Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án thích hợp

    Đợt xuất khẩu gạo của tính B kéo dài trong 20 ngày. Người ta nhận thấy có lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^{3} - 24t^{2} + 144t +
2500. Hỏi trong mấy ngày đó, ngày thứ mấy có số lượng xuất khẩu gạo cao nhất?

    Gợi ý:

    Khảo sát hàm số, tìm giá trị lớn nhất của S(t).

    Từ đó kết luận ngày xuất khẩu gạo cao nhất.

    Hướng dẫn:

    Xét hàm số S(t) = t^{3} - 24t^{2} + 144t
+ 2500 với 1 \leq t \leq
20.

    Ta có: S^{'}(t) = 3t^{2} - 48t +
144

    S^{'}(t) = 0 \Rightarrow 3t^{2} -
48t + 144 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 4 \in \lbrack 1;20brack \\
t = 12 \in \lbrack 1;20brack \\
\end{matrix} ight.

    Lại có: S(1) = 2621;S(4) = 2756;S(12) =
2500;S(20) = 3780.

    Do đó: \max_{\lbrack 1;20brack}S(t) =
S(20) = 3780.

    Vậy ngày thứ 20 là ngày có số lượng gạo xuất khẩu cao nhất.

  • Câu 2: Vận dụng
    Tìm giá trị lớn nhất nhỏ nhất của hàm số 

    Tìm giá trị lớn nhất của hàm số f\left( x ight) = \frac{{2{x^2} + 7x + 23}}{{{x^2} + 2x + 10}}

    Hướng dẫn:

    Dễ thấy nên hàm số xác định trên toàn trục số.

    Gọi m là một giá trị tùy ý của hàm số, khi đó phương trình

    \begin{matrix}  \dfrac{{2{x^2} + 7x + 23}}{{{x^2} + 2x + 10}} = m \hfill \\   \Leftrightarrow 2{x^2} + 7x + 23 = m\left( {{x^2} + 2x + 10} ight) \hfill \\   \Leftrightarrow \left( {m - 2} ight){x^2} + \left( {2m - 7} ight)x + 10m - 23 = 0 \hfill \\ \end{matrix}

    Ta xét hai trường hợp sau:

    TH1: Nếu  m = 2 phương trình trở thành

    - 3x - 3 = 0 \Leftrightarrow x =  - 1

    Vậy phương trình có nghiệm khi m = 2

    TH2: Nếu m e 2 khi đó phương trình bậc 2 có nghiệm khi và chỉ khi:

    \begin{matrix}  \Delta  = {\left( {2m - 7} ight)^2} - 4\left( {m - 2} ight)\left( {10m - 23} ight) \geqslant 0 \hfill \\   \Leftrightarrow  - 36m + 144m - 135 \geqslant 0 \hfill \\   \Rightarrow \dfrac{3}{2} \leqslant m \leqslant \dfrac{5}{2} e 2 \hfill \\   \Rightarrow \max f\left( x ight) = \dfrac{5}{2},\min f\left( x ight) = \dfrac{3}{2} \hfill \\ \end{matrix}

     

  • Câu 3: Thông hiểu
    Tính giá trị biểu thức 3M + m

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 4: Thông hiểu
    Định giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất M của hàm số f(x) = \sqrt{x - 2} + \sqrt{4 -
x}.

    Hướng dẫn:

    TXĐ: D = \lbrack 2;4brack.

    Đạo hàm f(x) = \frac{1}{2\sqrt{x - 2}} -
\frac{1}{2\sqrt{4 - x}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 3 \in \lbrack 2;4brack

    Ta có \left\{ \begin{matrix}
f(2) = \sqrt{2} \\
f(3) = 2 \\
f(4) = \sqrt{2} \\
\end{matrix} ight.\  ightarrow M = 2.

  • Câu 5: Nhận biết
    Xác định GTLN của hàm số y = f(x)

    Tìm giá trị lớn nhất của hàm số y = 3\sin x - 4{\sin ^3}x trên khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) bằng:

    Hướng dẫn:

    Đặt \sin x = t \Rightarrow t \in \left( { - 1;1} ight)

    Khi đó:

    \begin{matrix}  f'\left( t ight) =  - 12{t^2} + 3 \hfill \\  f'\left( t ight) = 0 \Leftrightarrow t =  \pm \dfrac{1}{2} \hfill \\ \end{matrix}

    So sánh f\left( {\frac{1}{2}} ight)f\left( { - \frac{1}{2}} ight) ta thấy GTLN là f\left( {\frac{1}{2}} ight) = 1

  • Câu 6: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{4} - 2x^{2} + 5 trên đoạn \lbrack - 2;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 4x^3 -4x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 2;2brack \\
x = 1 \in \lbrack - 2;2brack \\
x = - 1 \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = f(2) = 13 \\
f( - 1) = f(1) = 4 \\
f(0) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;2brack}f(x) =
13

  • Câu 7: Thông hiểu
    Tính giá trị của biểu thức

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x}{2} - \sqrt{x + 2} trên đoạn \lbrack - 1;34brack lần lượt là Mm. Tính giá trị của biểu thức A = M + 3m?

    Hướng dẫn:

    Ta có: y' = \frac{1}{2} -
\frac{1}{2\sqrt{x + 2}} = \frac{\sqrt{x + 2} - 1}{2\sqrt{x +
2}}

    y' = 0 \Leftrightarrow \sqrt{x + 2}
= 1 \Leftrightarrow x = - 1

    \left\{ \begin{matrix}f( - 1) = - \dfrac{3}{2} \\f(34) = 11 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}m = - \dfrac{3}{2} \\M = 11 \\\end{matrix} ight.\  \Rightarrow A = \frac{13}{2}

  • Câu 8: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Biết giá trị lớn nhất của hàm số y = -
2x^{3} + 3x^{2} + m trên đoạn \lbrack 0;2brack bằng 5. Tìm giá trị của tham số m?

    Hướng dẫn:

    Ta có: y' = - 6x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta có:

    \max_{\lbrack 0;2brack}f(x) = 5
\Leftrightarrow f(1) = 5 \Leftrightarrow m + 1 = 5 \Leftrightarrow m =
4

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= x^{3} - 3x^{2} + (4 - m)x đồng biến trên khoảng (2; + \infty) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + 4 -
m

    Hàm số đồng biến trên khoảng (2; +
\infty) \Leftrightarrow y' \geq 0;\forall x \in (2; +
\infty)

    \Leftrightarrow m \leq 3x^{2} - 6x +
4;\forall x \in (2; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
4 trên khoảng (2; +
\infty).

    Ta có: g'(x) = 6x - 6;g'(x) = 0
\Leftrightarrow x = 1

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có: m \leq
g(x);;\forall x \in (2; + \infty) \Leftrightarrow m \leq 4

    Vậy m \leq 4 thỏa mãn yêu cầu bài toán.

  • Câu 10: Thông hiểu
    Định tập giá trị T của hàm số

    Tìm tập giá trị T của hàm số f(x) = x^{2} + \frac{2}{x} với x \in \lbrack 3;5brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 2x - \frac{2}{x^{2}}= \frac{2\left( x^3 - 1 ight)}{x^{2}} > 0,\ \forall x \in(3;5)

    Suy ra hàm số đồng biến trên [3;5] nên \left\{
\begin{matrix}
\min_{\lbrack 3;5brack}f(x) = f(3) = \frac{29}{3} \\
\max_{\lbrack 3;5brack}f(x) = f(5) = \frac{127}{5} \\
\end{matrix} ight.

    Vậy tập giá trị của hàm số là đoạn \left\lbrack \frac{29}{3};\ \frac{127}{5}
ightbrack.

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Xét hàm số y = f(x) với x \in \lbrack - 1;5brack có bảng biến thiên như sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    “Hàm số đã cho không tồn taị GTLN trên đoạn \lbrack - 1;5brack “ Đúng. Vì \lim_{x ightarrow 5^{-}}y = + \infty nên hàm số không có GTLN trên đoạn \lbrack -
1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1x = 2 trên đoạn \lbrack - 1;5brack”. Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1 và đạt GTLN tại x = 5 trên đoạn \lbrack - 1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x =
2 trên đoạn \lbrack -
1;5brack\lim_{x ightarrow
5^{+}}y = + \infty.

    “Hàm số đã cho đạt GTNN tại x =
0 trên đoạn \lbrack -
1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

  • Câu 12: Thông hiểu
    Tính giá trị biểu thức

    Tập giá trị của hàm số f(x) = x +
\frac{9}{x} với x \in \lbrack
2;4brack là đoạn \lbrack
a;bbrack. Tính P = b -
a.

    Hướng dẫn:

    Ta có: f'(x) = 1 - \frac{9}{x^{2}} =
\frac{x^{2} - 9}{x^{2}}

    ightarrow f'(x) = 0

    \Leftrightarrow x^{2} - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \in \lbrack 2;4brack \\
x = - 3 otin \lbrack 2;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(2) = \frac{13}{2} \\
f(3) = 6 \\
f(4) = \frac{25}{4} \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack 2;4brack}f(x) = 6;\max_{\lbrack 2;4brack}f(x) =
\frac{13}{2}

    \Rightarrow \lbrack a;bbrack =
\left\lbrack 6;\frac{13}{2} ightbrack \Rightarrow P = b - a = \frac{13}{2} - 6 =
\frac{1}{2}

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Một chất điểm chuyển động với vận tốc được cho bởi công thức v(t) = - t^{2} + 4t + 2 với t (giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?

    Hướng dẫn:

    Ta có: v(t) = - t^{2} + 4t + 2 với t > 0.

    v'(t) = - 2t + 4

    v'(t) = 0 \Leftrightarrow - 2t + 4 =
0 \Leftrightarrow t = 2 (thỏa mãn).

    Bảng biến thiên

    Dựa vào bảng biến thiên, tại thời điểm t
= 2 giây thì vận tốc của chất điểm là lớn nhất.

  • Câu 14: Thông hiểu
    Tìm tất cả các giá trị của tham số m

    Cho hàm số f(x) = x^{3} + \left( m^{2} +1 \right)x + m^{2} - 2 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;2\rbrack bằng 7.

    Hướng dẫn:

    Đạo hàmf'(x) = 3x^{2} + m^{2} + 1> 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;2brack

    \Rightarrow \min_{\lbrack 0;2brack}f(x)= f(0) = m^{2} - 2

    Theo bài ra: \min_{\lbrack0;2brack}f(x) = 7 \Leftrightarrow m^{2} - 2 = 7 \Leftrightarrow m =\pm 3.

  • Câu 15: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên nửa khoảng

    Giá trị nhỏ nhất của hàm số f(x) = x +
\frac{1}{x} trên nửa khoảng \lbrack
2; + \infty) là:

    Hướng dẫn:

    Áp dụng bất đẳng thức Cô-si, ta được:

    f(x) = x + \frac{1}{x} = \frac{3x}{4} +
\frac{x}{4} + \frac{1}{x} \geq \frac{3.2}{4} +
2\sqrt{\frac{x}{4}.\frac{1}{x}} = \frac{5}{2}.

    Dấu bằng xảy ra khi x = 2.

  • Câu 16: Thông hiểu
    Tìm m thỏa mãn yêu cầu đề bài

    Gọi m là giá trị nhở nhất của hàm số y = x + \frac{4}{x} trên khoảng (0; + \infty). Tìm m

    Hướng dẫn:

    \begin{matrix}
y' = 1 - \frac{4}{x^{2}} \\
y' = 0 \Leftrightarrow x = \pm 2;\ \ \ \ \ x = 2 \in (0; + \infty).
\\
\\
\end{matrix}

    Bảng biến thiên:

    Suy ra giá trị nhỏ nhất của hàm số bằng y(2) = 4 \Rightarrow m = 4.

  • Câu 17: Thông hiểu
    Tìm GTLN của hàm số lượng giác

    Tìm giá trị lớn nhất M của hàm số f(x) = \frac{\sin x + 1}{sin^{2}x + \sin
x + 1}.

    Hướng dẫn:

    Đặt t = \sin x; ( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = \frac{t + 1}{t^2 + t + 1} trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = \frac{- t^{2} -
2t}{\left( t^{2} + t + 1 ight)^{2}} \Rightarrow g'(t) =
0

    \Leftrightarrow - t^2 - 2t = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \in \lbrack - 1;1brack \\
t = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g(0) = 1 \\
g(1) = \frac{2}{3} \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;1brack}g(t) =
g(0) = 1 \Rightarrow
\max_{x\mathbb{\in R}}f(x) = 1 .

  • Câu 18: Nhận biết
    Tìm GTNN của hàm số trên khoảng

    Cho hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}}. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].

    Gợi ý:

    Học sinh cần nhớ công thức \left( {\frac{u}{v}} ight)' = \frac{{u'v - uv'}}{{{v^2}}}

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}} trên [2; 4] ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \in \left[ {2;4} ight]} \\   {{x^2} - 2x - 3 = 0} \end{array}} ight. \Rightarrow x = 3 \hfill \\ \end{matrix}

    Tính f(2) = 7; f(3) = 6; f(4) = 19/3

    Vậy \mathop {\min }\limits_{\left[ {2;4} ight]} f\left( x ight) = f\left( 3 ight) = 6

  • Câu 19: Thông hiểu
    Tìm các số thực dương của tham số m

    Có bao nhiêu số thực dương m để giá trị lớn nhất của hàm số y = x^{3} - 3x +
1 trên đoạn \lbrack m + 1;m +
2brack bằng 53?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số y = x^{3} - 3x + 1 trên đoạn \lbrack m + 1;m + 2brack bằng 53 thì m + 1
> 1 \Leftrightarrow m > 0.

    Khi đó \max_{\lbrack m + 1;m +
2brack}f(x) = f(m + 2) = (x + 2)^{3} - 3(m + 2) + 1 = 53

    \Leftrightarrow m^{3} + 6m^{2} + 9m - 50
= 0 \Leftrightarrow m = 2

    Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 20: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị nhỏ nhất của hàm số trên đoạn [0;2] là:

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo