Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Giá trị lớn nhất của hàm số y = x^{3} +
2x^{2} - 7x - 3 trên đoạn \lbrack -
1;2brack bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} + 4x -
7

    y' = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = - \dfrac{7}{3} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}
y(1) = - 7 \\
y(2) = - 1 \\
y( - 1) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}y = y( -
1) = 5

  • Câu 2: Thông hiểu
    Chọn đáp án đúng:

    Giá trị lớn nhất của hàm số y = f(x) = 2x^{3} + 3x^{2} - 12x + 2 trên đoạn [-1;2] có giá trị là một số thuộc khoảng nào dưới đây?

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Để hàm số y = f(3x - 1) + x^{3} -
3mx đồng biến trên khoảng ( -
2;1)

    \Leftrightarrow y' \geq 0,\forall x
\in ( - 2;1)

    \Leftrightarrow 3f'(3x - 1) + 3x^{2}
- 3m \geq 0,\forall x \in ( - 2;1)

    \Leftrightarrow m \leq f^{'}(3x - 1)
+ x^{2},\forall x \in ( - 2;1)(*)

    Đặt k(x) = f^{'}(3x - 1),h(x) =
x^{2}g(x) = f^{'}(3x - 1) +
x^{2} = k(x) + h(x).

    Ta có: \min_{( - 2;1)}k(x) = k(0) = -
4.

    Do đó, ta có: \min_{( - 2;1)}f^{'}(3x
- 1) = f^{'}( - 1) = - 4 khi 3x
- 1 = - 1 \Leftrightarrow x = 0.

    \Rightarrow \min_{( - 2;1)}k(x) = k(0) =
- 4.

    Do đó, \min_{( - 2;1)}g(x) = g(0) = k(0)
+ h(0) = 0 - 4 = - 4.

    Từ (*) ta có m \leq f^{'}(3x - 1) + x^{2},\forall x \in ( -
2;1)

    \Leftrightarrow m \leq \min_{( -
2;1)}g(x) \Leftrightarrow m \leq - 4.

    m \in ( - 10;10) \Rightarrow m \in \{- 9;\ldots; - 4\}.

    Vậy có tất cả 6 số nguyên thỏa mãn.

  • Câu 4: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên nửa khoảng

    Giá trị nhỏ nhất của hàm số f(x) = x +
\frac{1}{x} trên nửa khoảng \lbrack
2; + \infty) là:

    Hướng dẫn:

    Áp dụng bất đẳng thức Cô-si, ta được:

    f(x) = x + \frac{1}{x} = \frac{3x}{4} +
\frac{x}{4} + \frac{1}{x} \geq \frac{3.2}{4} +
2\sqrt{\frac{x}{4}.\frac{1}{x}} = \frac{5}{2}.

    Dấu bằng xảy ra khi x = 2.

  • Câu 5: Thông hiểu
    Xác định số giá trị nguyên của m

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 10;10brack để hàm số y = x^{3} - 3x^{2} + 3mx + 2020 nghịch biến trên khoảng (1;2)?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x + 3m \leq
0;\forall x \in (1;2)

    \Leftrightarrow m \leq - x^{2} +
2x;\forall x \in (1;2)

    Xét f(x) = - x^{2} + 2x trên khoảng (1;2) ta có bảng biến thiên:

    Suy ra m \leq 0m \in \lbrack - 10;10brack nên m \in \left\{ - 10; - 9;...; - 1;0
ight\}

    Vậy có tất cả 11 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 6: Thông hiểu
    Tính giá trị biểu thức

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)
= 2x^{3} + 3x^{2} - 1 trên đoạn \left\lbrack - 2; - \frac{1}{2}
\right\rbrack. Tính P = M -
m.

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^{2} +
6x

    \Rightarrow \ f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 otin \left\lbrack - 2; - \frac{1}{2} ightbrack \\
x = - 1 \in \left\lbrack - 2; - \frac{1}{2} ightbrack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = - 5 \\
f( - 1) = 0 \\
f\left( - \frac{1}{2} ight) = - \frac{1}{2} \\
\end{matrix} ight. \Rightarrow
\left\{ \begin{matrix}
m = \min_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = - 5 \\
M = \max_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = 0 \\
\end{matrix} ight.

    \Rightarrow P = M - m = 5

  • Câu 7: Thông hiểu
    Tìm chi phí thấp nhất để xây dựng

    Gia đình bác T muốn xây một bình chứa hình trụ có thể tích 75m^{3}. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?

    Hướng dẫn:

    Gọi x(m);(x > 0) là bán kính đáy của bình chứa hình trụ

    Khi đó tổng số tiền phải trả là 14.10^{4}.\pi x^{2} + 10^{5}.\pi x^{2} +\frac{144.9.10^{4}}{x}

    Đặt f(x) = 14.10^{4}.\pi x^{2} +10^{5}.\pi x^{2} + \frac{144.9.10^{4}}{x}

    \Rightarrow f'(x) = 48.10^{4}\pi x -\frac{1296.10^{4}}{x}

    \Rightarrow f'(x) = 0\Leftrightarrow 48.10^{4}\pi x - \frac{1296.10^{4}}{x} = 0\Leftrightarrow x = \frac{3}{\sqrt[3]{\pi}}

    Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng \frac{3}{\sqrt[3]{\pi}}m.

  • Câu 8: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

     Dựa vào bảng biến thiên trên \lbrack -
5;7) , ta có: \underset{\lbrack -
5;7)}{Min}f(x) = f(1) = 2 .

  • Câu 9: Nhận biết
    Xác định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 10: Thông hiểu
    Tìm GTLN của hàm số f(x)

    Giá trị lớn nhất của hàm số y =  - {x^3} + 3x + 1 trên khoảng \left( {0; + \infty } ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {tm} ight)} \\   {x =  - 1\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1

  • Câu 11: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) = \frac{x + m}{x +
1} thỏa mãn \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = \frac{9}{2}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Hàm số đơn điệu trên đoạn \lbrack
1;2brack nên \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = f(1) + f(2)

    \Leftrightarrow \frac{1 + m}{2} +
\frac{2 + m}{3} = \frac{9}{2} \Leftrightarrow m = 4

    Vậy đáp án cần tìm là 2 < m \leq
4.

  • Câu 12: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Với giá trị nào của x thì hàm số y = x^{2} + \frac{1}{x} đạt giá trị nhỏ nhất trên khoảng (0; +
\infty)?

    Hướng dẫn:

    TXD: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    y' = 2x - \frac{1}{x^{2}}, y' = 0 \Leftrightarrow x =
\frac{1}{\sqrt[3]{2}}.

    Dựa vào BBT thì x =
\frac{1}{\sqrt[3]{2}} hàm số đạt giá trị nhỏ nhất trên (0; + \infty).

  • Câu 13: Thông hiểu
    Chọn phương án đúng

    Trên đoạn \lbrack 0;3brack, hàm số y = - x^{3} + 3x đại giá trị lớn nhất tại điểm

    Hướng dẫn:

    Tập xác định: \mathbb{R}.

    y' = - 3x^{2} + 3

    y' = 0 \Leftrightarrow - 3x^{2} + 3
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in (0;3) \\
x = - 1 otin (0;3) \\
\end{matrix} ight.

    Ta có y(0) = 0;y(1) = 2;y(3) = -
18.

    Vậy max_{\lbrack 0;3brack}y = y(1) =
2.

  • Câu 14: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) = \sqrt{2x + 14} +
\sqrt{5 - x}. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    TXĐ: D = \lbrack -
7;5brack.

    Đạo hàm f(x) = \frac{1}{\sqrt{2x + 14}} -
\frac{1}{2\sqrt{5 - x}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in \lbrack - 7;5brack

    Ta có \left\{ \begin{matrix}
f( - 7) = 2\sqrt{3} \\
f(5) = 2\sqrt{6} \\
f(1) = 6 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 7;5brack}f(x) = f( - 7) = 2\sqrt{3}

  • Câu 15: Nhận biết
    Chọn câu đúng

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Chọn câu đúng

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng

  • Câu 16: Thông hiểu
    Xét tính đúng sai của mỗi ý hỏi

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    Đáp án là:

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    a) Đúng. s(20)=264304

    b) Sai.

    Ta có s^{'}(t) = - 3t^{2} +54t;s^{'}(t) = 0 \Leftrightarrow - 3t^{2} + 54t = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 0 \\t = 18 \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy ngày thứ 18 của tỉnh A có lượng gạo xuất khẩu cao nhất là 265060.

    c) Sai. Ta có ngày thứ 60 tinh A có lượng gạo xuất khẩu thấp nhất là 143344.

    d) Đúng. Ta có ngày thứ 60 tỉnh A có lượng gạo xuất khẩu thấp nhất là 143344.

  • Câu 17: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    Đáp án là:

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    a) v(t) = S'(t) = - 3t^{2} + 18t +
21 nên a sai.

    b) Ta có: v(t) = S'(t) = - 3t^{2} +
18t + 2\overset{}{ightarrow}v(2) = 45\ m/s. nên b) đúng

    c) Ta có: a(t) = v'(t) = - 6t + 18 =
0 \Leftrightarrow t = 3\overset{}{ightarrow}v(3) = 48\ m/s. nên c) sai

    Vận tốc v(t) = S'(t) = - 3t^{2} + 18t
+ 21 = - 3(t - 3)^{2} + 48 \leq 48.

    Vậy \max v(t) = 48 khi t = 3.

    Vận tốc chuyển động đạt giá trị lớn nhất khi t = 3\ \ (s). nên d) đúng.

  • Câu 18: Nhận biết
    Chọn kết quả chính xác

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x^{3} - 3x trên \lbrack 1;2brack bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y(1) = - 2 \\
y(2) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack 1;2brack}y = 2 \\
\min_{\lbrack 1;2brack}y = - 2 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2brack bằng 0.

  • Câu 19: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = \frac{x - m^{2} + m}{x
+ 1} với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 2.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{m^2 - m +1}{(x + 1)^{2}} > 0,\forall x \in \lbrack 0;1brack.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;1brack

    \Rightarrow \min_{\lbrack
0;1brack}f(x) = f(0) = - m^{2} + m

    Theo bài ra:

    \min_{\lbrack 0;1brack}f(x) = - 2
\Leftrightarrow - m^{2} + m = - 2

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 20: Thông hiểu
    Xác định tích các giá trị của m

    Cho hàm số y = \frac{x - m^{2}}{x +
2} với m là tham số. Tích tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack - 1;1brack bằng \frac{1}{4} bằng:

    Hướng dẫn:

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x \in \lbrack - 1;1brack

    \Rightarrow \max_{\lbrack - 1;1brack}y
= y(1) = \frac{1 - m^{2}}{3} = \frac{1}{4} \Leftrightarrow m = \pm
\frac{1}{2}

    Vậy tích tất cả các giá trị của tham số m bằng -
\frac{1}{4}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo