Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y = f(x)y=f(x) liên tục trên đoạn \lbrack - 1;3brack[1;3brack và có đồ thị như hình vẽ bên. Gọi MMmm lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \lbrack
- 1;3brack[1;3brack. Giá trị của M -
mMm bằng

    Hướng dẫn:

    Dựa và đồ thị suy ra M = f(3) = 3;\ \ \ m
= f(2) = - 2

    Vậy M - m = 5

  • Câu 2: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x) có bảng biến thiên sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là x =
- 1;\ x = 0;\ x = 1.

    "Hàm số đạt giá trị lớn nhất bằng -
3." sai vì hàm số không có giá trị lớn nhất.

    "Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là x
= - 1x = 1.

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Xét hàm số f(x) = - \frac{4}{3}x^{3} -
2x^{2} - x - 3f(x)=43x32x2x3 trên \lbrack -
1;1brack[1;1brack. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Đạo hàm f'(x) = - 4x^{2} - 4x - 1 = -(2x + 1)^2 \leq 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack - 1;1brack nên có giá trị nhỏ nhất tại x = 1 và giá trị lớn nhất tại x = - 1.

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức

    Tập giá trị của hàm số f(x) = x +
\frac{9}{x}f(x)=x+9x với x \in \lbrack
2;4brackx[2;4brack là đoạn \lbrack
a;bbrack[a;bbrack. Tính P = b -
aP=ba.

    Hướng dẫn:

    Ta có: f'(x) = 1 - \frac{9}{x^{2}} =
\frac{x^{2} - 9}{x^{2}}

    ightarrow f'(x) = 0

    \Leftrightarrow x^{2} - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \in \lbrack 2;4brack \\
x = - 3 otin \lbrack 2;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(2) = \frac{13}{2} \\
f(3) = 6 \\
f(4) = \frac{25}{4} \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack 2;4brack}f(x) = 6;\max_{\lbrack 2;4brack}f(x) =
\frac{13}{2}

    \Rightarrow \lbrack a;bbrack =
\left\lbrack 6;\frac{13}{2} ightbrack \Rightarrow P = b - a = \frac{13}{2} - 6 =
\frac{1}{2}

  • Câu 5: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1f(x)=x32x24x+1 trên đoạn \lbrack 1;3brack.[1;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 6: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất MM của hàm số f(x) = sin^{3}x + cos2x + \sin x +
3f(x)=sin3x+cos2x+sinx+3.

    Hướng dẫn:

    Ta có f(x) = sin^{3}x + cos2x + \sin x +
3 = sin^{3}x - 2sin^{2}x + \sin x + 4.

    Đặt t = \sin x\ ;( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{3} - 2t^{2} + t + 4 trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = 3t^{2} - 4t +
1

    \Rightarrow g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \in \lbrack - 1;1brack \\
t = \frac{1}{3} \in \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g\left( \dfrac{1}{3} ight) = \dfrac{112}{27} \\
g(1) = 4 \\
\end{matrix} ight. \Rightarrow
\max_{\lbrack - 1;1brack}g(t) = g\left( \dfrac{1}{3} ight) =
\frac{112}{27}

    \Rightarrow \max_{x\mathbb{\in R}}f(x) =
\frac{112}{27}

  • Câu 7: Thông hiểu
    Chọn đáp án đúng:

    Xét hàm số y = f(x) = x + 1 - \frac{3}{x+2}y=f(x)=x+13x+2 trên đoạn [-1;1]. Mệnh đề nào sau đây đúng?

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số f(x) = x\sqrt{4 - x^{2}}f(x)=x4x2.

    Hướng dẫn:

    TXĐ: D = \lbrack -
2;2brack.

    Ta có:

    f'(x) = \sqrt{4 - x^{2}} -
\frac{x^{2}}{\sqrt{4 - x^{2}}} = \frac{4 - 2x^{2}}{\sqrt{4 -
x^{2}}}

    \Rightarrow f'(x) = 0

    \Leftrightarrow 4 - 2x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = \sqrt{2} \in \lbrack - 2;2brack \\
x = - \sqrt{2} \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = 0 \\
f\left( - \sqrt{2} ight) = - 2 \\
f\left( \sqrt{2} ight) = 2 \\
f(2) = 0 \\
\end{matrix} ight.\  \Rightarrow M = 2;\ m = - 2

  • Câu 9: Vận dụng
    Chọn phương án thích hợp

    Tìm giá trị lớn nhất MM của hàm số f(x) = \left| - x^{2} - 4x + 5
\right|f(x)=|x24x+5| trên đoạn \lbrack -
6;6\rbrack[6;6].

    Hướng dẫn:

    Xét hàm số g(x) = - x^2- 4x +
5 liên tục trên đoạn \lbrack -
6;6brack.

    Đạo hàm g'(x) = - 2x - 4

    \Rightarrow g'(x) = 0
\Leftrightarrow x = - 2 \in \lbrack - 6;6brack

    Lại có g(x) = 0 \Leftrightarrow - x^2 - 4x + 5 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 6;6brack \\
x = - 5 \in \lbrack - 6;6brack \\
\end{matrix} ight..

    Ta có \left\{ \begin{matrix}
g( - 6) = - 7 \\
g( - 2) = 9 \\
g(6) = - 55 \\
g(1) = \ g( - 5) = 0 \\
\end{matrix} ight.

    \Rightarrow \max_{\lbrack -
6;6brack}f(x) = \max_{\lbrack - 6;6brack}\left\{ \left| g( - 6)
ight|;\left| g( - 2) ight|;\left| g(6) ight|;\left| g(1)
ight|;\left| g( - 5) ight| ight\} = 55.

    Nhận xét. Bài này rất dễ sai lầm vì không để ý hàm trị tuyệt đối không âm.

  • Câu 10: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên nửa khoảng

    Giá trị nhỏ nhất của hàm số f(x) = x +
\frac{1}{x}f(x)=x+1x trên nửa khoảng \lbrack
2; + \infty)[2;+) là:

    Hướng dẫn:

    Áp dụng bất đẳng thức Cô-si, ta được:

    f(x) = x + \frac{1}{x} = \frac{3x}{4} +
\frac{x}{4} + \frac{1}{x} \geq \frac{3.2}{4} +
2\sqrt{\frac{x}{4}.\frac{1}{x}} = \frac{5}{2}.

    Dấu bằng xảy ra khi x = 2.

  • Câu 11: Thông hiểu
    Tính giá trị biểu thức P

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28f(x)=x33x29x+28 đạt giá trị nhỏ nhất trên đoạn \lbrack 0;4brack[0;4brack tại x_{0}x0. Tính P
= x_{0} + 2018.P=x0+2018.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 6x -
9

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 otin \lbrack 0;4brack \\
x = 3 \in \lbrack 0;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3 = x_{0} ightarrow P =
2021

  • Câu 12: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x) xác định, liên tục trên \mathbb{R}R và có bảng biến thiên như sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có đúng một cực trị" sai vì hàm số có 2 điểm cực trị.

    "Hàm số có giá trị cực tiểu bằng 1 ."sai vì hàm số có giá trị cực tiểu bằng - 1.

    "Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng - 1 " sai vì hàm số không có giá trị lớn nhất và giá trị nhỏ nhất trên \mathbb{R}.

    "Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x =
1 " Đúng.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) liên tục trên \lbrack - 1;5brack[1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack[1;5brack?

    Hướng dẫn:

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 14: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số y = f(x)y=f(x) liên tục trên \mathbb{R}R và có đồ thị như hình sau:

    (I). Hàm số nghịch biến trên khoảng (0;1)(0;1).

    (II). Hàm số đồng biến trên khoảng ( -
1;2)(1;2).

    (III). Hàm số có ba điểm cực trị.

    (IV). Hàm số có giá trị lớn nhất bằng 2.2.

    Trong các mệnh đề đã cho có bao nhiêu mệnh đề đúng?

    Hướng dẫn:

    Xét trên (0;1) ta thấy đồ thị đi xuống (từ trái sang phải) nên hàm số nghịch biến. Do đó (I) đúng

    Xét trên ( - 1;2) ta thấy đồ thị đi lên, rồi đi xuống, rồi đi lên. Do đó (II) sai.

    Dựa vào đồ thị hàm số ta thấy có ba điểm cực trị. Do đó (III) đúng.

    Hàm số không có giá trị lớn nhất trên \mathbb{R}. Do đó (IV) sai.

    Vậy có 2 mệnh đề đúng.

  • Câu 15: Thông hiểu
    Tìm giá trị lớn nhất nhỏ nhất của hàm số

    Cho hàm số f(x) = \frac{2x^{2} + x + 1}{x
+ 1}f(x)=2x2+x+1x+1. Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số trên đoạn \lbrack 0;1brack.[0;1brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{2x^{2} + 4x}{(x+ 1)^2}.

    Ta có \left\{ \begin{matrix}
f'(x) \geq 0,\ \forall x \in \lbrack 0;1brack \\
f'(x) = 0 \Leftrightarrow x = 0 \\
\end{matrix} ight..

    Suy ra hàm số f(x) đồng biến trên đoạn \lbrack 0;1brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;1brack}f(x) = f(1) = 2 \\
m = \min_{\lbrack 0;1brack}f(x) = f(0) = 1 \\
\end{matrix} ight.

  • Câu 16: Thông hiểu
    Định giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất MM của hàm số f(x) = \sqrt{x - 2} + \sqrt{4 -
x}.f(x)=x2+4x.

    Hướng dẫn:

    TXĐ: D = \lbrack 2;4brack.

    Đạo hàm f(x) = \frac{1}{2\sqrt{x - 2}} -
\frac{1}{2\sqrt{4 - x}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 3 \in \lbrack 2;4brack

    Ta có \left\{ \begin{matrix}
f(2) = \sqrt{2} \\
f(3) = 2 \\
f(4) = \sqrt{2} \\
\end{matrix} ight.\  ightarrow M = 2.

  • Câu 17: Thông hiểu
    Tìm m để giá trị nhỏ nhất hàm số trên đoạn cho trước

    Giá trị nhỏ nhất của hàm số y = \frac{x +
m^{2}}{x - 1}y=x+m2x1 trên đoạn \lbrack -
1;0brack[1;0brack bằng:

    Hướng dẫn:

    Đạo hàm y' = \frac{- 1 - m^{2}}{(x -
1)^{2}} < 0,\forall x \in \lbrack - 1;0brack.

    Suy ra hàm số f(x) nghịch biến trên \lbrack - 1;0brack

    \Rightarrow \min_{\lbrack -
1;0brack}f(x) = f(0) = - m^{2}.

  • Câu 18: Thông hiểu
    Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số

    Cho hàm số y = f(x)y=f(x) xác định và liên tục trên \mathbb{R}R có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất mm và giá trị lớn nhất MM của hàm số y = f(x)y=f(x) trên đoạn \lbrack - 2\ ;\ 2brack[2 ; 2brack.

    Hướng dẫn:

    Nhìn vào đồ thị ta thấy:

    M = \max_{\lbrack - 2\ ;\ 2brack}f(x) =
- 1 khi x = - 1 hoặc x = 2.

    m = \min_{\lbrack - 2\ ;\ 2brack}f(x) =
- 5 khi x = - 2 hoặc x = 1.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) có đồ thị như hình vẽ. Giá trị lớn nhất của hàm số f(x)f(x) trên đoạn \lbrack 0;2brack[0;2brack là:

    Hướng dẫn:

    Dựa vào đồ thị ta thấy trên đoạn \lbrack
0;2brack hàm số f(x) có giá trị lớn nhất bằng 4 khi x = \sqrt{2}

    Suy ra \underset{\lbrack
0;2brack}{Max}f(x) = 4

  • Câu 20: Nhận biết
    Tính tổng min và max của hàm số trên đoạn

    Cho hàm số f(x)f(x) liên tục trên \lbrack - 1;5brack[1;5brack và có đồ thị trên đoạn \lbrack - 1;5brack[1;5brack như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)f(x) trên đoạn \lbrack - 1;5brack[1;5brack bằng

    Hướng dẫn:

    Từ đồ thị ta thấy: \left\{ \begin{matrix}
M = \max_{\lbrack - 1;5brack}f(x) = 3 \\
n = \min_{\lbrack - 1;5brack}f(x) = - 2 \\
\end{matrix} ight.\  \Rightarrow M + n = 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
    Chia sẻ
    Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
    Mã QR Code
    Đóng