Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án đúng vào ô trống

    Cho hệ trục tọa độ Oxyz mặt phẳng Oxy trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm O, chiếc thứ hai xuất phát từ điểm I(1;\ 0;\ 0). Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và 1km về phía Đông, đồng thời cách mặt đất 0,5km. Chiếc thứ hai cách điểm xuất phát 2km về phía Bắc và 2km về phía Đông, đồng thời cách mặt đất 0,8m. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao km? (kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,7

    Đáp án là:

    Cho hệ trục tọa độ Oxyz mặt phẳng Oxy trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm O, chiếc thứ hai xuất phát từ điểm I(1;\ 0;\ 0). Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và 1km về phía Đông, đồng thời cách mặt đất 0,5km. Chiếc thứ hai cách điểm xuất phát 2km về phía Bắc và 2km về phía Đông, đồng thời cách mặt đất 0,8m. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao km? (kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,7

    Gọi vị trí chiếc khinh khí cầu thứ nhất và thứ hai sau khi bay 20 phút lần lượt là M(1\ ;\ 1\ ;\ 0,5)N(2\ ;\  - 2\ ;\ 0,8)

    Gọi A\left( x_{A};y_{A};z_{A} ight)\ ,\
B\left( x_{B};y_{B};z_{B} ight) là vị trí của khinh khí cầu thứ nhất, thứ hai sau khi bay 10 phút tiếp theo.

    Ta có \overrightarrow{OA}\ \  = \
\frac{3}{2}\overrightarrow{OM} \Rightarrow A\left(
\frac{3}{2};\frac{3}{2};\frac{1}{4} ight)

    \overrightarrow{IB}\  = \
\frac{3}{2}\overline{IN} \Rightarrow B\left( \frac{5}{2}; - 3;1,2
ight)

    Ta có AB\  = \ {\sqrt{\left( \frac{5}{2}
- \frac{3}{2} ight)^{2} + \left( - 3 - \frac{3}{2} ight)^{2} +
\left( 1,2 - \frac{1}{4} ight)^{2}}}^{} \approx 4,7

  • Câu 2: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (P):y = 0 \Leftrightarrow 0x + 1y
+ 0z = 0 có vectơ pháp tuyến \overrightarrow{n_{1}} = (0;1;0).

    b) \overrightarrow{n_{2}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (Q):\sqrt{3}x - y - 2024 = 0
\Leftrightarrow \sqrt{3}x - y + 0z - 2024 = 0 = 0 có vectơ pháp tuyến \overrightarrow{n_{2}} = \left(
\sqrt{3}; - 1;0 ight).

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} =
0.\sqrt{3} + 1.( - 1) + 0.0 = - 1.

    d) Gọi \varphi là góc giữa hai mặt phẳng (P)(Q)

    \cos\varphi = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|}

    = \frac{| - 1|}{\sqrt{0^{2} + 1^{2} +
0^{2}}.\sqrt{\left( \sqrt{3} ight)^{2} + ( - 1)^{2} + 0^{2}}} =
\frac{1}{2} \Rightarrow \varphi = 60{^\circ}.

  • Câu 4: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Đáp án là:

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Với hệ trục toạ độ đã chọn ta có O(0;0;0), K(0;0;5), F(2;6;5), G(
- 6;6;5), Q( - 6;3;7).

    Gọi I là trung điểm của FG, ta có I(
- 2;6;5)

    Do đó OK = 5; \overrightarrow{KI} = ( - 2;6;0) \Rightarrow KI =
\sqrt{4 + 36} = 2\sqrt{10}; \overrightarrow{IQ} = ( - 4; - 3;2) \Rightarrow IQ
= \sqrt{16 + 9 + 4} = \sqrt{29}.

    Vậy độ dài đoạn cáp nối tối thiểu là: OK
+ KI + IQ = 5 + 2\sqrt{10} + \sqrt{29} \approx 16,7\ m.

  • Câu 5: Thông hiểu
    Định các giá trị tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(2;3; - 1),N( - 1;1;1),P(1;m - 1;2). Tìm giá trị của tham số m để tam giác MNP vuông tại N?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = ( - 3; - 2;2) \\
\overrightarrow{NP} = (2;m - 2;1) \\
\end{matrix} ight..

    Tam giác MNP vuông tại N \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{NP} = 0 \Leftrightarrow - 6 - 2(m -
2) + 2 = 0 \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m = 0.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 7: Vận dụng
    Tính tổng a và b

    Trong không gian Oxyz, cho mặt phẳng (P): x - y + 2 = 0 và hai điểm A(1;\ 2;\ 3), B(1;0;1). Điểm C(a;\ b;\  - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b

    Hướng dẫn:

    C(a;\ b;\  - 2) \in (P) \Rightarrow a - b
+ 2 = 0 \Rightarrow b = a + 2 \Rightarrow C(a;\ a + 2;\  -
2).

    \overrightarrow{AB} = (0;\  - 2;\  -
2), \overrightarrow{AC} = (a - 1\
;\ a\ ;\  - 5) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (10 + 2a\ ;\  -
2a + 2\ ;\ 2a - 2).

    S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{\sqrt{(2a + 10)^{2} + 2(2a - 2)^{2}}}{2}

    = \frac{\sqrt{12a^{2} + 24a + 108}}{2} =
\sqrt{3\left( a^{2} + 2a + 9 ight)}

    = \sqrt{3(a + 1)^{2} + 24} \geq
2\sqrt{6} với \forall
a.

    Do đó \min S_{\Delta ABC} =
2\sqrt{6} khi a = - 1.

    Khi đó ta có C( - 1;\ 1; - 2) \Rightarrow
a + b = 0.

  • Câu 8: Vận dụng
    Tìm tập hợp điểm M trong không gian

    Trong không gian tọa độ Oxyz, cho A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm M trong không gian thỏa mãn M không trùng với các điểm A, B, C và \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}

    Hướng dẫn:

    Gọi M(x;y;z)

    Ta có: \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}\Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BM} = 0 \\
\overrightarrow{BM}.\overrightarrow{CM} = 0 \\
\overrightarrow{CM}.\overrightarrow{AM} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + y(y - 2) + z^{2} = 0 \\
x^{2} + y(y - 2) + z(z - 2) = 0 \\
x(x - 2) + y^{2} + z(z - 2) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x^{2} + y^{2} + z^{2} - 2y - 2z = 0 \\
x^{2} + y^{2} + z^{2} - 2x - 2z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x = z \\
y = z \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3x^{2} - 4x = 0 \\
x = y = z \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
M(0;0;0) \\
M\left( \dfrac{4}{3};\dfrac{4}{3};\dfrac{4}{3} ight) \\
\end{matrix} ight..

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A'B'C'A'\left( \sqrt{3}\ ;\  - 1\ ;\ 1
\right), hai đỉnh B\ ,\ C thuộc trục OzAA' = 1 (C không trùng với O). Biết véctơ \overrightarrow{u} = (a\ ;\ b\ ;\ 2) với a\ ,\ b\mathbb{\in R} là một véctơ chỉ phương của đường thẳng A'C. Tính T = a^{2} + b^{2}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm BC.

    Khi đó có \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot A'M tại M \Rightarrow M là hình chiếu của A' trên trục Oz

    A'\left( \sqrt{3}\ ;\  - 1\ ;\ 1
ight) \Rightarrow M(0\ ;\ 0\ ;\ 1)A'M = 2.

    Ta có: AM = \sqrt{A'M^{2} -
A{A'}^{2}} = \sqrt{3}.

    Mà tam giác ABC đều nên AM = \frac{\sqrt{3}}{2}BC = \sqrt{3} \Rightarrow
BC = 2 \Rightarrow MC = 1.

    C thuộc trục OzC không trùng với O nên gọi C(0\ ;\ 0\ ;\ c), c eq 0.

    \overrightarrow{MC} = (0\ ;\ 0\ ;\ c -
1) \Rightarrow MC = |c -
1|; MC = 1 \Leftrightarrow |c - 1| = 1 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0\ (L) \\
c = 2 \\
\end{matrix} ight. \Rightarrow
C(0\ ;\ 0\ ;\ 2).

    \overrightarrow{A'C} = \left( -\sqrt{3} ; 1 ;1 ight) là một véctơ chỉ phương của đường thẳng A'C

    \Rightarrow \overrightarrow{u} = \left( - 2\sqrt{3}\ ;\ 2\ ;\
2 ight)cũng là một véctơ chỉ phương của đường thẳng A'C.

    Vậy a = - 2\sqrt{3};\ \ b = 2 \Rightarrow
T = a^{2} + b^{2} = 16.

  • Câu 10: Thông hiểu
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

  • Câu 11: Vận dụng
    Tính giá trị của biểuthức

    Trong không gian Oxyz cho các điểm A(5\ ;\ 1\ ;\ 5), B(4\ ;\ 3\ ;\ 2), C( - 3\ ;\  - 2\ ;\ 1). Điểm I(a\ ;\ b\ ;\ c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính a + 2b + c?

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( - 1\ ;\ 2\
;\  - 3), \overrightarrow{AC} = ( -
8\ ;\  - 3\ ;\  - 4).

    Gọi M, N lần lượt là trung điểm AB, AC
\Rightarrow \left\{ \begin{matrix}
M\left( \frac{9}{2}\ ;\ 2\ ;\ \frac{7}{2} ight) \\
N\left( 1\ ;\  - \frac{1}{2}\ ;\ 3 ight) \\
\end{matrix} ight..

    Gọi \overrightarrow{n} là véc tơ pháp tuyến của mặt phẳng (ABC)

    \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack = ( -
17\ ;\ 20\ ;\ 19).

    (ABC): - 17x + 20y + 19z - 30 =
0.

    I là tâm đường tròn ngoại tiếp tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{IM}\bot\overrightarrow{AB} \\
\overrightarrow{IN}\bot\overrightarrow{AC} \\
I \in (ABC) \\
\end{matrix} ight.\  \Leftrightarrow

    \Leftrightarrow \left\{ \begin{matrix}
\left( \frac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \frac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \frac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left( \dfrac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \dfrac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \dfrac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight..

    Vậy a + 2b + c = 1 + 2.\left( -
\frac{1}{2} ight) + 3 = 3.

  • Câu 12: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết x_{B} > x_{A}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)\Rightarrow \overrightarrow{AH} = (3 + 2t;2t;3 + t) .

    Đường thẳng CD có vtcp là: \overrightarrow{u}(2;2;1).

    Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Rightarrow 2(3 + 2t) + 2.2t + 3 + t = 0

    \Leftrightarrow t = - 1 \Rightarrow H(0; -
3;2) \Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a|
\Rightarrow CD = 6|a|

    Theo bài ra ta có:

    S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 =
27 \Leftrightarrow |a| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) .

    Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
\frac{1}{2}\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 13: Vận dụng cao
    Tìm tọa độ tâm đường tròn nội tiếp tam giác

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Hướng dẫn:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

  • Câu 14: Vận dụng
    Ghi đáp án vào ô trống

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng
    Ghi đáp án đúng vào ô trống

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Đáp án là:

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Để độ dài cây cầu MN ngắn nhất thì MN là đoạn vuông góc chung của hai đường thẳng A^{'}CBC^{'}.

    Đặt hệ trục Oxyz như hình vẽ:

    Khi đó C( - 15;0;0),B(15;0;0),\ C'( - 15;0;0),\
A'(0;15\sqrt{3};30)

    Do đó MN = d(A'C;BC') =
\frac{30\sqrt{39}}{13}

    Số tiền cần làm cây cầu ngắn nhất là 5.\frac{30\sqrt{39}}{13} \approx 72(tỷ đồng)

  • Câu 16: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 17: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Trong không gian Oxyz, cho ba điểmA(1\ ;\ \ 1\ ;\ \ 1), B( - 1\ ;\ \ 2\ ;\ \ 0),C(3\ ;\ \  - 1\ ;\ \ 2)M là điểm thuộc mặt phẳng (\alpha):2x - y + 2z + 7 = 0. Tính giá trị nhỏ nhất của P = \left| \
3\overrightarrow{MA} + 5\overrightarrow{MB} -
7\overrightarrow{MC}\  \right|.

    Đáp án: 27

    Đáp án là:

    Trong không gian Oxyz, cho ba điểmA(1\ ;\ \ 1\ ;\ \ 1), B( - 1\ ;\ \ 2\ ;\ \ 0),C(3\ ;\ \  - 1\ ;\ \ 2)M là điểm thuộc mặt phẳng (\alpha):2x - y + 2z + 7 = 0. Tính giá trị nhỏ nhất của P = \left| \
3\overrightarrow{MA} + 5\overrightarrow{MB} -
7\overrightarrow{MC}\  \right|.

    Đáp án: 27

    Gọi I(x\ ;y\ ;\ z) sao cho 3\overrightarrow{IA} + 5\overrightarrow{IB} -
7\overrightarrow{IC} = \overrightarrow{0} (1).

    Ta có: \left\{ \begin{matrix}
3(1 - x) + 5( - 1 - x) - 7(3 - x) = 0 \\
3(1 - y) + 5(2 - y) - 7( - 1 - y) = 0 \\
3(1 - z) + 5(0 - z) - 7(2 - z) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 23 \\
y = 20 \\
z = - 11 \\
\end{matrix} ight. .

    Suy ra I( - 23\ ;\ 20\ ;\  -
11).

    Xét P = \left| 3\overrightarrow{MA} +
5\overrightarrow{MB} - 7\overrightarrow{MC} ight|

    = \left| 3\left( \overrightarrow{MI} +\overrightarrow{IA} ight) + 5\left( \overrightarrow{MI}+\overrightarrow{IB} ight) - 7\left( \overrightarrow{MI} +\overrightarrow{IC} ight) ight|

    P = \left| \overrightarrow{MI} + \left(
3\overrightarrow{IA} + 5\overrightarrow{IB} - 7\overrightarrow{IC}
ight) ight|.

    Từ (1) ta có P = \left| \overrightarrow{MI} ight| =
MI.

    P_{\min} khi MI ngắn nhất hay M là hình chiếu vuông góc của I lên mặt phẳng (\alpha).

    Khi đó: P_{\min} = d\left( I,(\alpha)
ight) = \frac{\left| 2.( - 23) - 20 + 2.( - 11) + 7
ight|}{\sqrt{2^{2} + ( - 1)^{2} + 2^{2}}} = 27.

  • Câu 18: Vận dụng
    Định tọa độ điểm M

    Trong không gian Oxyzcho A(4; - 2;6), B(2;4;2),M
\in (\alpha)\ :\ x + 2y - 3z - 7 = 0 sao cho\overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất. Tọa độ của M bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm AB \Rightarrow I(3;1;4).

    Gọi H là hình chiếu của I xuống mặt phẳng (\alpha).

    Ta có \overrightarrow{MA}.\overrightarrow{MB} = \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)

    = MI^{2} + \overrightarrow{MI}.\left(
\overrightarrow{IA} + \overrightarrow{IB} ight) - IA^{2} = MI^{2} -
IA^{2}.

    Do IA không đổi nên \overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất khi MI nhỏ nhất \Leftrightarrow MI = IH \Leftrightarrow M \equiv
H.

    Gọi \Delta là đường thẳng đi qua I và vuông góc với mặt phẳng (\alpha).

    Khi đó \Delta nhận \overrightarrow{n_{(\alpha)}} = (1;2; -
3)làm vectơ chỉ phương.

    Do đó \Delta có phương trình \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 2t \\
z = 4 - 3t \\
\end{matrix} ight..

    H \in \Delta \Leftrightarrow H(3 + t;1 +
2t;4 - 3t).

    H \in (\alpha) \Leftrightarrow (3 + t) +
2(1 + 2t) - 3(4 - 3t) - 7 = 0

    \Leftrightarrow t = 1 \Leftrightarrow
H(4;3;1).

    Vậy M(4;3;1).

  • Câu 19: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Hướng dẫn:

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 20: Thông hiểu
    Định các giá trị của x và y

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7),M(x;y;1). Với giá trị nào của x;y thì ba điểm đã cho thẳng hàng?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 4;2) \\
\overrightarrow{AM} = (x - 2;y + 1; - 4) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{3} =
\frac{y + 1}{- 4} = \frac{- 4}{2} \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là x = - 4;y =
7.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo