Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Hướng dẫn:

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm A(1; - 1;2) và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = - 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(1;2; - 1) thuộc đường thẳng (d).Đúng||Sai

    b) Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u} = (2; -
1;1).Đúng||Sai

    c) Đường thẳng đi qua điểm và song song với đường thẳng (d) là: \frac{x + 1}{2} = \frac{y - 1}{- 1} = \frac{z +
2}{1}.Sai||Đúng

    d) Hình chiếu vuông góc của điểm A lên đường thẳng (d) là: H(3;1;0).Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho điểm A(1; - 1;2) và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = - 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(1;2; - 1) thuộc đường thẳng (d).Đúng||Sai

    b) Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u} = (2; -
1;1).Đúng||Sai

    c) Đường thẳng đi qua điểm và song song với đường thẳng (d) là: \frac{x + 1}{2} = \frac{y - 1}{- 1} = \frac{z +
2}{1}.Sai||Đúng

    d) Hình chiếu vuông góc của điểm A lên đường thẳng (d) là: H(3;1;0).Đúng||Sai

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    Phương án a) đúng: Thay tọa độ điểm M(1;2; - 1) vào phương trình đường thẳng (d) ta được:

    \left\{ \begin{matrix}
1 = 1 + 2t \\
2 = 2 - t \\
- 1 = - 1 + t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0
\end{matrix} \right.\  \Rightarrow M(1;2; - 1) \in d.

    Phương án b) đúng: Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u} = (2; - 1;1).

    Phương án c) sai: Đường thẳng \Delta qua A và song song với đường thẳng (d) nên có một vectơ chỉ phương \overrightarrow{u_{\Delta}} = \overrightarrow{u} =
(2; - 1;1). Suy ra phương trình đường thẳng \Delta: \frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z -
2}{1}.

    Phương án d) đúng: H là hình chiếu vuông góc của A lên d \Rightarrow H \in (d) nên H(1 + 2t;2 - t; - 1 + t).

    Ta có: \overrightarrow{AH} = (2t;3 - t; -
3 + t)

    AH\bot d

    \Leftrightarrow
\overrightarrow{AH}.\overrightarrow{u} = 0

    \Leftrightarrow 2.2t - 1(3 - t) + 1.( - 3
+ t) = 0 \Leftrightarrow t =
1

    Vậy H(3;1;0).

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{- 1} = \frac{y - 1}{3} =
\frac{z - 1}{2}d_{2}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = - 2 + t \\
z = - 1 - t \\
\end{matrix} \right.. Phương trình đường thẳng nằm trong (\alpha):x + 2y - 3z - 2 = 0 và cắt hai đường thẳng d_{1},\ d_{2} là:

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm

     

    • Gọi A = d_{1} \cap
(\alpha)

     

    \begin{matrix}
A \in d_{1} \Rightarrow A(2 - a;1 + 3a;1 + 2a) \\
A \in (\alpha) \Rightarrow a = - 1 \Rightarrow A(3; - 2; - 1) \\
\end{matrix}

     

    • Gọi B = d_{2} \cap
(\alpha)

     

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - 3b; - 2 + b; - 1 - b) \\
B \in (\alpha) \Rightarrow b = 1 \Rightarrow B( - 2; - 1; - 2) \\
\end{matrix}

     

    • d đi qua điểm A(3; - 2; - 1) và có vectơ chỉ phương \overrightarrow{AB} = ( - 5;1; -
1)

     

    Vậy phương trình chính tắc của d\frac{x - 3}{- 5} = \frac{y + 2}{1} =
\frac{z + 1}{- 1}.

  • Câu 4: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y + 2}{- 1} =
\frac{z - 3}{1}d_{2}:\frac{x -
1}{- 1} = \frac{y - 1}{2} = \frac{z + 1}{1}. Phương trình đường thẳng \Delta đi qua điểm A(1;2;3) vuông góc với d_{1} và cắt d_{2} là:

    Hướng dẫn:

    Gọi B = \Delta \cap d_{2}

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - t;1 + 2t; - 1 + t) \\
\overrightarrow{AB} = ( - t;2t - 1;t - 4) \\
\end{matrix}

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2; - 1;1)

    \begin{matrix}
\Delta\bot d_{1} \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{1}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{1}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = - 1 \\
\end{matrix}

    \Delta đi qua điểm A(1;2;3) và có vectơ chỉ phương \overrightarrow{AB} = (1; - 3; - 5)

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y - 2}{- 3} =
\frac{z - 3}{- 5}.

  • Câu 5: Thông hiểu
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y}{3} = \frac{z +
1}{- 1}d_{2}:\left\{
\begin{matrix}
x = 1 + t \\
y = 3 - 2t \\
z = 5 - 2t \\
\end{matrix} \right.. Phương trình đường thẳng \Delta đi qua điểm A(2;3; - 1) và vuông góc với hai đường thẳng d_{1},\ d_{2}

    Hướng dẫn:

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2;3; - 1)

    d_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = (1; - 2; -
2)

    Gọi \overrightarrow{a_{\Delta}} là vectơ chỉ phương của \Delta

    \left\{ \begin{matrix}
\Delta\bot d_{1} \\
\Delta\bot d_{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{1}} \\
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{a_{1}};\overrightarrow{a_{2}} ightbrack
= ( - 8;3; - 7)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = 2 - 8t \\
y = 3 + 3t \\
z = - 1 - 7t \\
\end{matrix} ight.

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, gọi d đi qua điểm A(1; - 1;2), song song với (P):2x - y - z + 3 = 0, đồng thời tạo với đường thẳng \Delta:\frac{x + 1}{1} = \frac{y
- 1}{- 2} = \frac{z}{2} một góc lớn nhất. Phương trình đường thẳng d là.

    Hướng dẫn:

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (1; -
2;2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (a;b;c)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1; -
1)

    d//(P) nên \overrightarrow{a_{d}}\bot\overrightarrow{n_{P}}
\Leftrightarrow \overrightarrow{a_{d}}.\overrightarrow{n_{P}} = 0
\Leftrightarrow 2a - b - c = 0 \Leftrightarrow c = 2a - b

    \cos(\Delta,d) = \frac{|5a -
4b|}{3\sqrt{5a^{2} - 4ab + 2b^{2}}} = \frac{1}{3}\sqrt{\frac{(5a -
4b)^{2}}{5a^{2} - 4ab + 2b^{2}}}

    Đặt t = \frac{a}{b}, ta có: \cos(\Delta,d) = \frac{1}{3}\sqrt{\frac{(5t
- 4)^{2}}{5t^{2} - 4t + 2}}

    Xét hàm số f(t) = \frac{(5t -
4)^{2}}{5t^{2} - 4t + 2}, ta suy ra được: \max f(t) = f\left( - \frac{1}{5} ight) =
\frac{5\sqrt{3}}{3}

    Do đó: \max\left\lbrack \cos(\Delta,d)
ightbrack = \sqrt{\frac{5\sqrt{3}}{27}} \Leftrightarrow t = -
\frac{1}{5} \Rightarrow \frac{a}{b} = - \frac{1}{5}

    Chọn a = 1 \Rightarrow b = - 5,c =
7

    Vậy phương trình đường thẳng d\frac{x - 1}{1} = \frac{y + 1}{- 5} =
\frac{z - 2}{7}

  • Câu 7: Thông hiểu
    Tìm độ dài đoạn vuông góc chung hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz độ dài đoạn vuông góc chung của hai đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 \\
z = - t \\
\end{matrix} \right.d:\left\{
\begin{matrix}
x = 3 - t \\
y = 4 + t \\
z = 4 \\
\end{matrix} \right. bằng

    Hướng dẫn:

    Ta tìm được \left\{ \begin{matrix}
M(1;2;0) \in \Delta \\
N(3;4;4) \in d \\
\end{matrix} \right.

    Áp dụng công thức d(\Delta;d) =
\frac{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}}
\right\rbrack.\overrightarrow{MN} \right|}{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}} \right\rbrack
\right|} = 2\sqrt{6}.

  • Câu 8: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình x - 3y - z + 8 = 0. Vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Ta có:

    (P):x–3y–z + 8 = 0 nên (P) có một vectơ pháp tuyến là \overrightarrow{n} =
(1; - 3; - 1)

  • Câu 9: Thông hiểu
    Định phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng (D) qua B(5,2, - 3) và song song với đường thẳng (d):\frac{x + 3}{2} = \frac{y - 1}{3} =
\frac{z + 2}{4}

    Hướng dẫn:

    Ta có:

    (D)//(d) nên một vectơ chỉ phương của (D):\overrightarrow{a} = (2,3,4)
= - ( - 2, - 3, - 4)

    \Rightarrow (D)\left\{ \begin{matrix}
x = 5 - 2t \\
y = 2 - 3t \\
z = - 3 - 4t \\
\end{matrix} \right.\ \ \ ;t\mathbb{\in R}

  • Câu 10: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = 1 + t \\
z = 3t \\
\end{matrix}\ (t \in \mathbb{R}) ight. và hai điểm A(5;0;2),B(2; - 5;3). Tìm điểm M thuộc \Delta sao cho \bigtriangleup ABM vuông tại A.

    Hướng dẫn:

    Điểm M thuộc đường thẳng \Delta nên M(
- 1 + 3t;1 + t;3t).

    Ta có \overrightarrow{AM} = (3t - 6;t +
1;3t - 2)\overrightarrow{AB} =
( - 3; - 5;1).

    Tam giác ABM vuông tại M khi và chỉ khi

    \overrightarrow{AB}\bot\overrightarrow{AM}
\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AM} =
0

    \Leftrightarrow - 3(3t - 6) - 5(t + 1) +
3t - 2 = 0 \Leftrightarrow t = 1

    Khi đó tọa độ điểm M(2;2;3).

  • Câu 11: Nhận biết
    Xác định tọa độ hình chiếu của A lên mặt phẳng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Hình chiếu vuông góc của điểm a trên mặt phẳng (Oyz) là điểm

    Hướng dẫn:

    Khi chiếu vuông góc một điểm trong không gian lên mặt phẳng (Oyz), ta giữ lại các thành phần tung độ và cao độ nên hình chiếu của A(3; -
1;1) lên (Oyz) là điểm N(0; - 1;1).

  • Câu 12: Thông hiểu
    Phương trình tổng quát

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    Gợi ý:

    Để dễ dàng viết phương trình tổng quát của (AC) như yêu cầu bài toán, ta sẽ viết phương trình chính tắc của AC.

    Hướng dẫn:

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho tứ diện đều ABCDA(4;
- 1;2),B(1;2;2),C(1; - 1;5),D\left( x_{D};\ y_{D};z_{D} ight) với y_{D} > 0. Tính p = 2x_{D} + \ y_{D} - z_{D}?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 3;3;0) \\
\overrightarrow{AC} = ( - 3;0;3) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;\ 1;\ 1)

    AB = 3\sqrt{2}

    Đường thẳng đi qua G vuông góc với (ABC) có phương trình \left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đó D(2 + t;t;3 + t)

    AD = AB \Rightarrow (t - 2)^{2} + 2(t
+ 1)^{2} = 18 \Rightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 2 \\
\end{matrix} ight.

    y_{D} > 0 \Rightarrow y = 2
\Rightarrow P = 5

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x - 2}{- 1} = \frac{y -
1}{- 2} = \frac{z + 3}{1} và mặt phẳng (P) có phương trình 3x + 6y - 3z + 2024 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; - 2;1). Đúng||Sai

    b) Một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1). Đúng||Sai

    c) Góc giữa \Delta(P) là: 90^{0}. Đúng||Sai

    d) Lấy tuỳ ý hai điểm phân biệt A;B \in
\Delta. Gọi A’; B’ lần lượt là hình chiếu của A; B lên (P). Khi đó A'B' = 2024. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x - 2}{- 1} = \frac{y -
1}{- 2} = \frac{z + 3}{1} và mặt phẳng (P) có phương trình 3x + 6y - 3z + 2024 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; - 2;1). Đúng||Sai

    b) Một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1). Đúng||Sai

    c) Góc giữa \Delta(P) là: 90^{0}. Đúng||Sai

    d) Lấy tuỳ ý hai điểm phân biệt A;B \in
\Delta. Gọi A’; B’ lần lượt là hình chiếu của A; B lên (P). Khi đó A'B' = 2024. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) đúng:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( -1; -2;1).

    Phương án b) đúng:

    Một véc tơ chỉ phương của (P)\overrightarrow{n} = (1;2; -
1).

    Phương án c) đúng:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; -
2;1), một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1).

    Khi đó \sin\left( \Delta;(P) \right) = \frac{\left|
( - 1).1 + ( - 2).2 + 1.( - 1) \right|}{\sqrt{( - 1)^{2} + ( - 2)^{2} +
1^{2}}.\sqrt{1^{2} + 2^{2} + ( - 1)^{2}}} = 1.

    Vậy \left( \Delta;(P) \right) =90^0.

    Phương án d) sai:

    \Delta\bot(P) nên A’ trùng B’. Do đó A'B' = 0.

  • Câu 15: Thông hiểu
    Tính góc giữa đường thẳng và mặt phẳng

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa đường thẳng \Delta và mặt phẳng (\alpha) bằng

    Hướng dẫn:

    Ta có:

    ∆ có vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    (α) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    \sin\widehat{\left( \Delta;(\alpha)
ight)} = \frac{\left| \overrightarrow{u}.\overrightarrow{n}
ight|}{\left| \overrightarrow{u} ight|.\left| \overrightarrow{n}
ight|} = \frac{\left| 1.1 + 2.( - 1) + ( - 1).2 ight|}{\sqrt{1^{2} +
2^{2} + ( - 1)^{2}}.\sqrt{1^{2} + ( - 1)^{2} + 2^{2}}} =
\frac{1}{2}

    \Rightarrow \widehat{\left(
\Delta;(\alpha) ight)} = 30^{0}.

  • Câu 16: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình đường thẳng \Delta đi qua điểm A(1;2;0) và vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0?

    Hướng dẫn:

    Đường thẳng \Delta vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0 nên \Delta có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n_{P}} = (2;1; - 3).

    Phương trình \Delta\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)\ \ \
(*)

    Kiểm tra được điểm M(3;3; - 3) thỏa mãn hệ (*).

    Vậy phương trình: \left\{ \begin{matrix}
x = 3 + 2t \\
y = 3 + t \\
z = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) cũng là phương trình của \Delta.

  • Câu 17: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Vectơ \overrightarrow{u} = (2;3; -
1) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    b) Vectơ \overrightarrow{u_{1}} = ( - 4;
- 6;2) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) cắt mặt phẳng (Oxy) tại điểm A(9;10;0). Đúng||Sai

    d) Phương trình chính tắc của đường thẳng (d) là: \frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z + 4}{-
1}. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Vectơ \overrightarrow{u} = (2;3; -
1) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    b) Vectơ \overrightarrow{u_{1}} = ( - 4;
- 6;2) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) cắt mặt phẳng (Oxy) tại điểm A(9;10;0). Đúng||Sai

    d) Phương trình chính tắc của đường thẳng (d) là: \frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z + 4}{-
1}. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) đúng: từ phương trình (d) ta có \overrightarrow{u} = (2;3; - 1) là một vectơ chỉ phương của (d).

    Phương án b): đúng: \overrightarrow{u_{1}} = ( - 4; - 6;2) = - 2(2;3;
- 1) = - 2\overrightarrow{u} nên \overrightarrow{u_{1}} cũng là một vectơ chỉ phương của (d).

    Phương án c) đúng: (Oxy):z = 0, từ phương trình của (d) ta có 4 - t = 0 \Leftrightarrow t = 4, thay vào (d) ta được A(9;10;0).

    Phương án d) sai: từ phương trình tham số của (d) ta suy ra phương trình chính tắc của (d)\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z - 4}{-
1}.

  • Câu 18: Vận dụng
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{1} = \frac{y - 1}{- 1} =
\frac{z - 2}{- 1}d_{2}:\left\{
\begin{matrix}
x = t \\
y = 3 \\
z = - 2 + t \\
\end{matrix} \right.. Phương trình đường vuông góc chung của hai đường thẳng d_{1},\ d_{2} là.

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm

    Gọi A = d \cap d_{1},B = d \cap
d_{2}

    A \in d_{1} \Rightarrow A(2 + a;1 - a;2
- a)

    B \in d_{2} \Rightarrow B(b;3; - 2 +
b)

    \overrightarrow{AB} = ( - a + b - 2;a +
2;a + b - 4)

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (1; - 1; -
1)

    d_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = (1;0;1)

    \left\{ \begin{matrix}
d\bot d_{1} \\
d\bot d_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AB}\bot\overrightarrow{a_{1}} \\
\overrightarrow{AB}\bot\overrightarrow{a_{2}} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AB}.\overrightarrow{a_{1}} = 0 \\
\overrightarrow{AB}.\overrightarrow{a_{2}} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow A(2;1;2);B(3;3;1)

    d đi qua điểm A(2;1;2) và có vectơ chỉ phương \overrightarrow{a_{d}} = \overrightarrow{AB} =
(1;2; - 1)

    Vậy phương trình của d\left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 2t \\
z = 2 - t \\
\end{matrix} ight.\ .

  • Câu 19: Vận dụng
    Tính khoảng cách

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.

    Hướng dẫn:

    Ta biểu diễn các điểm N, P, C, G theo a, b, c được:

    N\left( {\frac{a}{2},0,c} ight);P\left( {0,b,\frac{c}{2}} ight);\,C\left( {a,b,0} ight);\,\,\,G\left( {a,b,c} ight)

    Từ đó, ta tính được các vecto tương ứng:

    \overrightarrow {NP}  = \left( { - \frac{a}{2},b, - \frac{c}{2}} ight);\,\,\,\overrightarrow {CG}  = \left( {0,0,c} ight);\,\,\overrightarrow {PC}  = \left( {a,0, - \frac{c}{2}} ight)

    Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:

    \begin{array}{l}\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight] = \left( { - bc, - \dfrac{{ac}}{2},0} ight) =  > \left| {\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight]} ight| = \dfrac{c}{2}\sqrt {{a^2} + 4{b^2}} \\\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight].\overrightarrow {PC}  =  - abc =  > d\left( {NP,CG} ight) = \dfrac{{2ab\sqrt {{a^2} + 4{b^2}} }}{{{a^2} + 4{b^2}}}\end{array}

  • Câu 20: Thông hiểu
    Chọn phương án chính xác

    Trong không gian với hệ tọa độ Oxyz cho điểm A(1;2;3) Khoảng cách từ A đến trục Oy bằng

    Hướng dẫn:

    Trục Oy có véc-tơ chỉ phương \overrightarrow{j} = (0;1;0) và đi qua O(0;0;0).

    Áp dụng công thức, ta có d(A;Oy) =
\frac{\left| \left\lbrack \overrightarrow{j};\overrightarrow{OA}
\right\rbrack \right|}{\left| \overrightarrow{j} \right|} =
\sqrt{10}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo