Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 1 - 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P) có phương trình 2x + y - 3z - 1 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = (2;0; - 3). Sai||Đúng

    b) Góc giữa \Delta(P) là: 150^{0}. Sai||Đúng

    c) Không có điểm chung nào giữa \Delta(P). Sai||Đúng

    d) Hình chiếu của M(1;2; - 1) lên (P) là: N(1;2;1). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 1 - 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P) có phương trình 2x + y - 3z - 1 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = (2;0; - 3). Sai||Đúng

    b) Góc giữa \Delta(P) là: 150^{0}. Sai||Đúng

    c) Không có điểm chung nào giữa \Delta(P). Sai||Đúng

    d) Hình chiếu của M(1;2; - 1) lên (P) là: N(1;2;1). Sai||Đúng

    a) Sai

    b) Sai

    c) Sai

    d) Sai

    Phương án a) sai:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = (2;1; -
3).

    Phương án b) sai:

    Góc giữa đường thẳng và mặt phẳng không thể lớn hơn 90^{0}.

    Phương án c) sai:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = (2;1; -3), một véc tơ pháp tuyến của (P)\overrightarrow{n} = (2;1; - 3). Khi đó \sin\left( \Delta;(P) \right) =
\frac{\left| 2.2 + ( - 1).( - 1) + 3.3 \right|}{\sqrt{2^{2} + ( - 1)^{2}
+ 3^{2}}.\sqrt{2^{2} + ( - 1)^{2} + 3^{2}}} = 1.

    Do đó\left( \Delta;(P) \right) =
90^{0}. Vậy có điểm chung giữa \Delta(P).

    Phương án d) sai:

    Ta có \Delta\bot(P);M(1;2; - 1) \in
\Delta\overrightarrow{MN} =
(0;0;2) không cùng phương với \overrightarrow{n} = (2;1; - 3)nên đáp án sai.

    a) Điểm M(1;2;3) thuộc \Delta_{1} và điểm N(2; - 2;1) thuộc \Delta_{2}.

  • Câu 2: Thông hiểu
    Xác định vectơ chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{1} = \frac{y - 2}{3} = \frac{z
- 3}{- 1}. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.

    Hướng dẫn:

    Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).

    Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).

    Đường thẳng ∆’ đi qua các điểm A, B’.

    Ta có \overrightarrow{AB} = ( - 3; - 9; -
3), từ đó suy ra \overrightarrow{u}
= (1;3;1) là một vectơ chỉ phương của đường thẳng ∆’.

  • Câu 3: Thông hiểu
    Hai đường thẳng cắt nhau

    Tìm tọa độ giao điểm của hai đường thẳng:

    Hướng dẫn:

     Theo đề bài, ta biến đổi được (b) có dạng:

    \begin{array}{l}\left( b ight):\frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2}\\ \Rightarrow \frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2} = t\\ \Rightarrow \left\{ \begin{array}{l}x - 2 = 2t\\y + 3 = t\\z - 1 = 2t\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3 + t\\z = 1 + 2t\end{array} ight.\end{array}

    Thay x, y, z vào phương trình x+2y+z =9 , ta có:

    => Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)

  • Câu 4: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian Oxyz, cho hai đường thẳng song song d:\left\{
\begin{matrix}
x = 2 - t \\
y = 1 + 2t \\
z = 4 - 2t \\
\end{matrix} ight.d':\frac{x - 4}{1} = \frac{y + 1}{- 2} =
\frac{z}{2}. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.

    Hướng dẫn:

    Lấy M(2;1;4) \in d,N(4; - 1;0) \in
d'.

    Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.

    Phương trình đường thẳng cần tìm là: \frac{x - 3}{1} = \frac{y}{- 2} = \frac{z -
2}{2}

  • Câu 5: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho bốn đường thẳng \left( d_{1} ight):\frac{x - 3}{1} = \frac{y +1}{- 2} = \frac{z + 1}{1},\left( d_{2} ight):\frac{x}{1} = \frac{y}{-2} = \frac{z - 1}{1},\left( d_{3} ight):\frac{x - 1}{2} = \frac{y +1}{1} = \frac{z - 1}{1},\left( d_{4} ight):\frac{x}{1} = \frac{y -1}{- 1} = \frac{z - 1}{1}. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:

    Hướng dẫn:

    Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).

    Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).

    Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.

    Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).

    (∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).

    Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.

  • Câu 6: Nhận biết
    Tìm đáp án không thích hợp

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 7: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng (d):\frac{x - 2}{3} = \frac{y + 1}{- 2} = \frac{z
- 4}{4} có phương trình tham số là

    Hướng dẫn:

    Gọi \overrightarrow{u} vectơ chỉ phương của đường thẳng d, ta chọn \overrightarrow{u}( - 3;2; - 4)

    Giả sử M_{0} \in d, chọn M_{0}(2, - 1;4) suy ra phương trình tham số d là:

    \left\{ \begin{matrix}
x = 2 - 3m \\
y = - 1 + 2m \\
z = 4 - 4m \\
\end{matrix} ight.\ ;\left( m\mathbb{\in R} ight).

  • Câu 8: Vận dụng
    Khoảng cách giữa 2 đường thẳng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

    Hướng dẫn:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz,  phương trình đường thẳng \Delta đi qua điểm A(2;-1; 3) và vuông góc với mặt phẳng (Oxz) là.

    Hướng dẫn:

    (Oxz) có vectơ pháp tuyến \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  vuông góc với (Oxz) nên d có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương \overrightarrow {{a_\Delta }}

    Vậy phương trình tham số của  \Delta  là \left\{ \begin{matrix}
x = 2 \\
y = - 1 + t \\
z = 3 \\
\end{matrix} ight.\ .

     

  • Câu 10: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( \alpha  \right):2x - y + 2z - 3 = 0. Phương trình đường thẳng d đi qua điểm A(2;-3;-1), song song với hai mặt phẳng \left( \alpha  \right);\left( {Oyz} \right) là.

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {2; - 1;2} ight)

    (Oyz) có vectơ pháp tuyến \overrightarrow i  = \left( {1;0;0} ight)

    d đi qua điểm A và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{\alpha}},\overrightarrow{i} ightbrack =
(0;2;1)

    Vậy phương của d là \left\{ \begin{matrix}
x = 2 \\
y = - 3 + 2t \\
z = - 1 + t \\
\end{matrix} ight.

  • Câu 11: Thông hiểu
    Tìm khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyzkhoảng cách từ điểm M(1;3;2) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = - t \\
\end{matrix} \right. bằng

    Hướng dẫn:

    Đường thẳng \Delta đi qua A(1;1;0) và có một VTCP là \overrightarrow{u} = (1;1; - 1)

    Suy ra \overrightarrow{AM} =
(0;2;2); \left\lbrack
\overrightarrow{u};\overrightarrow{AM} \right\rbrack = (4; -
2;2)

    Vậy d(M;\Delta) = \frac{\left|
\left\lbrack \overrightarrow{u};\overrightarrow{AM} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = 2\sqrt{2}

  • Câu 12: Vận dụng
    Viết phương trình đường thẳng d

    Trong không gian với hệ trục tọa độ Oxyz, cho hình vuông ABCD biết A(1; 0; 1), B(−3; 0; 1) và điểm D có cao độ âm. Mặt phẳng (ABCD) đi qua gốc tọa độ O. Khi đó đường thẳng d là trục của đường tròn ngoại tiếp hình vuông ABCD có phương trình là:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{AB};\overrightarrow{AO} ightbrack = (0; -
4;0) Mặt phẳng (ABCD) đi qua điểm A và nhận \overrightarrow{n} = (0;1;0) làm vectơ pháp tuyến nên có phương trình y = 0.

    Giả sử D\left( x_{D},\ y_{D},\ z_{D}
ight). Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AD}.\overrightarrow{AB} = 0 \\
\left| \overrightarrow{AD} ight| = \left| \overrightarrow{AB} ight|
\\
D \in (ABCD) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left( x_{D} - 1 ight)^{2} + {y_{D}}^{2} + \left( z_{D} - 1
ight)^{2} = 16 \\
y_{D} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left( z_{D} - 1 ight)^{2} = 16 \\
y_{D} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left\lbrack \begin{matrix}
z_{D} = 5 \\
z_{D} = - 3 \\
\end{matrix} ight.\  \\
y_{D} = 0 \\
\end{matrix} ight.

    Vì D có cao độ âm nên D(1; 0; −3). Khi đó, tâm I của hình vuông ABCD có tọa độ I(−1; 0; −1).

    Trục của đường tròn ngoại tiếp hình vuông ABCD đi qua I(−1; 0; −1) và nhận \overrightarrow{n} = (0;1;0) làm vectơ chỉ phương nên có phương trình \left\{ \begin{matrix}
x = - 1 \\
y = t \\
z = - 1 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 13: Thông hiểu
    Phương trình đường trung tuyến

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

    Hướng dẫn:

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm A

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x}{2} = \frac{y}{- 1} = \frac{z +
1}{1} và mặt phẳng (P):x - 2y - 2z
+ 5 = 0. Điểm A nào dưới đây thuộc d và thỏa mãn khoảng cách từ A đến mặt phẳng (P) bằng 3?

    Hướng dẫn:

    Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).

    Khoảng cách từ A đến (P) là

    \frac{\left| 2a + 2a - 2(a - 1) + 5
ight|}{\sqrt{9}} = 3

    \Leftrightarrow |2a + 9| = 9\Leftrightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{9}{2} \\\end{matrix} ight.

    Với a = 0 \Rightarrow A(0;\ 0; -
1)

  • Câu 15: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 1;1;2) và hai đường thẳng d:\frac{x - 2}{3} = \frac{y + 3}{2} = \frac{z -
1}{1},d^{'}:\frac{x + 1}{1} = \frac{y}{3} = \frac{z}{- 2}. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.

    Hướng dẫn:

    Gọi \Delta là đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.
    Giả sử \Delta \cap d = A \Rightarrow A(2 +
3t; - 3 + 2t;1 + t).

    \overrightarrow{AM} = (3 + 3t; - 4 + 2t;
- 1 + t)

    \Delta\bot d^{'} \Rightarrow
\overrightarrow{AM} \cdot \overrightarrow{u_{d^{'}}} = 0
\Leftrightarrow 3 + 3t + 3( - 4 + 2t) - 2( - 1 + t) = 0

    \Leftrightarrow 7t = 7 \Leftrightarrow t
= 1

    \Rightarrow A(5; -
1;2),\overrightarrow{AM} = (6; - 2;0) = 2(3; - 1;0).

    \Delta:\left\{ \begin{matrix}x = - 1 + 3t \\y = 1 - t \\z = 2 \\\end{matrix} ight.

  • Câu 16: Vận dụng
    Tính khoảng cách

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.

    Hướng dẫn:

    Ta biểu diễn các điểm N, P, C, G theo a, b, c được:

    N\left( {\frac{a}{2},0,c} ight);P\left( {0,b,\frac{c}{2}} ight);\,C\left( {a,b,0} ight);\,\,\,G\left( {a,b,c} ight)

    Từ đó, ta tính được các vecto tương ứng:

    \overrightarrow {NP}  = \left( { - \frac{a}{2},b, - \frac{c}{2}} ight);\,\,\,\overrightarrow {CG}  = \left( {0,0,c} ight);\,\,\overrightarrow {PC}  = \left( {a,0, - \frac{c}{2}} ight)

    Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:

    \begin{array}{l}\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight] = \left( { - bc, - \dfrac{{ac}}{2},0} ight) =  > \left| {\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight]} ight| = \dfrac{c}{2}\sqrt {{a^2} + 4{b^2}} \\\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight].\overrightarrow {PC}  =  - abc =  > d\left( {NP,CG} ight) = \dfrac{{2ab\sqrt {{a^2} + 4{b^2}} }}{{{a^2} + 4{b^2}}}\end{array}

  • Câu 17: Thông hiểu
    Tìm tọa độ hình chiếu của M

    Trong không gian với hệ tọa độ Oxyz, xác định tọa độ điểm M' là hình chiếu vuông góc của điểm M(2;3;1)lên mặt phẳng M(2;3;1).

    Hướng dẫn:

    Gọi \Delta là đường thẳng qua M và vuông góc với.

    => Phương trình tham số của \Delta là: \left\{ \begin{matrix}
x = 2 + t \\
y = 3 - 2t \\
z = 1 + t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Ta có: M' = \Delta \cap (\alpha).

    Xét phương trình: 2 + t - 2(3 - 2t) + 1 +
t = 0 \Leftrightarrow t = \frac{1}{2}.

    Vậy M'\left(
\frac{5}{2};2;\frac{3}{2} \right).

  • Câu 18: Nhận biết
    Tìm phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 - 2t \hfill \\
  y = t \hfill \\
  z =  - 3 + 2t \hfill \\ 
\end{gathered}  \right. . Phương trình chính tắc của đường thẳng \Delta đi qua điểm A(3; 1; -1)  và song song với d là

    Hướng dẫn:

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( { - 2;1;2} ight)

    \Delta song song với d nên \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{a_{d}} = ( - 2;1;2)

     \Delta  đi qua điểm A và có vectơ chỉ phương  \overrightarrow{a_{\Delta}} 

    Vậy phương trình chính tắc của \Delta là \frac{x - 3}{- 2} = \frac{y - 1}{1} =
\frac{z + 1}{2}.

  • Câu 19: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Cho hai đường thẳng: \left( d_{1}
\right):\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z - 9}{- 1}\left( d_{2} \right):\frac{x -
3}{- 1} = \frac{y - 1}{2} = \frac{z - 1}{3} .

    Chọn câu trả lời đúng?

    Hướng dẫn:

    Phương trình \left( d_{1} \right) \in
\left( d_{1} \right) cho A(7,3,7) và vectơ chỉ phương của \left( d_{1} \right) :

    \overrightarrow{a} = (1,2, - 1) .

    Phương trình \left( d_{2}
\right) cho B(3,1,1) \in \left(
d_{2} \right) và vectơ chỉ phương của \left( d_{2} \right) :

    \overrightarrow{b} = ( - 7,2,3) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack = (8,4,16) ; \overrightarrow{AB} = ( - 4, - 2, -
8) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= - 32 - 8 - 128 \neq 0 \Leftrightarrow \left( d_{1} \right)\left( d_{2} \right) chéo nhau .

  • Câu 20: Thông hiểu
    Tìm phương trình giao tuyến hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Hướng dẫn:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo