Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +10
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x)y=f(x) liên tục trên \mathbb{R}R và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 2: Thông hiểu
    Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số

    Cho hàm số y = f(x)y=f(x) xác định và liên tục trên \mathbb{R}R có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất mm và giá trị lớn nhất MM của hàm số y = f(x)y=f(x) trên đoạn \lbrack - 2\ ;\ 2brack[2 ; 2brack.

    Hướng dẫn:

    Nhìn vào đồ thị ta thấy:

    M = \max_{\lbrack - 2\ ;\ 2brack}f(x) =
- 1 khi x = - 1 hoặc x = 2.

    m = \min_{\lbrack - 2\ ;\ 2brack}f(x) =
- 5 khi x = - 2 hoặc x = 1.

  • Câu 3: Thông hiểu
    Tính tổng min max của hàm số trên đoạn cho trước

    Cho hàm số y = f(x)y=f(x) liên tục và có đồ thị trên đoạn \lbrack - 2;\
4brack[2; 4brack như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = f(x)y=f(x) trên đoạn \lbrack - 2;\ 4brack[2; 4brack bằng

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta có

    m = \underset{x \in \lbrack - 2\ ;\
4brack}{Min}f(x) = - 4, M =
\underset{x \in \lbrack - 2\ ;\ 4brack}{Max}f(x) = 7

    Khi đó M + m = 3

  • Câu 4: Thông hiểu
    Định tập giá trị T của hàm số

    Tìm tập giá trị TT của hàm số f(x) = x^{2} + \frac{2}{x}f(x)=x2+2x với x \in \lbrack 3;5brackx[3;5brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 2x - \frac{2}{x^{2}}= \frac{2\left( x^3 - 1 ight)}{x^{2}} > 0,\ \forall x \in(3;5)

    Suy ra hàm số đồng biến trên [3;5] nên \left\{
\begin{matrix}
\min_{\lbrack 3;5brack}f(x) = f(3) = \frac{29}{3} \\
\max_{\lbrack 3;5brack}f(x) = f(5) = \frac{127}{5} \\
\end{matrix} ight.

    Vậy tập giá trị của hàm số là đoạn \left\lbrack \frac{29}{3};\ \frac{127}{5}
ightbrack.

  • Câu 5: Vận dụng
    Định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất MM của hàm số f(x) = \sqrt{x - 1} + \sqrt{3 - x} -2\sqrt{- x^2 + 4x - 3}f(x)=x1+3x2x2+4x3.

    Hướng dẫn:

    TXĐ: D = \lbrack 1;3brack

    Đặt t = \sqrt{x - 1} + \sqrt{3 - x}\ \ \
\left( \sqrt{2} \leq t \leq 2 ight)

    \Rightarrow t^{2} = x - 1 + 3 - x +
2\sqrt{x - 1}\sqrt{3 - x}

    \Rightarrow - 2\sqrt{- x^{2} + 4x - 3} =
2 - t^{2}

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = - t^{2} + t + 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = - t^{2} + t +
2 xác định và liên tục trên \left\lbrack \sqrt{2};2
ightbrack.

    Đạo hàm g'(t) = - 2t + 1 < 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) nghịch biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g\left( \sqrt{2} ight) =
\sqrt{2}\overset{}{ightarrow}\max_{\lbrack 1;3brack}f(x) =
\sqrt{2}.

    Bình luận: Sau khi đọc xong lời giải trên sẽ có nhiều bạn đọc thắc mắc là tại sao biết được t \in \left\lbrack
\sqrt{2};2 ightbrack.

    Từ phép đặt ẩn phụ t = \sqrt{x - 1} +
\sqrt{3 - x} = h(x).

    Đạo hàm h'(x) = \frac{1}{2\sqrt{x -
1}} - \frac{1}{2\sqrt{3 - x}}

    \Rightarrow h'(x) = 0
\Leftrightarrow x = 2 \in \lbrack 1;3brack

    Ta có \left\{ \begin{matrix}
h(1) = \sqrt{2} \\
h(2) = 2 \\
h(3) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\min_{\lbrack 1;3brack}h(x) = \sqrt{2} \\
\max_{\lbrack 1;3brack}h(x) = 2 \\
\end{matrix} ight.

    \Rightarrow \sqrt{2} \leq h(x) \leq 2
\Rightarrow \sqrt{2} \leq t \leq 2

  • Câu 6: Thông hiểu
    Tính giá trị biểu thức

    Gọi M,\ mM, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)
= 2x^{3} + 3x^{2} - 1f(x)=2x3+3x21 trên đoạn \left\lbrack - 2; - \frac{1}{2}
\right\rbrack[2;12]. Tính P = M -
mP=Mm.

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^{2} +
6x

    \Rightarrow \ f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 otin \left\lbrack - 2; - \frac{1}{2} ightbrack \\
x = - 1 \in \left\lbrack - 2; - \frac{1}{2} ightbrack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = - 5 \\
f( - 1) = 0 \\
f\left( - \frac{1}{2} ight) = - \frac{1}{2} \\
\end{matrix} ight. \Rightarrow
\left\{ \begin{matrix}
m = \min_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = - 5 \\
M = \max_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = 0 \\
\end{matrix} ight.

    \Rightarrow P = M - m = 5

  • Câu 7: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y = f(x)y=f(x) liên tục trên đoạn \lbrack - 1;3brack[1;3brack và có đồ thị như hình vẽ bên. Gọi M,mM,mlần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 1;3brack[1;3brack. Giá trị của M + mM+m

    Hướng dẫn:

    Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn \lbrack - 1;3brackM = 2 đạt được tại x = - 1 và GTNN của hàm số số trên đoạn \lbrack - 1;3brackm = - 4 đạt được tại x = 2

    \Rightarrow M + m = 2 + ( - 4) = -
2

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x^{2} -3x+6}{x-1}y=f(x)=x23x+6x1 trên đoạn [2,4]. Khi đó M + m bằng:

  • Câu 9: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Gọi mm là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x}y=x+4x trên khoảng (0; + \infty)(0;+). Tìm mm.

    Hướng dẫn:

    Cách 1:

    Hàm số y = x + \frac{4}{x} liên tục và xác định trên (0; +
\infty).

    Ta có

    y' = 1 - \frac{4}{x^{2}} =
\frac{x^{2} - 4}{x^{2}} \Rightarrow y' = 0\Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \in (0; + \infty) \\
x = - 2 otin (0; + \infty) \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy giá trị nhỏ nhất là m = 4 khi x = 2.

    Cách 2:

    Với x \in (0;\  + \infty) \Rightarrow x;\
\frac{4}{x} > 0.

    Áp dụng bất đẳng thức Cô si ta có: x + \frac{4}{x} \geq 2\sqrt{x.\frac{4}{x}} =
4.

    Dấu bằng xảy ra khi và chỉ khi \left\{
\begin{matrix}
x > 0 \\
x = \dfrac{4}{x} \\
\end{matrix} ight.\  \Leftrightarrow x = 2. Vậy m = 4 khi x =
2.

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) liên tục trên \lbrack - 1;5brack[1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack[1;5brack?

    Hướng dẫn:

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 11: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) = \frac{3x - 1}{x -
3}f(x)=3x1x3. Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số trên đoạn \lbrack 0;2brack.[0;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{- 8}{(x -3)^2}.

    Ta có f'(x) < 0,\forall x \in
(0;2).

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack 0;2brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;2brack}f(x) = f(0) = \frac{1}{3} \\
m = \min_{\lbrack 0;2brack}f(x) = f(2) = - 5 \\
\end{matrix} ight.\ .

  • Câu 12: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
2x^{3} + 3x^{2} - 12x + 2f(x)=2x3+3x212x+2 trên đoạn [ - 1;2][1;2]?

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^2 + 6x -12

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 1;2brack \\
x = - 2 otin \lbrack - 1;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = 15 \\
f(1) = - 5 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}f(x) =
15 .

  • Câu 13: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên tập xác định

    Giá trị nhỏ nhất của hàm số y = \sqrt{4 -
x} + \sqrt{3}y=4x+3 trên tập xác định của nó là

    Hướng dẫn:

    Tập xác định của hàm số là: D = ( -
\infty;4brack.

    Ta có y' = \frac{- 1}{2\sqrt{4 - x}}
< 0,\ \forall x \in D

    Bảng biến thiên

    Từ bảng biến thiên suy ra \min_{( -
\infty;4brack}y = \sqrt{3} khi x
= 4.

  • Câu 14: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x)y=f(x) xác định, liên tục trên\left\lbrack - 1,\frac{5}{2}
\right\rbrack[1,52]và có đồ thị là đường cong như hình vẽ.

    Giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số f(x)f(x) trên \left\lbrack - 1,\frac{5}{2}
\right\rbrack[1,52] là:

    Hướng dẫn:

    Dựa vào đồ thị M = 4,\ \ m = -
1.

  • Câu 15: Thông hiểu
    Tìm m để giá trị nhỏ nhất hàm số trên đoạn cho trước

    Giá trị nhỏ nhất của hàm số y = \frac{x +
m^{2}}{x - 1}y=x+m2x1 trên đoạn \lbrack -
1;0brack[1;0brack bằng:

    Hướng dẫn:

    Đạo hàm y' = \frac{- 1 - m^{2}}{(x -
1)^{2}} < 0,\forall x \in \lbrack - 1;0brack.

    Suy ra hàm số f(x) nghịch biến trên \lbrack - 1;0brack

    \Rightarrow \min_{\lbrack -
1;0brack}f(x) = f(0) = - m^{2}.

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    Xét hàm số y = - x - \frac{4}{x}y=x4x trên đoạn \lbrack - 1;2brack[1;2brack. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    0 \in \lbrack - 1;2brack\left\{ \begin{matrix}
\lim_{x ightarrow 0^{-}}y = + \infty \\
\lim_{x ightarrow 0^{+}}y = - \infty \\
\end{matrix} ight. nên hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất.

  • Câu 17: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x)y=f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

  • Câu 18: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = \frac{x - m^{2} + m}{x
+ 1}f(x)=xm2+mx+1 với mm là tham số thực. Tìm tất cả các giá trị của mm để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack[0;1brack bằng - 2.2.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{m^2 - m +1}{(x + 1)^{2}} > 0,\forall x \in \lbrack 0;1brack.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;1brack

    \Rightarrow \min_{\lbrack
0;1brack}f(x) = f(0) = - m^{2} + m

    Theo bài ra:

    \min_{\lbrack 0;1brack}f(x) = - 2
\Leftrightarrow - m^{2} + m = - 2

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 19: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng hàm số f(x) = - x + 2018 -
\frac{1}{x}f(x)=x+20181x đạt giá trị lớn nhất trên đoạn (0;4)(0;4) tại x_{0}x0. Tính P
= x_{0} + 2018.P=x0+2018.

    Hướng dẫn:

    Ta có:

    f'(x) = - 1 +
\frac{1}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in (0;4) \\
x = - 1 otin (0;4) \\
\end{matrix} ight.

    Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy hàm số đạt giá trị lớn nhất trên (0;4) tại x = x_{0} = 1

    \Rightarrow P = 2019

  • Câu 20: Thông hiểu
    Tìm tất cả các giá trị của tham số m

    Cho hàm số f(x) = x^{3} + \left( m^{2} +1 \right)x + m^{2} - 2f(x)=x3+(m2+1)x+m22 với mm là tham số thực. Tìm tất cả các giá trị của mm để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;2\rbrack[0;2] bằng 7.7.

    Hướng dẫn:

    Đạo hàmf'(x) = 3x^{2} + m^{2} + 1> 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;2brack

    \Rightarrow \min_{\lbrack 0;2brack}f(x)= f(0) = m^{2} - 2

    Theo bài ra: \min_{\lbrack0;2brack}f(x) = 7 \Leftrightarrow m^{2} - 2 = 7 \Leftrightarrow m =\pm 3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng