Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất M của hàm số f(x) = \sqrt{x - 1} + \sqrt{3 - x} -2\sqrt{- x^2 + 4x - 3}.

    Hướng dẫn:

    TXĐ: D = \lbrack 1;3brack

    Đặt t = \sqrt{x - 1} + \sqrt{3 - x}\ \ \
\left( \sqrt{2} \leq t \leq 2 ight)

    \Rightarrow t^{2} = x - 1 + 3 - x +
2\sqrt{x - 1}\sqrt{3 - x}

    \Rightarrow - 2\sqrt{- x^{2} + 4x - 3} =
2 - t^{2}

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = - t^{2} + t + 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = - t^{2} + t +
2 xác định và liên tục trên \left\lbrack \sqrt{2};2
ightbrack.

    Đạo hàm g'(t) = - 2t + 1 < 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) nghịch biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g\left( \sqrt{2} ight) =
\sqrt{2}\overset{}{ightarrow}\max_{\lbrack 1;3brack}f(x) =
\sqrt{2}.

    Bình luận: Sau khi đọc xong lời giải trên sẽ có nhiều bạn đọc thắc mắc là tại sao biết được t \in \left\lbrack
\sqrt{2};2 ightbrack.

    Từ phép đặt ẩn phụ t = \sqrt{x - 1} +
\sqrt{3 - x} = h(x).

    Đạo hàm h'(x) = \frac{1}{2\sqrt{x -
1}} - \frac{1}{2\sqrt{3 - x}}

    \Rightarrow h'(x) = 0
\Leftrightarrow x = 2 \in \lbrack 1;3brack

    Ta có \left\{ \begin{matrix}
h(1) = \sqrt{2} \\
h(2) = 2 \\
h(3) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\min_{\lbrack 1;3brack}h(x) = \sqrt{2} \\
\max_{\lbrack 1;3brack}h(x) = 2 \\
\end{matrix} ight.

    \Rightarrow \sqrt{2} \leq h(x) \leq 2
\Rightarrow \sqrt{2} \leq t \leq 2

  • Câu 2: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất M của hàm số f(x) = x - \frac{1}{x} trên (0;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 1 + \frac{1}{x^{2}}
> 0,\ \forall x \in (0;3).

    Suy ra hàm số f(x) đồng biến trên (0;3brack nên đạt giá trị lớn nhất tại x = 3\max_{(0;3brack}f(x) = f(3) =
\frac{8}{3}.

  • Câu 3: Thông hiểu
    Chọn đáp án thích hợp

    Độ giảm huyết áp của một bệnh nhân G(x) =
0,025x^{2}(30 - x) trong đó x là số miligam thuộc được tiêm cho bệnh nhân (0 < x < 30). Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:

    Hướng dẫn:

    Ta có: G(x) = 0,025x^{2}(30 - x)
\Rightarrow G'(x) = 1,5x - 0,075x^{2}

    \Rightarrow G'(x) = 0
\Leftrightarrow 1,5x - 0,075x^{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là x = 20(mg).

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Giá trị lớn nhất của hàm số y = x^{3} +
2x^{2} - 7x - 3 trên đoạn \lbrack -
1;2brack bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} + 4x -
7

    y' = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = - \dfrac{7}{3} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}
y(1) = - 7 \\
y(2) = - 1 \\
y( - 1) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}y = y( -
1) = 5

  • Câu 5: Thông hiểu
    Xác định tích các giá trị của m

    Cho hàm số y = \frac{x - m^{2}}{x +
2} với m là tham số. Tích tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack - 1;1brack bằng \frac{1}{4} bằng:

    Hướng dẫn:

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x \in \lbrack - 1;1brack

    \Rightarrow \max_{\lbrack - 1;1brack}y
= y(1) = \frac{1 - m^{2}}{3} = \frac{1}{4} \Leftrightarrow m = \pm
\frac{1}{2}

    Vậy tích tất cả các giá trị của tham số m bằng -
\frac{1}{4}.

  • Câu 6: Thông hiểu
    Tính giá trị biểu thức

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)
= 2x^{3} + 3x^{2} - 1 trên đoạn \left\lbrack - 2; - \frac{1}{2}
\right\rbrack. Tính P = M -
m.

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^{2} +
6x

    \Rightarrow \ f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 otin \left\lbrack - 2; - \frac{1}{2} ightbrack \\
x = - 1 \in \left\lbrack - 2; - \frac{1}{2} ightbrack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = - 5 \\
f( - 1) = 0 \\
f\left( - \frac{1}{2} ight) = - \frac{1}{2} \\
\end{matrix} ight. \Rightarrow
\left\{ \begin{matrix}
m = \min_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = - 5 \\
M = \max_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = 0 \\
\end{matrix} ight.

    \Rightarrow P = M - m = 5

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Tìm giá trị nhỏ nhất của hàm số y = x^{2}
+ \frac{8}{x} trên đoạn \left\lbrack \frac{1}{2};2
ightbrack?

    Hướng dẫn:

    Ta có: y' = 2x - \frac{8}{x^{2}} =
\frac{2x^{3} - 8}{x^{2}}

    \Rightarrow y' = 0 \Leftrightarrow
\frac{2x^{3} - 8}{x^{2}} = 0 \Leftrightarrow x^{3} = 4 \Leftrightarrow x
= \sqrt[3]{4}

    Ta có: \left| \begin{matrix}f\left( \dfrac{1}{2} ight) = \dfrac{65}{4} \\f(2) = 8 \\f\left( \sqrt[3]{4} ight) = 6\sqrt[3]{2} \\\end{matrix} ight.\  \Rightarrow \min_{\left\lbrack\frac{1}{2};\frac{1}{2} ightbrack}y = 6\sqrt[3]{2}.

  • Câu 8: Thông hiểu
    Chọn đáp án đúng:

    Xét hàm số y = f(x) = \frac{x-1}{2x+1} trên đoạn [0;1]. Khẳng định nào sau đây đúng?

  • Câu 9: Thông hiểu
    Tính giá trị biểu thức 3M + m

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 10: Nhận biết
    Chọn giá trị nhỏ nhất của hàm số trên đoạn

    Giá trị nhỏ nhất của hàm số y = x^{3} -
3x + 4 trên đoạn \lbrack
0;2brack là:

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow x = \pm 1

    Lại có: \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = 2 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y =
2

  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Một loại thuốc được dùng cho bệnh nhân và nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = \frac{t}{t^{2} + 1}(mg/L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

    Hướng dẫn:

    Ta có: c'(t) = \frac{- t^{2} +
1}{\left( t^{2} + 1 ight)^{2}};\forall t \in (0; + \infty). Cho c'(t) = 0 \Leftrightarrow \frac{-
t^{2} + 1}{\left( t^{2} + 1 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \\
t = - 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    Vậy sau khi tiêm 1 giờ, nồng độ thuốc trong máu bệnh nhân cao nhất.

  • Câu 12: Thông hiểu
    Định tập giá trị T của hàm số

    Tìm tập giá trị T của hàm số f(x) = x^{2} + \frac{2}{x} với x \in \lbrack 3;5brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 2x - \frac{2}{x^{2}}= \frac{2\left( x^3 - 1 ight)}{x^{2}} > 0,\ \forall x \in(3;5)

    Suy ra hàm số đồng biến trên [3;5] nên \left\{
\begin{matrix}
\min_{\lbrack 3;5brack}f(x) = f(3) = \frac{29}{3} \\
\max_{\lbrack 3;5brack}f(x) = f(5) = \frac{127}{5} \\
\end{matrix} ight.

    Vậy tập giá trị của hàm số là đoạn \left\lbrack \frac{29}{3};\ \frac{127}{5}
ightbrack.

  • Câu 13: Thông hiểu
    Tìm GTLN của hàm số lượng giác

    Tìm giá trị lớn nhất M của hàm số f(x) = \frac{\sin x + 1}{sin^{2}x + \sin
x + 1}.

    Hướng dẫn:

    Đặt t = \sin x; ( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = \frac{t + 1}{t^2 + t + 1} trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = \frac{- t^{2} -
2t}{\left( t^{2} + t + 1 ight)^{2}} \Rightarrow g'(t) =
0

    \Leftrightarrow - t^2 - 2t = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \in \lbrack - 1;1brack \\
t = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g(0) = 1 \\
g(1) = \frac{2}{3} \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;1brack}g(t) =
g(0) = 1 \Rightarrow
\max_{x\mathbb{\in R}}f(x) = 1 .

  • Câu 14: Nhận biết
    Tính giá trị nhỏ nhất của hàm số

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
+ 3x^{2} trên \lbrack - 5; -
1brack?

    Hướng dẫn:

    Ta có: y' = 3x^{2} + 6x

    y' = 0 \Rightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.. Khi đó: y(
- 5) = - 50;y( - 2) = 4;y( - 1) = 2

    Vậy \min_{\lbrack - 5; - 1brack}y = f(
- 5) = - 50.

  • Câu 15: Thông hiểu
    Tìm m thỏa mãn yêu cầu đề bài

    Gọi m là giá trị nhở nhất của hàm số y = x + \frac{4}{x} trên khoảng (0; + \infty). Tìm m

    Hướng dẫn:

    \begin{matrix}
y' = 1 - \frac{4}{x^{2}} \\
y' = 0 \Leftrightarrow x = \pm 2;\ \ \ \ \ x = 2 \in (0; + \infty).
\\
\\
\end{matrix}

    Bảng biến thiên:

    Suy ra giá trị nhỏ nhất của hàm số bằng y(2) = 4 \Rightarrow m = 4.

  • Câu 16: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 17: Thông hiểu
    Xác định min max của hàm số trên đoạn

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, có đồ thị như hình vẽ bên.

    Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f(x) trên đoạn \lbrack - 2;2brack.

    Hướng dẫn:

    Nhận thấy trên đoạn \lbrack -
2;2brack

    Đồ thị hàm số có điểm thấp nhất có tọa độ ( - 2; - 5)(1; - 5)

    \overset{}{ightarrow} Giá trị nhỏ nhất của hàm số này trên đoạn \lbrack -
2;2brack bằng - 5.

    Đồ thị hàm số có điểm cao nhất có tọa độ ( - 1; - 1)(2; - 1)

    \overset{}{ightarrow} Giá trị lớn nhất của hàm số này trên đoạn \lbrack -
2;2brack bằng - 1.

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = 2x^{2} +
\frac{500}{x}. Xét tính đúng sai của các mệnh đề sau

    a) f'(x) = 0 \Leftrightarrow x =
5. Đúng||Sai

    b) \lim_{x \rightarrow + \infty}f(x) =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số trên (0;5) là 150. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (0; +
\infty) là 150. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = 2x^{2} +
\frac{500}{x}. Xét tính đúng sai của các mệnh đề sau

    a) f'(x) = 0 \Leftrightarrow x =
5. Đúng||Sai

    b) \lim_{x \rightarrow + \infty}f(x) =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số trên (0;5) là 150. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (0; +
\infty) là 150. Đúng||Sai

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

    Ta có:

    f'(x) = 4x - \frac{500}{x^{2}} =
\frac{4x^{3} - 500}{x^{2}}

    f'(x) = 0 \Leftrightarrow 4x^{3} -
500 = 0 \Leftrightarrow x = 5.

    Bảng biến thiên.

    .

    Vậy giá trị nhỏ nhất của hàm số trên khoảng (0; + \infty) 150 khi x =
5.

  • Câu 19: Thông hiểu
    Chọn khẳng định đúng

    Xét hàm số y = f(x) với x \in \lbrack - 1;5brack có bảng biến thiên như sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    “Hàm số đã cho không tồn taị GTLN trên đoạn \lbrack - 1;5brack “ Đúng. Vì \lim_{x ightarrow 5^{-}}y = + \infty nên hàm số không có GTLN trên đoạn \lbrack -
1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1x = 2 trên đoạn \lbrack - 1;5brack”. Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1 và đạt GTLN tại x = 5 trên đoạn \lbrack - 1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x =
2 trên đoạn \lbrack -
1;5brack\lim_{x ightarrow
5^{+}}y = + \infty.

    “Hàm số đã cho đạt GTNN tại x =
0 trên đoạn \lbrack -
1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

  • Câu 20: Thông hiểu
    Tìm giá trị lớn nhất của tham số m

    Cho hàm số f(x) = \frac{x - m^{2}}{x +
8} với m là tham số thực. Tìm giá trị lớn nhất của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
0;3brack bằng - 2.

    Hướng dẫn:

    Đạo hàm y' = \frac{8 + m^{2}}{(x +
8)^{2}} > 0,\ \forall x \in \lbrack 0;3brack.

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;3brack

    \Rightarrow \min_{\lbrack
0;3brack}f(x) = f(0) = - \frac{m^{2}}{8}

    Thao bài ra: \min_{\lbrack
0;3brack}f(x) = - 2 \Leftrightarrow - \frac{m^{2}}{8} = - 2
\Leftrightarrow m = \pm 4

    Suy ra giá trị m lớn nhất là m = 4.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo