Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = 2x^{2} +
\frac{500}{x}. Xét tính đúng sai của các mệnh đề sau:

    a) f'(x) = 0 \Leftrightarrow x =
5. Đúng||Sai

    b) \lim_{x \rightarrow + \infty}f(x) =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số trên (0;5) là 150. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (0; +
\infty) là 150. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = 2x^{2} +
\frac{500}{x}. Xét tính đúng sai của các mệnh đề sau:

    a) f'(x) = 0 \Leftrightarrow x =
5. Đúng||Sai

    b) \lim_{x \rightarrow + \infty}f(x) =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số trên (0;5) là 150. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (0; +
\infty) là 150. Đúng||Sai

    Ta có: f'(x) = 4x - \frac{500}{x^{2}}
= \frac{4x^{3} - 500}{x^{2}}

    f'(x) = 0 \Leftrightarrow 4x^{3} -
500 = 0 \Leftrightarrow x = 5.

    Bảng biến thiên.

    .

    Vậy giá trị nhỏ nhất của hàm số trên khoảng (0; + \infty) 150 khi x =
5.

    a) đúng.

    b) sai.

    c) sai.

    d) đúng.

  • Câu 2: Thông hiểu
    Xác định m để hàm số nghịch biến trên khoảng

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá cho thuê mỗi căn là 3000000 đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm 200000 đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?

    Hướng dẫn:

    Đặt số tiền tăng thêm là 200000x (đồng)

    Giá tiền mỗi căn hộ một tháng là 3000000 + 200000x (đồng)

    Số căn hộ bị trống là 50 - 2x (phòng)

    Số tiền thu được mỗi tháng là: \left(
3.10^{6} + 2.10^{5}x ight)(50 - 2x) (đồng)

    Đặt f(x) = \left( 3.10^{6} + 2.10^{5}x
ight)(50 - 2x)

    Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số f(x), giá trị lớn nhất của hàm số f(x) tại đỉnh của parabol.

    Hay:

    f'(x) = 2.10^{5}(50 - 2x) - 2\left(
3.10^{6} + 2.10^{5}x ight) = 0 \Leftrightarrow x = 5

    Vậy công ty niêm yết giá tiền là: 3.10^{6} + 2.10^{5}.5 = 4.10^{6} đồng để được doanh thu là lớn nhất.

  • Câu 4: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Tính giá trị nhỏ nhất của hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty).

    Hướng dẫn:

    Cách 1:

    y = 3x + \frac{4}{x^{2}} = \frac{3x}{2}
+ \frac{3x}{2} + \frac{4}{x^{2}} \geq
3\sqrt[3]{\frac{3x}{2}.\frac{3x}{2}.\frac{4}{x^{2}}} =
3\sqrt[3]{9}

    Dấu " = " xảy ra khi \frac{3x}{2} = \frac{4}{x^{2}}
\Leftrightarrow x = \sqrt[3]{\frac{8}{3}}.

    Vậy \min_{(0; + \infty)}y =
3\sqrt[3]{9}

    Cách 2:

    Xét hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty)

    Ta có y = 3x + \frac{4}{x^{2}}
\Rightarrow y' = 3 - \frac{8}{x^{3}}

    Cho y' = 0 \Leftrightarrow
\frac{8}{x^{3}} = 3 \Leftrightarrow x^{3} = \frac{8}{3} \Leftrightarrow
x = \sqrt[3]{\frac{8}{3}}

    \Rightarrow \min_{(0; + \infty)}y =
y\left( \sqrt[3]{\frac{8}{3}} ight) = 3\sqrt[3]{9}

  • Câu 5: Thông hiểu
    Chọn phương án đúng

    Trên đoạn \lbrack 0;3brack, hàm số y = - x^{3} + 3x đại giá trị lớn nhất tại điểm

    Hướng dẫn:

    Tập xác định: \mathbb{R}.

    y' = - 3x^{2} + 3

    y' = 0 \Leftrightarrow - 3x^{2} + 3
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in (0;3) \\
x = - 1 otin (0;3) \\
\end{matrix} ight.

    Ta có y(0) = 0;y(1) = 2;y(3) = -
18.

    Vậy max_{\lbrack 0;3brack}y = y(1) =
2.

  • Câu 6: Vận dụng
    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

    Hướng dẫn:

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 7: Thông hiểu
    Xác định giá trị tham số m

    Cho hàm số y = 2x^{3} - 3x^{2} -
m. Trên đoạn \lbrack -
1;1brack hàm số có giá trị nhỏ nhất là - 1. Tìm giá trị của m?

    Hướng dẫn:

    Ta có: y' = 6x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \min_{\lbrack -
1;1brack}y = - 5 - m \Leftrightarrow - 1 = - 5 - m \Leftrightarrow m =
- 4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 8: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Hướng dẫn:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 9: Thông hiểu
    Tìm m thỏa mãn yêu cầu đề bài

    Gọi m là giá trị nhở nhất của hàm số y = x + \frac{4}{x} trên khoảng (0; + \infty). Tìm m

    Hướng dẫn:

    \begin{matrix}
y' = 1 - \frac{4}{x^{2}} \\
y' = 0 \Leftrightarrow x = \pm 2;\ \ \ \ \ x = 2 \in (0; + \infty).
\\
\\
\end{matrix}

    Bảng biến thiên:

    Suy ra giá trị nhỏ nhất của hàm số bằng y(2) = 4 \Rightarrow m = 4.

  • Câu 10: Thông hiểu
    Xác định tích các giá trị của m

    Cho hàm số y = \frac{x - m^{2}}{x +
2} với m là tham số. Tích tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack - 1;1brack bằng \frac{1}{4} bằng:

    Hướng dẫn:

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x \in \lbrack - 1;1brack

    \Rightarrow \max_{\lbrack - 1;1brack}y
= y(1) = \frac{1 - m^{2}}{3} = \frac{1}{4} \Leftrightarrow m = \pm
\frac{1}{2}

    Vậy tích tất cả các giá trị của tham số m bằng -
\frac{1}{4}.

  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Độ giảm huyết áp của một bệnh nhân G(x) =
0,025x^{2}(30 - x) trong đó x là số miligam thuộc được tiêm cho bệnh nhân (0 < x < 30). Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:

    Hướng dẫn:

    Ta có: G(x) = 0,025x^{2}(30 - x)
\Rightarrow G'(x) = 1,5x - 0,075x^{2}

    \Rightarrow G'(x) = 0
\Leftrightarrow 1,5x - 0,075x^{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là x = 20(mg).

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    \begin{matrix}  y' = 4{x^3} - 4x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Chọn đáp án đúng

    Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Tìm giá trị lớn nhất của hàm số f(x) = -
x^{3} + 48x trên \lbrack -
7;5brack?

    Hướng dẫn:

    Ta có: f'(x) = - 3x^{2} +
48

    \Rightarrow f'(x) = 0
\Leftrightarrow - x^{3} + 48x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
x = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(0) = 0;f( - 7) = 7 \\
f( - 4) = - 128 \\
f(4) = 128;f(5) = 115 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 7;5brack}f(x) =
128

  • Câu 14: Nhận biết
    Tính giá trị nhỏ nhất

    Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng - 2.

  • Câu 15: Thông hiểu
    Chọn khẳng định đúng

    Xét hàm số y = f(x) với x \in \lbrack - 1;5brack có bảng biến thiên như sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    “Hàm số đã cho không tồn taị GTLN trên đoạn \lbrack - 1;5brack “ Đúng. Vì \lim_{x ightarrow 5^{-}}y = + \infty nên hàm số không có GTLN trên đoạn \lbrack -
1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1x = 2 trên đoạn \lbrack - 1;5brack”. Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1 và đạt GTLN tại x = 5 trên đoạn \lbrack - 1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x =
2 trên đoạn \lbrack -
1;5brack\lim_{x ightarrow
5^{+}}y = + \infty.

    “Hàm số đã cho đạt GTNN tại x =
0 trên đoạn \lbrack -
1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= - x^{3} - 6x^{2} + (4m - 9)x + 4 nghịch biến trên khoảng ( - \infty; - 3) là:

    Hướng dẫn:

    Ta có: y' = - 3x^{2} - 12x + 4m -
9

    Hàm số nghịch biến trên khoảng ( -
\infty; - 3) khi y' \leq
0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow - 3x^{2} - 12x + 4m - 9
\leq 0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow 4m \leq 3x^{2} + 12x +
9;\forall x \in ( - \infty; - 3)

    Đặt f(x) = 3x^{2} + 12x + 9 ta có: f'(x) = 6x + 12. Ta có bảng biến thiên của f(x) như sau:

    Dựa vào bảng biến thiên ta thấy

    4m \leq 3x^{2} + 12x + 9;\forall x \in (
- \infty; - 3)

    \Leftrightarrow 4m \leq 0
\Leftrightarrow m \leq 0

    Vậy ( - \infty;0brack là giá trị của tham số m cần tìm.

  • Câu 17: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn \lbrack - 1\ ;\
3brack như hình vẽ bên. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy: \max_{\lbrack - 1;3brack}f(x) = 5 tại x = 0.

    Suy ra \max_{\lbrack - 1;3brack}f(x) =
f(0).

  • Câu 18: Nhận biết
    Tìm min max của hàm số f(x)

    Cho hàm số f(x) = - 2x^{4} + 4x^{2} +10. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [0;2]

    Hướng dẫn:

    Đạo hàm f'(x) = - 8x^{3} +8x

    f'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \in \lbrack 0;2brack \\x = 1 \in \lbrack 0;2brack \\x = - 1 otin \lbrack 0;2brack \\\end{matrix} ight.

    Ta có \left\{ \begin{matrix}f(0) = 10 \\f(1) = 12 \\f(2) = - 6 \\\end{matrix} ight. \RightarrowM = \max_{\lbrack 0;2brack}f(x) = 12;\ m = \min_{\lbrack0;2brack}f(x) = - 6

  • Câu 19: Vận dụng
    Định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất M của hàm số f(x) = \sqrt{x - 1} + \sqrt{3 - x} -2\sqrt{- x^2 + 4x - 3}.

    Hướng dẫn:

    TXĐ: D = \lbrack 1;3brack

    Đặt t = \sqrt{x - 1} + \sqrt{3 - x}\ \ \
\left( \sqrt{2} \leq t \leq 2 ight)

    \Rightarrow t^{2} = x - 1 + 3 - x +
2\sqrt{x - 1}\sqrt{3 - x}

    \Rightarrow - 2\sqrt{- x^{2} + 4x - 3} =
2 - t^{2}

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = - t^{2} + t + 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = - t^{2} + t +
2 xác định và liên tục trên \left\lbrack \sqrt{2};2
ightbrack.

    Đạo hàm g'(t) = - 2t + 1 < 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) nghịch biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g\left( \sqrt{2} ight) =
\sqrt{2}\overset{}{ightarrow}\max_{\lbrack 1;3brack}f(x) =
\sqrt{2}.

    Bình luận: Sau khi đọc xong lời giải trên sẽ có nhiều bạn đọc thắc mắc là tại sao biết được t \in \left\lbrack
\sqrt{2};2 ightbrack.

    Từ phép đặt ẩn phụ t = \sqrt{x - 1} +
\sqrt{3 - x} = h(x).

    Đạo hàm h'(x) = \frac{1}{2\sqrt{x -
1}} - \frac{1}{2\sqrt{3 - x}}

    \Rightarrow h'(x) = 0
\Leftrightarrow x = 2 \in \lbrack 1;3brack

    Ta có \left\{ \begin{matrix}
h(1) = \sqrt{2} \\
h(2) = 2 \\
h(3) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\min_{\lbrack 1;3brack}h(x) = \sqrt{2} \\
\max_{\lbrack 1;3brack}h(x) = 2 \\
\end{matrix} ight.

    \Rightarrow \sqrt{2} \leq h(x) \leq 2
\Rightarrow \sqrt{2} \leq t \leq 2

  • Câu 20: Thông hiểu
    Tính giá trị biểu thức

    Tập giá trị của hàm số f(x) = x +
\frac{9}{x} với x \in \lbrack
2;4brack là đoạn \lbrack
a;bbrack. Tính P = b -
a.

    Hướng dẫn:

    Ta có: f'(x) = 1 - \frac{9}{x^{2}} =
\frac{x^{2} - 9}{x^{2}}

    ightarrow f'(x) = 0

    \Leftrightarrow x^{2} - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \in \lbrack 2;4brack \\
x = - 3 otin \lbrack 2;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(2) = \frac{13}{2} \\
f(3) = 6 \\
f(4) = \frac{25}{4} \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack 2;4brack}f(x) = 6;\max_{\lbrack 2;4brack}f(x) =
\frac{13}{2}

    \Rightarrow \lbrack a;bbrack =
\left\lbrack 6;\frac{13}{2} ightbrack \Rightarrow P = b - a = \frac{13}{2} - 6 =
\frac{1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo