Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 5z - 4 = 0. Phương trình đường thẳng \Delta đi qua điểm A song song với (P) và vuông góc với trục tung là

    Hướng dẫn:

    Oy có vectơ chỉ phương \overrightarrow j  = \left( {0;1;0} ight)

    (P) có vectơ pháp tuyến \overrightarrow {{n_P}}  = \left( {2; - 3;5} ight)

     \Delta  đi qua điểm A(1; -
2;1) và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{n_P}} } ight] = \left( {5;0; - 2} ight)

    Vậy phương của d\left\{ \begin{matrix}
x = - 2 + 5t \\
y = 1 \\
y = - 3 - 2t \\
\end{matrix} ight.\ .

  • Câu 2: Thông hiểu
    Tính khoảng cách từ d đến (P)

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 8 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight.. Khoảng cách giữa đưởng thẳng d và mặt phẳng (P) bằng:

    Hướng dẫn:

    Đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. đi qua A(1;2;3) và có vectơ chỉ phương \overrightarrow{u} = (2; - 1;1)

    Mặt phẳng (P):x + 2y - 8 = 0 có vectơ pháp tuyến \overrightarrow{n} =
(1;2;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{u}.\overrightarrow{n} = 2 - 2 + 0 = 0 \\
A otin (P) \\
\end{matrix} ight., nên đường thằng d song song với mặt phẳng (P).

    Vậy khoảng cách giữa đường thẳng d và mặt phẳng (P) bằng khoảng cách từ A đến mặt phẳng (P):

    d\left( d;(P) ight) = d\left( A;(P)
ight) = \frac{|1 + 4 - 8|}{\sqrt{1^{2} + 2^{2}}} =
\frac{3}{\sqrt{5}}

  • Câu 3: Thông hiểu
    Định khoảng cách giữa hai đường thẳng chéo nhau

    Trong không gian với hệ tọa độ Oxyz khoảng cách giữa hai đường thẳng chéo nhau \Delta:\frac{x - 2}{2} = \frac{y -
3}{- 4} = \frac{z - 1}{- 5}d:\frac{x - 1}{1} = \frac{y}{- 2} = \frac{z +
1}{2} bằng

    Hướng dẫn:

    Chọn \left\{ \begin{matrix}
M(2;3;1) \in \Delta \\
N(1;0; - 1) \in d \\
\end{matrix} \right.

    Áp dụng công thức d(\Delta;d) =
\frac{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}}
\right\rbrack.\overrightarrow{MN} \right|}{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}} \right\rbrack
\right|} = \sqrt{5}

  • Câu 4: Thông hiểu
    Tìm phương trình giao tuyến hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Hướng dẫn:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Tính khoảng cách giữa hai đường thẳng d_{1}:\frac{x}{1} = \frac{y - 3}{2} = \frac{z -
2}{1}d_{2}:\frac{x - 3}{1} = \frac{y + 1}{- 2} = \frac{z -
2}{1}

    Hướng dẫn:

    d_{1} qua M(0;3;2) có vtcp \overrightarrow{u} = (1;2;1), d_{2} qua N(3; - 1;2) có vtcp \overrightarrow{v} = (1; - 2;1).

    \left\lbrack
\overrightarrow{u},\overrightarrow{v} \right\rbrack = (4;0; -
4), \overrightarrow{MN} = (3; -
4;0).

    d\left( d_{1},d_{2} \right) =
\frac{\left| \left\lbrack \overrightarrow{u},\overrightarrow{v}
\right\rbrack.\overrightarrow{MN} \right|}{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{v} \right\rbrack \right|} =
\frac{12}{4\sqrt{2}} = \frac{3\sqrt{2}}{2}.

  • Câu 6: Nhận biết
    Tìm phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 - 2t \hfill \\
  y = t \hfill \\
  z =  - 3 + 2t \hfill \\ 
\end{gathered}  \right. . Phương trình chính tắc của đường thẳng \Delta đi qua điểm A(3; 1; -1)  và song song với d là

    Hướng dẫn:

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( { - 2;1;2} ight)

    \Delta song song với d nên \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{a_{d}} = ( - 2;1;2)

     \Delta  đi qua điểm A và có vectơ chỉ phương  \overrightarrow{a_{\Delta}} 

    Vậy phương trình chính tắc của \Delta là \frac{x - 3}{- 2} = \frac{y - 1}{1} =
\frac{z + 1}{2}.

  • Câu 7: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1), B(3;0;1)C(2;2; - 2). Đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (2; -
2;2), \overrightarrow{AC} = (1;0; -
1).

    Mặt phẳng (ABC) có một véctơ pháp tuyến là \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(2;4;2).

    Đường thẳng vuông góc với mặt phẳng (ABC) có một véctơ chỉ phương là \overrightarrow{u} = (1;2;1).

    Đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là\frac{x - 1}{1} = \frac{y - 2}{2} =
\frac{z + 1}{1}.

  • Câu 8: Thông hiểu
    Viết phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; - 1;3) và hai đường thẳng:

    d_{1}:\frac{x - 4}{1} = \frac{y + 2}{4}
= \frac{z - 1}{- 2},d_{2}:\frac{x - 2}{1} = \frac{y + 1}{- 1} = \frac{z
- 1}{1}

    Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d_{1} và cắt đường thẳng d_{2}.

    Hướng dẫn:

    Gọi (P) là mặt phẳng đi qua A và vuông góc với \left( d_{1}
\right).

    Khi đó, có:

    (P):1(x - 1) + 4(y + 1) - 2(z - 3) =
0

    \Leftrightarrow x + 4y -2z + 9 =0

    Gọi giao điểm \left( d_{2}
\right)(P)B(a;b;c).

    \left\{ \begin{matrix}a + 4b - 2c + 9 = 0 \\\dfrac{a - 2}{1} = \dfrac{b + 1}{- 1} = \dfrac{c - 1}{1} \\\end{matrix} \right.\Rightarrow B(3; - 2;2) \Rightarrow\overrightarrow{AB}(2; - 1; - 1)

    \Rightarrow (AB) \equiv (d):\frac{x -
1}{2} = \frac{y + 1}{- 1} = \frac{z - 3}{- 1}

    Vậy đáp án đúng là d:\frac{x - 1}{2} =
\frac{y + 1}{- 1} = \frac{z - 3}{- 1}.

  • Câu 9: Thông hiểu
    Tìm tọa độ giao điểm hai đường thẳng

    Hai đường thẳng (d_{1}): \left\{ \begin{matrix}
x - y - z - 7 = 0 \\
3x - 4y - 11 = 0 \\
\end{matrix} \right.(d_{2}) : \left\{ \begin{matrix}
x + 2y - z + 1 = 0 \\
x + y + 1 = 0 \\
\end{matrix} \right. cắt nhau tại điểm. Tọa độ của A là:

    Hướng dẫn:

    Từ phương trình của (d_{1}) ,tính x, y theo z được \left\{
\begin{matrix}
x = 4z + 17 \\
y = 3z + 10 \\
\end{matrix} \right. .

    Thế vào phương trình của (d_{2}) , được z = - 4, từ đó x = 1,y = - 2 .

    Khi đó: A(1, -2, - 4).

  • Câu 10: Thông hiểu
    Viết phương trình tham số

    Đường thẳng (d): \frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 4}}{4}có phương trình tham số là:

    Hướng dẫn:

    Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là \overrightarrow a  = \left( {3, - 2,4} ight) =  - \left( { - 3,2, - 4} ight) có phương trình tham số là:

    => (d) \left\{ \begin{array}{l}x = 2 - 3m\\y =  - 1 + 2m\\z = 4 - 4m\end{array} ight.\,\,;m \in \mathbb{R}  

  • Câu 11: Nhận biết
    Chọn mặt phẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1). Viết phương trình đường thẳng d?

    Hướng dẫn:

    Đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1) là:

    d:\frac{x - 3}{1} = \frac{y - 3}{3} =
\frac{z + 2}{1}

  • Câu 12: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2; - 3) và mặt phẳng (P):2x + 2y - z + 9 = 0. Đường thẳng d đi qua A và có vectơ chỉ phương \overrightarrow{u} = (3;4; - 4) cắt (P) tại điểm B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90^{0}. Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?

    Hướng dẫn:

    Hình vẽ minh họa

    Phương trình d:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
z = - 3 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Đường thẳng d cắt P tại B(−2; −2; 1).

    Gọi H là hình chiếu của A lên (P).

    Ta có: H(−3; −2; −1)

    MB ⊥ MA; MB ⊥ AH nên MB ⊥ MH suy ra MB ≤ BH.

    Do đó: MB lớn nhất bằng BH khi M \equiv
H

    Vậy MB đi qua B, nhận \overrightarrow{BH} là vectơ chỉ phương.

    Phương trình MB:\left\{ \begin{matrix}
x = - 2 + t \\
y = - 2 \\
z = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) do đó MB đi qua điểm I( - 1; - 2;3).

  • Câu 13: Thông hiểu
    Chọn phương án đúng

    Trong không gianOxyz, tọa độ hình chiếu vuông góc của M(1;0;1) lên đường thẳng (\Delta):\frac{x}{1} =
\frac{y}{2} = \frac{z}{3}

    Hướng dẫn:

    Đường thẳng (\Delta) có vtcp \overrightarrow{u} = (1;2;3)và có phương trình tham số là: \left\{
\begin{matrix}
x = t \\
y = 2t \\
z = 3t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Gọi N(t;2t;3t) \in \Delta là hình chiếu vuông góc của M lên \Delta, khi đó:

    \overrightarrow{MN}.\overrightarrow{u} =
0

    \Leftrightarrow (t - 1) + (2t - 0).2 +
(3t - 1).3 = 0

    \Leftrightarrow 14t - 4 = 0
\Leftrightarrow t = \frac{2}{7} \Rightarrow N\left(
\frac{2}{7};\frac{4}{7};\frac{6}{7} \right)

  • Câu 14: Vận dụng
    Viết PT tổng quát

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.

    Hướng dẫn:

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight) =  > \,\,\overrightarrow {MN}  = \left( { - \frac{a}{2}, - \frac{b}{2},c} ight)

    (MN) là đường thẳng đi qua M và nhận vecto \overrightarrow {MN} là 1 VTCP có PT là:

    =  > \frac{{2\left( {x - a} ight)}}{{ - a}} = \frac{{2y - b}}{{ - b}} = \frac{z}{c} =  > \left\{ \begin{array}{l}2bx - 2ay - ab = 0\\2cx + az - 2ac = 0\end{array} ight.

  • Câu 15: Nhận biết
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Hướng dẫn:

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 16: Thông hiểu
    Tìm tọa độ hình chiếu của M

    Trong không gian với hệ tọa độ Oxyz, hình chiếu vuông góc của điểm M(2;3;4) trên mặt phẳng (P):2x - y - z + 6 = 0 là điểm nào dưới đây?

    Hướng dẫn:

    Gọi ∆ là đường thẳng đi qua M và vuông góc mặt phẳng (P).

    Khi đó phương trình tham số của ∆ là \left\{ \begin{matrix}
x = 2 + 2t \\
y = 3 - t \\
z = 4 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi M’ là hình chiếu vuông góc của M trên mặt phẳng (M).

    Tọa độ điểm M’ là nghiệm của hệ phương trình: \left\{ \begin{matrix}x = 2 + 2t \\y = 3 - t \\z = 4 - t \\2x - y - z + 6 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = - \dfrac{1}{2} \\x = 1 \\y = \dfrac{7}{2} \\z = \dfrac{9}{2} \\\end{matrix} ight.

    Vậy M'\left(
1;\frac{7}{2};\frac{9}{2} ight)

  • Câu 17: Nhận biết
    Tìm đáp án không thích hợp

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 2}{1} = \frac{y + 3}{- 2}
= \frac{z + 1}{1}. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng d?

    Hướng dẫn:

    Đường thẳng d có 1 vectơ chỉ phương là \overrightarrow{u_{2}} = (1; -
2;1). Do đó vectơ \overrightarrow{u_{4}} = (1;2;1) không là vectơ chỉ phương của d.

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{- 1} = \frac{y + 3}{2} = \frac{z -
3}{1} và mặt phẳng (P):2x + y - 2z
+ 9 = 0. Gọi A là giao điểm của d(P). Phương trình tham số của đường thẳng \Delta nằm trong (P), đi qua điểm A và vuông góc với d là:

    Hướng dẫn:

    Gọi A = d \cap (P)

    \begin{matrix}
A \in d \Rightarrow A(1 - t; - 3 + 2t;3 + t) \\
A \in (P) \Rightarrow t = 1 \Rightarrow A(0; - 1;4) \\
\end{matrix}

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2;1; - 2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = ( - 1;2;1)

    Gọi vecto chỉ phương của \Delta\overrightarrow{a_{\Delta}}

    Ta có :

    \left. \ \begin{matrix}
\Delta \subset (P) \Rightarrow
\overrightarrow{a_{\Delta}}\bot\overrightarrow{n_{P}} \\
d\bot\Delta \Rightarrow
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight\} \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{a_{d}} ightbrack
= (5;0;5)

    \Delta đi qua điểm A(0; - 1;4) và có vectơ chỉ phương là \overrightarrow{a_{\Delta}} =
(5;0;5)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = t \\
y = - 1 \\
z = 4 + t \\
\end{matrix} ight.

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm M

    Hai đường thẳng (D):\left\{
\begin{matrix}
x = 2 + 4t \\
y = - 3m - t \\
z = 2t - 1 \\
\end{matrix} \right.(d):\left\{ \begin{matrix}
x = 4 - 2m \\
y = m + 2 \\
z = - m \\
\end{matrix} \right. cắt nhau tại M có tọa độ \left( t,m\mathbb{\in R} \right).

    Hướng dẫn:

    Ta có:

    (D) cắt (d) tại M
\Leftrightarrow \left\{ \begin{matrix}
2 + 4t = 4 - 2m \\
- 3 - t = m + 2 \\
2t - 1 = - m \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
2t + m = 1 \\
t + m = - 5 \\
\end{matrix} \right.\  \Leftrightarrow t = 6;m = - 11

    Vậy M(26, - 9,11)

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz. Viết phương trình đường thẳng \Deltađi qua điểm B(1;1;2) cắt đường thẳng d:\frac{x - 2}{1} = \frac{y - 3}{- 2} = \frac{z +
1}{1} tại C sao cho tam giác OBCcó diện tích bằng \frac{\sqrt{83}}{2}.

    Hướng dẫn:

    Ta có:

    C \in d \Rightarrow C(2 + t;3 - 2t; - 1
+ t)

    \overrightarrow{OC} = (2 + t;3 - 2t; - 1
+ t)

    \overrightarrow{OB} =
(1;1;2)

    \left\lbrack
\overrightarrow{OB},\overrightarrow{OC} ightbrack = (5t - 7;t + 5;1
- 3t)

    S_{\Delta OBC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{OB},\overrightarrow{OC} ightbrack
ight|

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 2 \Rightarrow \overrightarrow{BC} = (3; - 2; - 1) \\
t = \frac{- 4}{35} \Rightarrow \overrightarrow{BC} = \left(
\frac{31}{35};\frac{78}{35}; - \frac{109}{35} ight) \\
\end{matrix} ight.

    \Delta đi qua điểm B và có vectơ chỉ phương \overrightarrow{BC}

    Vậy phương trình của \Delta\frac{x - 1}{3} = \frac{y - 1}{- 2} =
\frac{z - 2}{- 1}\frac{x -
1}{31} = \frac{y - 1}{78} = \frac{z - 2}{- 109}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo