Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Biểu thức tọa độ của các phép toán vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án đúng vào ô trống

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Đáp án là:

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Để độ dài cây cầu MN ngắn nhất thì MN là đoạn vuông góc chung của hai đường thẳng A^{'}CBC^{'}.

    Đặt hệ trục Oxyz như hình vẽ:

    Khi đó C( - 15;0;0),B(15;0;0),\ C'( - 15;0;0),\
A'(0;15\sqrt{3};30)

    Do đó MN = d(A'C;BC') =
\frac{30\sqrt{39}}{13}

    Số tiền cần làm cây cầu ngắn nhất là 5.\frac{30\sqrt{39}}{13} \approx 72(tỷ đồng)

  • Câu 2: Vận dụng
    Định tọa độ điểm M

    Trong không gian Oxyzcho A(4; - 2;6), B(2;4;2),M
\in (\alpha)\ :\ x + 2y - 3z - 7 = 0 sao cho\overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất. Tọa độ của M bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm AB \Rightarrow I(3;1;4).

    Gọi H là hình chiếu của I xuống mặt phẳng (\alpha).

    Ta có \overrightarrow{MA}.\overrightarrow{MB} = \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)

    = MI^{2} + \overrightarrow{MI}.\left(
\overrightarrow{IA} + \overrightarrow{IB} ight) - IA^{2} = MI^{2} -
IA^{2}.

    Do IA không đổi nên \overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất khi MI nhỏ nhất \Leftrightarrow MI = IH \Leftrightarrow M \equiv
H.

    Gọi \Delta là đường thẳng đi qua I và vuông góc với mặt phẳng (\alpha).

    Khi đó \Delta nhận \overrightarrow{n_{(\alpha)}} = (1;2; -
3)làm vectơ chỉ phương.

    Do đó \Delta có phương trình \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 2t \\
z = 4 - 3t \\
\end{matrix} ight..

    H \in \Delta \Leftrightarrow H(3 + t;1 +
2t;4 - 3t).

    H \in (\alpha) \Leftrightarrow (3 + t) +
2(1 + 2t) - 3(4 - 3t) - 7 = 0

    \Leftrightarrow t = 1 \Leftrightarrow
H(4;3;1).

    Vậy M(4;3;1).

  • Câu 3: Vận dụng
    Tìm tọa độ chân đường phân giác

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm M trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ Oxyz, có bốn vệ tinh lần lượt đặt tại các điểm A(3;1;0),B(3;6;6), C(4;6;2),D(6;2;14); vị trí M(a;b;c) thỏa mãn MA = 3,MB = 6,MC = 5,MD = 13. Khoảng cách từ điểm M đến điểm O bằng bao nhiêu?

    Đáp án: 3

    Đáp án là:

    Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm M trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ Oxyz, có bốn vệ tinh lần lượt đặt tại các điểm A(3;1;0),B(3;6;6), C(4;6;2),D(6;2;14); vị trí M(a;b;c) thỏa mãn MA = 3,MB = 6,MC = 5,MD = 13. Khoảng cách từ điểm M đến điểm O bằng bao nhiêu?

    Đáp án: 3

    Ta có, vị trí M(a;b;c) thỏa mãn \left\{ \begin{matrix}
MA = 3 \\
MB = 6 \\
MC = 5 \\
MD = 13 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} - 6a - 2b = - 1 \\
a^{2} + b^{2} + c^{2} - 6a - 12b - 12c = - 45 \\
a^{2} + b^{2} + c^{2} - 8a - 12b - 4c = - 31 \\
a^{2} + b^{2} + c^{2} - 12a - 4b - 28c = - 67 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 10b - 12c = - 44 \\
- 2a - 10b - 4c = - 30 \\
- 6a - 2b - 28c = - 66 \\
\end{matrix} ight.

    Vậy OM = 3

  • Câu 5: Thông hiểu
    Tìm tất cả các giá trị m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho các vectơ \overrightarrow{u} =2\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}\overrightarrow{v} = (m;2;m + 1) (với m là tham số thực). Có bao nhiêu giá trị của m để \left| \overrightarrow{u} ight| = \left|\overrightarrow{v} ight|?

    Hướng dẫn:

    Ta có: \overrightarrow{u} = (2; -2;1)

    Khi đó \left\{ \begin{matrix}\left| \overrightarrow{u} ight| = \sqrt{2^{2} + ( - 2)^{2} + 1^{2}} =3 \\\left| \overrightarrow{v} ight| = \sqrt{m^{2} + 2^{2} + (m + 1)^{2}} =\sqrt{2m^{2} + 2m + 5} \\\end{matrix} ight.

    Do đó \left| \overrightarrow{u} ight| =\left| \overrightarrow{v} ight| \Leftrightarrow 9 = 2m^{2} + 2m +5

    \Leftrightarrow m^{2} + m - 2 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu bài toán.

  • Câu 6: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết x_{B} > x_{A}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)\Rightarrow \overrightarrow{AH} = (3 + 2t;2t;3 + t) .

    Đường thẳng CD có vtcp là: \overrightarrow{u}(2;2;1).

    Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Rightarrow 2(3 + 2t) + 2.2t + 3 + t = 0

    \Leftrightarrow t = - 1 \Rightarrow H(0; -
3;2) \Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a|
\Rightarrow CD = 6|a|

    Theo bài ra ta có:

    S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 =
27 \Leftrightarrow |a| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) .

    Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
\frac{1}{2}\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng cao
    Tìm số phần tử của tập hợp các điểm M

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;6;0)M là điểm thay đổi trên mặt cầu (S):x^{2} + y^{2} + z^{2} = 1. Tập hợp các điểm M trên mặt cầu (S) thỏa mãn 3MA^{2} + MB^{2} = 48 có bao nhiêu phần tử?

    Hướng dẫn:

    Mặt cầu (S):x^{2} + y^{2} + z^{2} =
1 có tâm O(0;0;0), bán kính R = 1.

    Ta tìm điểm I(x;y;z) thỏa mãn 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

    \overrightarrow{IA} = (1 - x\ ;\  - y\
;\  - z), \overrightarrow{IB} = (5
- x\ ;\ 6 - y\ ;\  - z); 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
3(1 - x) + 5 - x = 0 \\
3( - y) + 6 - y = 0 \\
3( - z) - z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4x + 8 = 0 \\
- 4y + 6 = 0 \\
- 4z = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight.\  \Leftrightarrow I\left( 2;\frac{3}{2};0
ight).

    Suy ra IA = \frac{\sqrt{13}}{2}, IB = \frac{3\sqrt{13}}{2}.

    Do đó 3MA^{2} + MB^{2} = 48
\Leftrightarrow 3{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2} =
48

    \Leftrightarrow 3\left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} + \left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2} = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} + 2\overrightarrow{MI}\left( 3\overrightarrow{IA} +
\overrightarrow{IB} ight) = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} = 48 \Leftrightarrow MI = \frac{3}{2}.

    Ta thấy OI = \frac{5}{2} nên điểm I nằm ngoài mặt cầu (S). Ta có OI
= R + MI = OM + MI, suy ra có một điểm M thuộc đoạn OI thỏa mãn đề bài.

  • Câu 9: Vận dụng
    Tính tổng a và b

    Trong không gian Oxyz, cho mặt phẳng (P): x - y + 2 = 0 và hai điểm A(1;\ 2;\ 3), B(1;0;1). Điểm C(a;\ b;\  - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b

    Hướng dẫn:

    C(a;\ b;\  - 2) \in (P) \Rightarrow a - b
+ 2 = 0 \Rightarrow b = a + 2 \Rightarrow C(a;\ a + 2;\  -
2).

    \overrightarrow{AB} = (0;\  - 2;\  -
2), \overrightarrow{AC} = (a - 1\
;\ a\ ;\  - 5) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (10 + 2a\ ;\  -
2a + 2\ ;\ 2a - 2).

    S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{\sqrt{(2a + 10)^{2} + 2(2a - 2)^{2}}}{2}

    = \frac{\sqrt{12a^{2} + 24a + 108}}{2} =
\sqrt{3\left( a^{2} + 2a + 9 ight)}

    = \sqrt{3(a + 1)^{2} + 24} \geq
2\sqrt{6} với \forall
a.

    Do đó \min S_{\Delta ABC} =
2\sqrt{6} khi a = - 1.

    Khi đó ta có C( - 1;\ 1; - 2) \Rightarrow
a + b = 0.

  • Câu 10: Thông hiểu
    Tìm số khẳng định đúng

    Trong không gian Oxyz, cho tọa độ các điểm A(1;2;0),B(2;1;1),C(0;3; -
1). Cho các khẳng định sau:

    (I) BC = 2AB.

    (II) B \in AC.

    (III) Ba điểm A;B;C tạo thành một tam giác.

    (IV) Ba điểm A;B;C thẳng hàng.

    Trong các khẳng định trên, có bao nhiêu khẳng định đúng.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;1) \\
\overrightarrow{AC} = ( - 1;1; - 1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AB} nên A là trung điểm của BC và ba điểm A;B;C thẳng hàng.

    Vậy có 2 khẳng định sai và 2 khẳng định đúng.

  • Câu 11: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 12: Thông hiểu
    Tính độ dài đoạn thẳng

    Trong không gian Oxyz, cho tam giác ABC với A(1\ ;2\ ;5), B(3\ ;4\ ;1), C(2\ ;3\ ; - 3). Gọi G là trọng tâm tam giác ABC và M là điểm thay đổi trên mp(Oxz). Độ dài GM ngắn nhất bằng

    Hướng dẫn:

    Do G là trọng tâm tam giác ABC \Rightarrow G(2\ ;3\ ;1).

    Gọi H là hình chiếu vuông góc của G trên mặt phẳng (Oxz), khi đó GH là khoảng cách từ G đến mặt phẳng (Oxz), ta có: GH = d\left( G,(Oxz) ight) = 3

    Với M là điểm thay đổi trên mặt phẳng (Oxz), ta có GM \geq GH = 3, do đó GM ngắn nhất \Leftrightarrow M \equiv H. Vậy độ dài GM ngắn nhất bằng 3.

  • Câu 13: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho M(2;1;4)M'(a;b;c) là điểm đối xứng cới điểm M qua Oy. Khi đó a
+ b + c bằng:

    Hướng dẫn:

    Gọi H là hình chiếu của M trên Oy ta có H(0;1;0). Do M' đối xứng với M qua Oy, khi đó H là trung điểm của M'M

    Suy ra M'( - 2;1; - 4) từ đó a + b + c = - 5.

  • Câu 14: Thông hiểu
    Chọn khẳng định đúng

    Cho lăng trụ đứng ABC.A'B'C', điểm M trên CC' sao cho \overrightarrow{MC} = -
\frac{1}{3}\overrightarrow{MC'}. Đặt \overrightarrow{AB} = \overrightarrow{a},\ \
\overrightarrow{AC} = \overrightarrow{b},\ \ \overrightarrow{AA'} =
\overrightarrow{c}. Khẳng định nào dưới đây là đúng ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{A'M} =
\overrightarrow{A'C} + \overrightarrow{CM}

    = \overrightarrow{A'A} +
\overrightarrow{A'C'} +
\frac{1}{4}\overrightarrow{AA'}

    = - \overrightarrow{AA'} +\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AA'}

    = \overrightarrow{AC} -
\frac{3}{4}\overrightarrow{AA'} = \overrightarrow{b} -
\frac{3}{4}\overrightarrow{c}

  • Câu 15: Vận dụng
    Ghi đáp án đúng vào ô trống

    Ở một sân bay, vị trí của máy bay được xác định bởi điểm M trong không gian Oxyznhư hình vẽ. Gọi H là hình chiếu vuông góc của Mxuống mặt phẳng Oxy. Cho biết OM = 40, \left( \overrightarrow{i},\overrightarrow{OH}
\right) = 60{^\circ}, \left(
\overrightarrow{OH},\overrightarrow{OM} \right) = 60{^\circ} . Điểm M có toạ độ (a;b;c). Tính giá trị P = abc. (Làm tròn kết quả đến chữ số hàng đơn vị).

    Đáp án: 6825

    Đáp án là:

    Ở một sân bay, vị trí của máy bay được xác định bởi điểm M trong không gian Oxyznhư hình vẽ. Gọi H là hình chiếu vuông góc của Mxuống mặt phẳng Oxy. Cho biết OM = 40, \left( \overrightarrow{i},\overrightarrow{OH}
\right) = 60{^\circ}, \left(
\overrightarrow{OH},\overrightarrow{OM} \right) = 60{^\circ} . Điểm M có toạ độ (a;b;c). Tính giá trị P = abc. (Làm tròn kết quả đến chữ số hàng đơn vị).

    Đáp án: 6825

    Xét \Delta MHO vuông tại H, ta có

    OH = OM.cos60{^\circ} = 40.cos60{^\circ}
= 20

    OC = MH = OM.sin60{^\circ} =
40.sin60{^\circ} = 20\sqrt{3}

    Xét \Delta OAH vuông tại A , ta có OA =
OH.cos50{^\circ} = 20.cos50{^\circ} \approx 12,86

    Xét \Delta OBH vuông tại B , ta có OB =
OH.cos40{^\circ} = 20.cos40{^\circ} \approx 15,32

    \overrightarrow{OM} = \overrightarrow{OA}
+ \overrightarrow{OB} + \overrightarrow{OC} = 12,86\overrightarrow{i} +
15,32\overrightarrow{j} + 20\sqrt{3}\overrightarrow{k} .

    Suy ra M\left( 12,86\ ;\ \ 15,32\ ;\ \
20\sqrt{3} ight) .

    P = 12,86.15,32.20\sqrt{3} \approx
6825 .

  • Câu 16: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho A(0;\  - 1;\ 1), B( - 2;\ 1;\  - 1), C( - 1;\ 3;\ 2). Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D

    Hướng dẫn:

    Gọi D(x;\ y;\ z), ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
\begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
\end{matrix} \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight..

    Vậy D(1;\ 1;\ 4).

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 18: Vận dụng cao
    Ghi đáp án vào ô trống

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Đáp án là:

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Ta có: \left\{ \begin{matrix}\overrightarrow{EA_{1}} = (0;1; - 6) \\\overrightarrow{EA_{2}} = \left( \frac{\sqrt{3}}{2}; - \frac{1}{2}; - 6ight) \\\overrightarrow{EA_{3}} = \left( - \frac{\sqrt{3}}{2}; - \frac{1}{2}; -6 ight) \\\end{matrix} ight.

    \Rightarrow EA_{1} = EA_{2} = EA_{3} =\sqrt{37}.

    Suy ra, \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{2}} ight| = \left|\overrightarrow{F_{3}} ight| (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).

    Do đó: \left\{ \begin{matrix}\overrightarrow{F_{1}} = k\overrightarrow{EA_{1}} = (0;k; - 6k) \\\overrightarrow{F_{2}} = k\overrightarrow{EA_{2}} = \left(\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\overrightarrow{F_{3}} = k\overrightarrow{EA_{3}} = \left( -\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\end{matrix} ight.

    \Rightarrow \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = (0;0; -18k).

    \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = \overrightarrow{P} =(0;0; - 240).

    Suy ra - 18k = - 240 \Leftrightarrow k =\frac{40}{3}.

    Từ đó \left\{ \begin{matrix}\overrightarrow{F_{1}} = \left( 0;\frac{40}{3}; - 80 ight) \\\overrightarrow{F_{2}} = \left( \frac{20\sqrt{3}}{3}; - \frac{20}{3}; -80 ight) \\\overrightarrow{F_{3}} = \left( - \frac{20\sqrt{3}}{3}; - \frac{20}{3};- 80 ight) \\\end{matrix} ight..

    Vậy \overrightarrow{F_{1}}.\overrightarrow{F_{3}} =0.\left( \frac{- 20\sqrt{3}}{3} ight) + \frac{40}{3}\left( -\frac{20}{3} ight) + ( - 80).( - 80) \approx 6311.

  • Câu 19: Vận dụng cao
    Tìm tọa độ tâm đường tròn nội tiếp tam giác

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Hướng dẫn:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Hướng dẫn:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo