Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án đúng vào ôtrống

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (4 - a;1 - b;5 - c) \\
\overrightarrow{MB} = (3 - a; - b;1 - c) \\
\overrightarrow{MC} = ( - 1 - a;2 - b; - c) \\
\end{matrix} ight.

    \overrightarrow{MA}.\overrightarrow{MB}
+ 2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA}

    = (4 - a)(3 - a) + (1 - b)( - b) + (5 -
c)(1 - c)

    + 2(3 - a)( - 1 - a) + 2( - b)(2 - b) +
2(1 - c)( - c)

    - 5(4 - a)( - 1 - a) - 5(1 - b)(2 - b) -
5(5 - c)( - c)

    = - 2a^{2} - 2b^{2} - 2c^{2} + 4a + 10b
+ 17c + 21

    = - 2(a - 1)^{2} - 2\left( b -
\frac{5}{2} ight)^{2} - 2\left( c - \frac{17}{4} ight)^{2} +
\frac{573}{8} \leq \frac{573}{8}

    Dấu bằng xảy ra khi và chỉ khi\left\{
\begin{matrix}
a = 1 \\
b = \frac{5}{2} \\
c = \frac{17}{4} \\
\end{matrix} ight.. Khi đó P =
a - 2b + 4c = 13.

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu
    Chọn phương án đúng

    Cho hình chóp S.ABCDABCD là hình chữ nhật có AB = 3,AD = 4, SA\bot(ABCD),SA = 5; giá trị của \overrightarrow{SA}.\overrightarrow{BC}

    Hướng dẫn:

    SA \bot \left( {ABCD} ight) \Rightarrow \overrightarrow {SA}  \bot \overrightarrow {BC}  \Rightarrow \overrightarrow {SA} .\overrightarrow {BC}  = 0

  • Câu 4: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5, giao điểm của hai đường chéo ACBD trùng với gốc tọa độ O. Các véc tơ \overrightarrow{OB},\overrightarrow{OC}, \overrightarrow{OS} lần lượt cùng hướng với các véc tơ \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}OA = 3, OS =
2. Gọi M là trung điểm cạnh SB. Tọa độ của véc tơ \overrightarrow{OM}

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có OB = \sqrt{AB^{2} - OA^{2}} =
\sqrt{5^{2} - 3^{2}} = 4.

    Khi đó \overrightarrow{OB} = (4;0;0),\ \
\ \overrightarrow{OS} = (0;0;2).

    M là trung điểm của SB nên ta có

    \overrightarrow{OM} = \frac{1}{2}\left(
\overrightarrow{OS} + \overrightarrow{OB} ight) =
(2;0;1).

  • Câu 5: Thông hiểu
    Tìm tọa độ điểm cách đều A và B

    Trong không gian Oxyz, tìm tọa độ điểm M trên trục Ox cách đều hai điểm A(1;2; - 1)B(2;1;2)?

    Hướng dẫn:

    Ta có: M \in Ox \Rightarrow
M(m;0;0)

    Theo bài ra ta có:

    MA = MB \Leftrightarrow MA^{2} =
MB^{2}

    \Leftrightarrow (m - 1)^{2} + 2^{2} +
1^{2} = (m - 2)^{2} + 1^{2} + 2^{2}

    \Leftrightarrow (m - 1)^{2} = (m -
2)^{2} \Leftrightarrow \left\lbrack \begin{matrix}
m - 1 = m - 2 \\
m - 1 = 2 - m \\
\end{matrix} ight.

    \Leftrightarrow m = \frac{3}{2}
\Rightarrow M\left( \frac{3}{2};0;0 ight).

  • Câu 6: Vận dụng
    Định tọa độ điểm M

    Trong không gian Oxyzcho A(4; - 2;6), B(2;4;2),M
\in (\alpha)\ :\ x + 2y - 3z - 7 = 0 sao cho\overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất. Tọa độ của M bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm AB \Rightarrow I(3;1;4).

    Gọi H là hình chiếu của I xuống mặt phẳng (\alpha).

    Ta có \overrightarrow{MA}.\overrightarrow{MB} = \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)

    = MI^{2} + \overrightarrow{MI}.\left(
\overrightarrow{IA} + \overrightarrow{IB} ight) - IA^{2} = MI^{2} -
IA^{2}.

    Do IA không đổi nên \overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất khi MI nhỏ nhất \Leftrightarrow MI = IH \Leftrightarrow M \equiv
H.

    Gọi \Delta là đường thẳng đi qua I và vuông góc với mặt phẳng (\alpha).

    Khi đó \Delta nhận \overrightarrow{n_{(\alpha)}} = (1;2; -
3)làm vectơ chỉ phương.

    Do đó \Delta có phương trình \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 2t \\
z = 4 - 3t \\
\end{matrix} ight..

    H \in \Delta \Leftrightarrow H(3 + t;1 +
2t;4 - 3t).

    H \in (\alpha) \Leftrightarrow (3 + t) +
2(1 + 2t) - 3(4 - 3t) - 7 = 0

    \Leftrightarrow t = 1 \Leftrightarrow
H(4;3;1).

    Vậy M(4;3;1).

  • Câu 7: Vận dụng cao
    Tìm tọa độ tâm đường tròn nội tiếp tam giác

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Hướng dẫn:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 9: Vận dụng
    Tìm tọa độ chân đường phân giác

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 10: Thông hiểu
    Tìm tọa độ trọng tâm của tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'A(0;0;0),B(3;0;0),C(0;3;0),D'(0;3; -3). Tọa độ trọng tâm tam giác A'B'C

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm của đoạn BD’ suy ra I\left( \frac{3}{2};\frac{3}{2}; - \frac{3}{2}ight)

    Gọi G(a;b;c) là trọng tâm tam giác A'B'C

    Ta có: \overrightarrow{DI} =3\overrightarrow{IG} với \left\{\begin{matrix}\overrightarrow{DI} = \left( \frac{3}{2}; - \frac{3}{2}; - \frac{3}{2}ight) \\\overrightarrow{IG} = \left( a - \frac{3}{2};b - \frac{3}{2};c +\frac{3}{2} ight) \\\end{matrix} ight.

    Do đó:

    \left\{ \begin{matrix}\frac{3}{2} = 3\left( a - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( b - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( c + \frac{3}{2} ight) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 1 \\c = - 2 \\\end{matrix} ight.\  \Rightarrow G(2;1; - 2)

    Vậy tọa độ trọng tâm tam giác cần tìm là (2;1; - 2)

  • Câu 11: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A'B'C'A'\left( \sqrt{3}\ ;\  - 1\ ;\ 1
\right), hai đỉnh B\ ,\ C thuộc trục OzAA' = 1 (C không trùng với O). Biết véctơ \overrightarrow{u} = (a\ ;\ b\ ;\ 2) với a\ ,\ b\mathbb{\in R} là một véctơ chỉ phương của đường thẳng A'C. Tính T = a^{2} + b^{2}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm BC.

    Khi đó có \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot A'M tại M \Rightarrow M là hình chiếu của A' trên trục Oz

    A'\left( \sqrt{3}\ ;\  - 1\ ;\ 1
ight) \Rightarrow M(0\ ;\ 0\ ;\ 1)A'M = 2.

    Ta có: AM = \sqrt{A'M^{2} -
A{A'}^{2}} = \sqrt{3}.

    Mà tam giác ABC đều nên AM = \frac{\sqrt{3}}{2}BC = \sqrt{3} \Rightarrow
BC = 2 \Rightarrow MC = 1.

    C thuộc trục OzC không trùng với O nên gọi C(0\ ;\ 0\ ;\ c), c eq 0.

    \overrightarrow{MC} = (0\ ;\ 0\ ;\ c -
1) \Rightarrow MC = |c -
1|; MC = 1 \Leftrightarrow |c - 1| = 1 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0\ (L) \\
c = 2 \\
\end{matrix} ight. \Rightarrow
C(0\ ;\ 0\ ;\ 2).

    \overrightarrow{A'C} = \left( -\sqrt{3} ; 1 ;1 ight) là một véctơ chỉ phương của đường thẳng A'C

    \Rightarrow \overrightarrow{u} = \left( - 2\sqrt{3}\ ;\ 2\ ;\
2 ight)cũng là một véctơ chỉ phương của đường thẳng A'C.

    Vậy a = - 2\sqrt{3};\ \ b = 2 \Rightarrow
T = a^{2} + b^{2} = 16.

  • Câu 13: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Đáp án là:

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Hình vẽ minh họa

    Ta có: A(0;\ 0;\ 0), B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) nên \overrightarrow{AB} = (m;0;0)

    AB = m (do m;n > 0); AD = m; AA' = n.

    V_{ACB'D'} =\frac{1}{3}V_{ABCD.A'B'C'D'} =\frac{1}{3}.m.m.n

    V_{ACB'D'} = \frac{1}{3}.m.m.n =\frac{1}{3}m^{2}(4 - m).

    Xét hàm số f(m) = \frac{1}{3}m^{2}(4 - m)= - \frac{1}{3}m^{3} + \frac{4}{3}m^{2} trên (0;4)

    f'(m) = - m^{2} + \frac{8}{3}m =0\left\lbrack \begin{matrix}m = 0 \\m = \frac{8}{3} \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy MaxV_{ACB'D'} =\frac{256}{81} \simeq 3,16.

  • Câu 14: Thông hiểu
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

  • Câu 15: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 16: Vận dụng
    Xác định mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho hình thang ABCD có hai đáy AB,\ CD; có tọa độ ba đỉnh A(1;2;1),\ B(2;0; - 1),\ C(6;1;0). Biết hình thang có diện tích bằng 6\sqrt{2}. Giả sử đỉnh D(a;b;c), tìm mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} = (1; - 2; -
2);\overrightarrow{AC} = (5; - 1; - 1);\overrightarrow{DC} = (6 - a;1 -
b; - c).

    Ta có S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{9\sqrt{2}}{2}

    \Rightarrow S_{ACD} = 6\sqrt{2} -
\frac{9\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}.

    AB//CD nên \overrightarrow{AB}\overrightarrow{DC} cùng phương, cùng chiều \Leftrightarrow \frac{6 - a}{1} =
\frac{1 - b}{- 2} = \frac{c}{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
c = 12 - 2a \\
b = 13 - 2a \\
a < 6 \\
b > 1 \\
c > 0 \\
\end{matrix} ight.

    \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack = (0;9a - 54;54 -
9a).

    S_{\Delta ACD} = \frac{3\sqrt{2}}{2}
\Leftrightarrow \frac{1}{2}\left| \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack ight| =
\frac{3\sqrt{2}}{2}

    \Leftrightarrow |54 - 9a| = 3
\Leftrightarrow \left\lbrack \begin{matrix}
a = \frac{19}{3} \\
a = \frac{17}{3} \\
\end{matrix} ight.\ .

    So với điều kiện suy ra: a = \frac{17}{3}
\Rightarrow a + b + c = 8.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 18: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Hướng dẫn:

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 19: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết x_{B} > x_{A}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)\Rightarrow \overrightarrow{AH} = (3 + 2t;2t;3 + t) .

    Đường thẳng CD có vtcp là: \overrightarrow{u}(2;2;1).

    Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Rightarrow 2(3 + 2t) + 2.2t + 3 + t = 0

    \Leftrightarrow t = - 1 \Rightarrow H(0; -
3;2) \Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a|
\Rightarrow CD = 6|a|

    Theo bài ra ta có:

    S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 =
27 \Leftrightarrow |a| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) .

    Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
\frac{1}{2}\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 20: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong một căn phòng dạng hình hộp chữ nhật với chiều dài 10 m có 1 cây quạt hộp Q đặt ở sàn nhà và 3 ổ cắm điện A,B,C trên tường. Chọn hệ trục tọa độ như hình vẽ sau (đơn vị: mét). Biết cây quạt cách tường (Oxz) 3 m và cách tường (Oyz) 6 m; các ổ cắm điện cách mặt sàn 40 cm, ổ cắm A và B cách bức tường chứa ổ cắm C lần lượt 7 m và 1 m, ổ cắm C cách bức tường chứa 2 ổ cắm còn lại 1,5 m.

    Dây điện của quạt hộp Q cần dài tối thiểu bao nhiêu để có thể cắm tới cả 3 ổ A,\ B,\ C (Đáp án làm tròn đến hàng phần trăm)

    Đáp án: 6,20||6,2

    Đáp án là:

    Trong một căn phòng dạng hình hộp chữ nhật với chiều dài 10 m có 1 cây quạt hộp Q đặt ở sàn nhà và 3 ổ cắm điện A,B,C trên tường. Chọn hệ trục tọa độ như hình vẽ sau (đơn vị: mét). Biết cây quạt cách tường (Oxz) 3 m và cách tường (Oyz) 6 m; các ổ cắm điện cách mặt sàn 40 cm, ổ cắm A và B cách bức tường chứa ổ cắm C lần lượt 7 m và 1 m, ổ cắm C cách bức tường chứa 2 ổ cắm còn lại 1,5 m.

    Dây điện của quạt hộp Q cần dài tối thiểu bao nhiêu để có thể cắm tới cả 3 ổ A,\ B,\ C (Đáp án làm tròn đến hàng phần trăm)

    Đáp án: 6,20||6,2

    Tọa độ cây quạt Q là Q(6;3;0)

    Tọa độ các ổ cắm điện A, B, C lần lượt là: A\left( 7;0;\frac{2}{5} ight),\ \ B\left(
1;0;\frac{2}{5} ight),\ \ C\left( 0;\frac{3}{2};\frac{2}{5}
ight)

    AQ = 3,19,\ BQ \approx 5,84,\ CQ \approx
6,20.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo