Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Với giá trị nào của x thì hàm số y = x^{2} + \frac{1}{x} đạt giá trị nhỏ nhất trên khoảng (0; +
\infty)?

    Hướng dẫn:

    TXD: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    y' = 2x - \frac{1}{x^{2}}, y' = 0 \Leftrightarrow x =
\frac{1}{\sqrt[3]{2}}.

    Dựa vào BBT thì x =
\frac{1}{\sqrt[3]{2}} hàm số đạt giá trị nhỏ nhất trên (0; + \infty).

  • Câu 2: Nhận biết
    Tìm câu sai

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có đồ thị như hình bên.

    Khẳng định nào sau đây là sai?

    Hướng dẫn:

    Dựa vào đồ thị suy ra hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.

  • Câu 3: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1 trên đoạn \lbrack 1;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 4: Thông hiểu
    Tìm các số thực dương của tham số m

    Có bao nhiêu số thực dương m để giá trị lớn nhất của hàm số y = x^{3} - 3x +
1 trên đoạn \lbrack m + 1;m +
2brack bằng 53?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số y = x^{3} - 3x + 1 trên đoạn \lbrack m + 1;m + 2brack bằng 53 thì m + 1
> 1 \Leftrightarrow m > 0.

    Khi đó \max_{\lbrack m + 1;m +
2brack}f(x) = f(m + 2) = (x + 2)^{3} - 3(m + 2) + 1 = 53

    \Leftrightarrow m^{3} + 6m^{2} + 9m - 50
= 0 \Leftrightarrow m = 2

    Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 5: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
5;7brack như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra \min_{\lbrack - 5;7brack}y = 2

  • Câu 6: Thông hiểu
    Chọn mệnh đề đúng

    Gọi y_{CT} là giá trị cực tiểu của hàm số f(x) = x^{2} +
\frac{2}{x} trên (0; +
\infty). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có:

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2x^{3} - 2}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Qua điểm x = 1 thì hàm số đổi dấu từ '' - '' sang '' + '' trong khoảng (0; + \infty).

    Suy ra trên khoảng (0; + \infty) hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.

    Vậy y_{CT} = \min_{(0; +
\infty)}y.

  • Câu 7: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 8: Nhận biết
    Khẳng định nào sau đây đúng?
  • Câu 9: Thông hiểu
    Xác định giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Đáp án là:

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Ta có P'(x) = - 3x^{2} + 48x + 780;\
\ P'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 10 \\
x = 26\ \ \  \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là x =
- 1;\ x = 0;\ x = 1.

    "Hàm số đạt giá trị lớn nhất bằng -
3." sai vì hàm số không có giá trị lớn nhất.

    "Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là x
= - 1x = 1.

  • Câu 12: Thông hiểu
    Ghi đáp án vào ô trống

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) và có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta nhận thấy:

    Hàm số có giá trị nhỏ nhất bằng 2, đạt tại x
= 1 \in \lbrack - 5;7).

    Ta có \left\{ \begin{matrix}
f(x) \leq 9,\forall x \in \lbrack - 5;7) \\
\lim_{x ightarrow 7^{-}}f(x) = 9 \\
\end{matrix} ight..

    7 otin \lbrack - 5;7) nên không tồn tại x_{0} \in \lbrack -
5;7) sao cho f\left( x_{0} ight)
= 9.

    Do đó hàm số không đạt GTLN trên \lbrack
- 5;7).

    Vậy \min_{\lbrack - 5;7)}f(x) =
2 và hàm số không đạt giá trị lớn nhất trên \lbrack - 5;7).

  • Câu 14: Vận dụng
    Tìm giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất M của hàm số f(x) = \sqrt{x} + \sqrt{2 - x} +
2\sqrt{2x - x^{2}}.

    Hướng dẫn:

    TXĐ: D = \lbrack 0;2brack.

    Đặt t = \sqrt{x} + \sqrt{2 - x}\ \left(
\sqrt{2} \leq t \leq 2 ight).

    \Rightarrow t^{2} = x + 2\sqrt{x}\sqrt{2
- x} + 2 - x

    \Rightarrow 2\sqrt{2x - x^2} = t^2 -2

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{2} + t - 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = t^2 + t - 2 xác định và liên tục trên \left\lbrack
\sqrt{2};2 ightbrack.

    Đạo hàm g'(t) = 2t + 1 > 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) đồng biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g(2) = 4 \Rightarrow \max_{\lbrack 0;2brack}f(x)
= 4.

  • Câu 15: Thông hiểu
    Tính GTNN của hàm số trên khoảng

    Giả sử m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng \left( {0; + \infty } ight). Tính giá trị của m.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 1 - \dfrac{4}{{{x^2}}} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tính GTNN của hàm số trên khoảng

    => Giá trị nhỏ nhất của hàm số bằng 4

    => y(2) = 4

    => m = 4

  • Câu 16: Thông hiểu
    Giá trị của biểu thức M - 2m

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x\sqrt {1 - {x^2}}. Giá trị của biểu thức M - 2m là:

    Hướng dẫn:

    Điều kiện xác định: 1 - {x^2} \geqslant 0 \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = x\sqrt {1 - {x^2}} trên \left[ { - 1;1} ight] ta có:

    f'\left( x ight) = \sqrt {1 - {x^2}}  - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }}

    Phương trình f'\left( x ight) = 0

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 < x < 1} \\   {1 - 2{x^2} = 0} \end{array} \Rightarrow x \in \left\{ { - \frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} ight\}} ight.

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = 0} \\   {f\left( {\dfrac{{ - \sqrt 2 }}{2}} ight) =  - \dfrac{1}{2}} \\   {f\left( {\dfrac{{\sqrt 2 }}{2}} ight) = \dfrac{1}{2}} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\max f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = M = \dfrac{1}{2}} \\   {\mathop {\min f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = m = \dfrac{1}{2}} \end{array}} ight.

    => M - 2m = \frac{1}{2} - 2\left( { - \frac{1}{2}} ight) = \frac{3}{2}

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu
    Chọn đáp án đúng:

    Giá trị lớn nhất của hàm số y = f(x) = 2x^{3} + 3x^{2} - 12x + 2 trên đoạn [-1;2] có giá trị là một số thuộc khoảng nào dưới đây?

  • Câu 19: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 20: Thông hiểu
    Ghi đáp án vào ô trống

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo