao điểm của hai đường chéo ACBD trùng với gốc tọa độ O. Các véc tơ \overrightarrow{OB},\overrightarrow{OC}, \overrightarrow{OS} lần lượt cùng hướng với các véc tơ \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}OA = 3, OS =
2. Gọi M là trung điểm cạnh SB. Tọa độ của véc tơ \overrightarrow{OM}

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có OB = \sqrt{AB^{2} - OA^{2}} =
\sqrt{5^{2} - 3^{2}} = 4.

    Khi đó \overrightarrow{OB} = (4;0;0),\ \
\ \overrightarrow{OS} = (0;0;2).

    M là trung điểm của SB nên ta có

    \overrightarrow{OM} = \frac{1}{2}\left(
\overrightarrow{OS} + \overrightarrow{OB} ight) =
(2;0;1).

  • Câu 5: Thông hiểu
    Tính tọa độ điểm M

    Trong không gian Oxyz có điểm A(4;2;1),B( - 2; - 1;4). Tìm tọa độ điểm M thỏa mãn đẳng thức \overrightarrow{AM} =
2\overrightarrow{MB}?

    Hướng dẫn:

    Ta có: M(x;y;z). Khi đó \overrightarrow{AM} =
2\overrightarrow{MB}

    \overrightarrow{AM} =
2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = 2( - 2 - x) \\
y - 2 = 2( - 1 - y) \\
z - 1 = 2(4 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 3 \\
\end{matrix} ight.\  \Rightarrow M(0;0;3)

    Vậy giá trị cần tìm là M(0;0;3).

  • Câu 6: Vận dụng
    Tính giá trị của biểuthức

    Trong không gian Oxyz cho các điểm A(5\ ;\ 1\ ;\ 5), B(4\ ;\ 3\ ;\ 2), C( - 3\ ;\  - 2\ ;\ 1). Điểm I(a\ ;\ b\ ;\ c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính a + 2b + c?

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( - 1\ ;\ 2\
;\  - 3), \overrightarrow{AC} = ( -
8\ ;\  - 3\ ;\  - 4).

    Gọi M, N lần lượt là trung điểm AB, AC
\Rightarrow \left\{ \begin{matrix}
M\left( \frac{9}{2}\ ;\ 2\ ;\ \frac{7}{2} ight) \\
N\left( 1\ ;\  - \frac{1}{2}\ ;\ 3 ight) \\
\end{matrix} ight..

    Gọi \overrightarrow{n} là véc tơ pháp tuyến của mặt phẳng (ABC)

    \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack = ( -
17\ ;\ 20\ ;\ 19).

    (ABC): - 17x + 20y + 19z - 30 =
0.

    I là tâm đường tròn ngoại tiếp tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{IM}\bot\overrightarrow{AB} \\
\overrightarrow{IN}\bot\overrightarrow{AC} \\
I \in (ABC) \\
\end{matrix} ight.\  \Leftrightarrow

    \Leftrightarrow \left\{ \begin{matrix}
\left( \frac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \frac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \frac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left( \dfrac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \dfrac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \dfrac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight..

    Vậy a + 2b + c = 1 + 2.\left( -
\frac{1}{2} ight) + 3 = 3.

  • Câu 7: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;1;0), \overrightarrow{b} = (2; - 1; - 2)\overrightarrow{c} = ( - 3;0;2). Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} là mệnh đề đúng.

  • Câu 8: Vận dụng
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 9: Vận dụng
    Ghi đáp án đúng vào ô trống

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Đáp án là:

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Ta có M,\ N lần lượt là trung điểm của CD,AA', suy ra M(1;\ 2;\ 0),\ N(0;\ 0;\ 1)

    \Rightarrow \overrightarrow{MN} = ( -
1;\  - 2;\ 1)

    \Rightarrow MN:\left\{ \begin{matrix}
x = t \\
y = 2t \\
z = 1 - t \\
\end{matrix} ight.

    Gọi H(t;2t;1 - t);H'(u;2u;1 -
u) thứ tự là hình chiếu của B ; D ' trên MN

    \overrightarrow{BH}(t - 2;2t;1 -
t);\overrightarrow{D'H'}(u;2u - 2; - 1 - u) vuông góc với \overrightarrow{MN} = ( - 1;\  - 2;\
1)

    \Leftrightarrow \left\{ \begin{matrix}
2 - t - 4t + 1 - t = 0 \\
- u - 4u + 4 - 1 - u = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
u = \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{BH}\left( -
\frac{3}{2};1;\frac{1}{2} ight);\overrightarrow{D'H'}\left(
\frac{1}{2}; - 1; - \frac{3}{2} ight)

    \Rightarrow \cos\lbrack
B,MN,D'brack = \cos\left(
\overrightarrow{BH},\overrightarrow{D'H'} ight)= \frac{-
\frac{3}{4} - 1 - \frac{3}{4}}{\sqrt{\frac{9}{4} + 1 +
\frac{1}{4}}.\sqrt{\frac{9}{4} + 1 + \frac{1}{4}}} = -
\frac{5}{7}

    \Rightarrow \cos\lbrack
B,MN,D'brack = - \frac{5}{7} = m \Rightarrow 14m = -
10

  • Câu 10: Vận dụng
    Ghi đáp án đúng vào ô trống

    Ở một sân bay, vị trí của máy bay được xác định bởi điểm M trong không gian Oxyznhư hình vẽ. Gọi H là hình chiếu vuông góc của Mxuống mặt phẳng Oxy. Cho biết OM = 40, \left( \overrightarrow{i},\overrightarrow{OH}
\right) = 60{^\circ}, \left(
\overrightarrow{OH},\overrightarrow{OM} \right) = 60{^\circ} . Điểm M có toạ độ (a;b;c). Tính giá trị P = abc. (Làm tròn kết quả đến chữ số hàng đơn vị).

    Đáp án: 6825

    Đáp án là:

    Ở một sân bay, vị trí của máy bay được xác định bởi điểm M trong không gian Oxyznhư hình vẽ. Gọi H là hình chiếu vuông góc của Mxuống mặt phẳng Oxy. Cho biết OM = 40, \left( \overrightarrow{i},\overrightarrow{OH}
\right) = 60{^\circ}, \left(
\overrightarrow{OH},\overrightarrow{OM} \right) = 60{^\circ} . Điểm M có toạ độ (a;b;c). Tính giá trị P = abc. (Làm tròn kết quả đến chữ số hàng đơn vị).

    Đáp án: 6825

    Xét \Delta MHO vuông tại H, ta có

    OH = OM.cos60{^\circ} = 40.cos60{^\circ}
= 20

    OC = MH = OM.sin60{^\circ} =
40.sin60{^\circ} = 20\sqrt{3}

    Xét \Delta OAH vuông tại A , ta có OA =
OH.cos50{^\circ} = 20.cos50{^\circ} \approx 12,86

    Xét \Delta OBH vuông tại B , ta có OB =
OH.cos40{^\circ} = 20.cos40{^\circ} \approx 15,32

    \overrightarrow{OM} = \overrightarrow{OA}
+ \overrightarrow{OB} + \overrightarrow{OC} = 12,86\overrightarrow{i} +
15,32\overrightarrow{j} + 20\sqrt{3}\overrightarrow{k} .

    Suy ra M\left( 12,86\ ;\ \ 15,32\ ;\ \
20\sqrt{3} ight) .

    P = 12,86.15,32.20\sqrt{3} \approx
6825 .

  • Câu 11: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Hướng dẫn:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Cách 1. Gọi P là trung điểm CD, I = MP \cap AD, J = IN \cap DD', K = AC \cap MP.

    Ta có MP//BD \Rightarrow MP//B'D'
\Rightarrow d(B'D';MN) = d\left\lbrack B'D';(MNP)
ightbrack = d\left\lbrack D';(MNP) ightbrack.

    Lại có d\left\lbrack D';(MNP)
ightbrack = \frac{D'J}{DJ}d\left\lbrack D;(MNP) ightbrack =
5.d\left\lbrack D;(MNP) ightbrack.

    Mặt khác d\left\lbrack D;(MNP)
ightbrack = \frac{DI}{AI}d\left\lbrack A;(MNP) ightbrack =
\frac{1}{3}d\left\lbrack A;(MNP) ightbrack.

    Dễ thấy \left\{ \begin{matrix}
(NAK)\bot(MNP) \\
(NAK) \cap (MNP) = AK \\
AH\bot NK\ (H \in NK)\ trong\ (NAK) \\
\end{matrix} ight.

    \Rightarrow AH\bot(MNP) \Rightarrow
d\left\lbrack A;(MNP) ightbrack = AH.

    Suy ra d(MN;B'D') =
\frac{5}{3}d\left\lbrack A;(MNP) ightbrack = \frac{5}{3}AH với AN = \frac{AA'}{2} = 2 ; AK = \frac{3}{4}\sqrt{2}AB =
\frac{3\sqrt{2}}{2}.

    Vậy d(MN;B'D') = \frac{5}{3}AH =
\frac{5}{3}.\frac{AN.AK}{\sqrt{AN^{2} + AK^{2}}} =
\frac{5}{3}.\frac{\frac{3\sqrt{2}}{2}.2}{\sqrt{\left(
\frac{3\sqrt{2}}{2} ight)^{2} + 2^{2}}} = \frac{10.\sqrt{17}}{17}
\simeq 2,43.

    Cách 2. Đặt các trục Ox, OyOz vào hình như sau

    Ta có M(1;2;0), N(0;0;2), B'(0;2;4)D'(2;0;4).

    Ta có \overrightarrow{MN} = ( - 1; -
2;2), \overrightarrow{B'D'}
= (2; - 2;0)\overrightarrow{MB'} = ( - 1;0;4) \Rightarrow
\left\lbrack \overrightarrow{MN},\overrightarrow{B'D'}
ightbrack = (4;4;6).

    Khi đó :

    d\left( MN;B^{'}D^{'} ight) =
\frac{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}}
ightbrack.\overrightarrow{MB^{'}} ight|}{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}} ightbrack
ight|}

    = \frac{\left| ( - 1).4 + 0.4 + 4.6
ight|}{\sqrt{4^{2} + 4^{2} + 6^{2}}} = \frac{10\sqrt{17}}{17} \simeq
2,43.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng
    Ghi đáp án đúng vào ôtrống

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (4 - a;1 - b;5 - c) \\
\overrightarrow{MB} = (3 - a; - b;1 - c) \\
\overrightarrow{MC} = ( - 1 - a;2 - b; - c) \\
\end{matrix} ight.

    \overrightarrow{MA}.\overrightarrow{MB}
+ 2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA}

    = (4 - a)(3 - a) + (1 - b)( - b) + (5 -
c)(1 - c)

    + 2(3 - a)( - 1 - a) + 2( - b)(2 - b) +
2(1 - c)( - c)

    - 5(4 - a)( - 1 - a) - 5(1 - b)(2 - b) -
5(5 - c)( - c)

    = - 2a^{2} - 2b^{2} - 2c^{2} + 4a + 10b
+ 17c + 21

    = - 2(a - 1)^{2} - 2\left( b -
\frac{5}{2} ight)^{2} - 2\left( c - \frac{17}{4} ight)^{2} +
\frac{573}{8} \leq \frac{573}{8}

    Dấu bằng xảy ra khi và chỉ khi\left\{
\begin{matrix}
a = 1 \\
b = \frac{5}{2} \\
c = \frac{17}{4} \\
\end{matrix} ight.. Khi đó P =
a - 2b + 4c = 13.

  • Câu 15: Thông hiểu
    Tính diện tích tam giác ABC

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABCA(1;0;0),B(0;0;1),C(2;1;1). Tính diện tích tam giác ABC?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;0;1) \\
\overrightarrow{AC} = (1;1;1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = ( - 1).1 + 0.1 + 1.1 =
0

    Suy ra \overrightarrow{AB}\bot\overrightarrow{AC}. Lại có: \left\{ \begin{matrix}
\left| \overrightarrow{AB} ight| = \sqrt{2} \\
\left| \overrightarrow{AC} ight| = \sqrt{3} \\
\end{matrix} ight.

    Suy ra diện tích tam giác ABC là: S = \frac{1}{2}AB.AC =
\frac{\sqrt{6}}{2}

  • Câu 16: Thông hiểu
    Tìm tọa độ trọng tâm của tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'A(0;0;0),B(3;0;0),C(0;3;0),D'(0;3; -3). Tọa độ trọng tâm tam giác A'B'C

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm của đoạn BD’ suy ra I\left( \frac{3}{2};\frac{3}{2}; - \frac{3}{2}ight)

    Gọi G(a;b;c) là trọng tâm tam giác A'B'C

    Ta có: \overrightarrow{DI} =3\overrightarrow{IG} với \left\{\begin{matrix}\overrightarrow{DI} = \left( \frac{3}{2}; - \frac{3}{2}; - \frac{3}{2}ight) \\\overrightarrow{IG} = \left( a - \frac{3}{2};b - \frac{3}{2};c +\frac{3}{2} ight) \\\end{matrix} ight.

    Do đó:

    \left\{ \begin{matrix}\frac{3}{2} = 3\left( a - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( b - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( c + \frac{3}{2} ight) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 1 \\c = - 2 \\\end{matrix} ight.\  \Rightarrow G(2;1; - 2)

    Vậy tọa độ trọng tâm tam giác cần tìm là (2;1; - 2)

  • Câu 17: Thông hiểu
    Tính độ dài đoạn thẳng

    Trong không gian Oxyz, cho tam giác ABC với A(1\ ;2\ ;5), B(3\ ;4\ ;1), C(2\ ;3\ ; - 3). Gọi G là trọng tâm tam giác ABC và M là điểm thay đổi trên mp(Oxz). Độ dài GM ngắn nhất bằng

    Hướng dẫn:

    Do G là trọng tâm tam giác ABC \Rightarrow G(2\ ;3\ ;1).

    Gọi H là hình chiếu vuông góc của G trên mặt phẳng (Oxz), khi đó GH là khoảng cách từ G đến mặt phẳng (Oxz), ta có: GH = d\left( G,(Oxz) ight) = 3

    Với M là điểm thay đổi trên mặt phẳng (Oxz), ta có GM \geq GH = 3, do đó GM ngắn nhất \Leftrightarrow M \equiv H. Vậy độ dài GM ngắn nhất bằng 3.

  • Câu 18: Vận dụng cao
    Tìm tọa độ điểm M thỏa mãn điều kiện

    Trong không gian Oxyz, cho \overrightarrow{OA} = \overrightarrow{i} +
\overrightarrow{j} - 3\overrightarrow{k}, B(2;2;1). Tìm tọa độ điểm M thuộc trục tung sao cho MA^{2} + MB^{2} nhỏ nhất.

    Hướng dẫn:

    Khi đó:

    MA^{2} + MB^{2} =
{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2}

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} ight)^{2}

    = 2{\overrightarrow{MI}}^{2} +
{\overrightarrow{IA}}^{2} + {\overrightarrow{IB}}^{2} +
2\overrightarrow{MI}.\left( \overrightarrow{IA} + \overrightarrow{IB}
ight)

    = 2MI^{2} + IA^{2} + IB^{2} = 2MI^{2} +
9.

    Do đó MA^{2} + MB^{2} đạt giá trị nhỏ nhất khi và chỉ khi MI có độ dài ngắn nhất, điều này xảy ra khi và chỉ khi M là hình chiếu vuông góc của I trên trục tung.

    Phương trình mặt phẳng (P) đi qua I và vuông góc với trục tung là

    0.\left( x - \frac{3}{2} ight) +
1.\left( y - \frac{3}{2} ight) + 0.(z + 1) = 0 hay (P):y - \frac{3}{2} = 0.

    Phương trình tham số của trục tung là \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
\end{matrix} ight..

    Tọa độ điểm M cần tìm là nghiệm (x\ ;y\ ;z) của hệ phương trình:

    \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
y - \frac{3}{2} = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 0 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight..

    Vậy M\left( 0\ ;\frac{3}{2}\ ;0
ight).

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 20: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo