Giả sử m là giá trị nhỏ nhất của hàm số trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Giả sử m là giá trị nhỏ nhất của hàm số trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Giá trị nhỏ nhất của hàm số trên đoạn
bằng:
Đạo hàm .
Suy ra hàm số nghịch biến trên
.
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ.
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ.
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số nghịch biến trên khoảng và đạt cực tiểu tại điểm
.
Vì hàm số đồng biến trên khoảng nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Cho hàm số có bảng xét dấu đạo hàm như sau:
Mệnh đề nào sau đây đúng?
Giá trị nhỏ nhất của hàm số trên đoạn
bằng
Ta có:
;
.
.
Tìm GTLN, GTNN của hàm số lượng giác trên đoạn
Đặt
Vì
Ta có:
Gọi là giá trị nhỏ nhất của hàm số
trên khoảng
. Tìm
?
Tập xác định .
.
Bảng biến thiên:
khi
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ bên. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
. Giá trị của
là
Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn là
đạt được tại
và GTNN của hàm số số trên đoạn
là
đạt được tại
Tìm giá trị lớn nhất của hàm số
TXĐ: .
Đạo hàm
Ta có
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Giá trị lớn nhất của hàm số bằng bao nhiêu?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Giá trị lớn nhất của hàm số bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích và chiều sâu
(như hình vẽ).
Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.
Xét tính đúng sai của các khẳng định sau:
a) Thể tích bể chứa được tính theo công thức . Sai|| Đúng
b) Mối liên hệ giữa x và y là . Đúng||Sai
c) Tổng diện tích mặt bên của bể tính theo x, y là . Đúng||Sai
d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là . Sai|| Đúng
Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích và chiều sâu
(như hình vẽ).
Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.
Xét tính đúng sai của các khẳng định sau:
a) Thể tích bể chứa được tính theo công thức . Sai|| Đúng
b) Mối liên hệ giữa x và y là . Đúng||Sai
c) Tổng diện tích mặt bên của bể tính theo x, y là . Đúng||Sai
d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là . Sai|| Đúng
a) Thể tích của bể là .
b) Với .
c) Tổng diện tích mặt bên gồm 4 hình chữ nhật (trước, sau, trái, phải) là:
d) Tổng diện tích của bể là:
Vì chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể nên chi phí cần có là
Đặt ta có:
ta có bảng biến thiên như sau:
Với và thì chi phí xây dựng bể là thấp nhất.
Cho hàm số có bảng biến thiên trên
như sau:
Mệnh đề nào dưới đây đúng?
Dựa vào bảng biến thiên trên , ta có:
.
Người ta muốn xây một cái bể hình hộp đứng có thể tích , biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Người ta muốn xây một cái bể hình hộp đứng có thể tích , biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:
Tập xác định
Ta có:
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Số tiền hãng thu được khi đại lí nhập chiếc điện thoại là
.
Ta có: .
Khi đó,
Học sinh tự vẽ bảng biến thiên
Ta suy ra:
Đại lí nhập cùng lúc chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với
(đồng).
Đáp số: .
Gọi là giá trị nhở nhất của hàm số
trên khoảng
. Tìm
Bảng biến thiên:
Suy ra giá trị nhỏ nhất của hàm số bằng
Tìm giá trị lớn nhất của hàm số trên khoảng
bằng:
Đặt
Khi đó:
So sánh và
ta thấy GTLN là
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Chọn kết luận đúng?
Ta có:
Mà
.
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là
. Tính giá trị biểu thức
?
Tập xác định
Ta có:
Khi đó:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: