Tìm giá trị lớn nhất của hàm số
TXĐ: .
Đạo hàm
Ta có
Tìm giá trị lớn nhất của hàm số
TXĐ: .
Đạo hàm
Ta có
Hàm số trên đoạn
có giá trị nhỏ nhất bằng:
Ta có:
. Khi đó
suy ra
.
Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể được một nhà sinh học mô tả bởi hàm số
, trong đó
là số lượng cá thể sau
giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể
bắt đầu giảm?
Xét ta có:
Ta thấy hàm số đạt cực đại tại và
nên sau
giờ thì cá thể bắt đầu giảm.
Tìm các giá trị của tham số m để bất phương trình nghiệm đúng với mọi
Xét hàm số ta có:
=>
Ta có:
Gọi giá trị nhỏ nhất của hàm số trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Tìm giá trị lớn nhất và giá trị nhỏ nhất
của hàm số
.
TXĐ:
Ta có:
Ta có
Cho hàm số với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Cho hàm số với
là tham số. Tích tất cả các giá trị của tham số
để giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
bằng:
Ta có:
Vậy tích tất cả các giá trị của tham số bằng
.
Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích và chiều sâu
(như hình vẽ).
Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.
Xét tính đúng sai của các khẳng định sau:
a) Thể tích bể chứa được tính theo công thức . Sai|| Đúng
b) Mối liên hệ giữa x và y là . Đúng||Sai
c) Tổng diện tích mặt bên của bể tính theo x, y là . Đúng||Sai
d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là . Sai|| Đúng
Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích và chiều sâu
(như hình vẽ).
Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.
Xét tính đúng sai của các khẳng định sau:
a) Thể tích bể chứa được tính theo công thức . Sai|| Đúng
b) Mối liên hệ giữa x và y là . Đúng||Sai
c) Tổng diện tích mặt bên của bể tính theo x, y là . Đúng||Sai
d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là . Sai|| Đúng
a) Thể tích của bể là .
b) Với .
c) Tổng diện tích mặt bên gồm 4 hình chữ nhật (trước, sau, trái, phải) là:
d) Tổng diện tích của bể là:
Vì chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể nên chi phí cần có là
Đặt ta có:
ta có bảng biến thiên như sau:
Với và thì chi phí xây dựng bể là thấp nhất.
Cho hàm số có bảng biến thiên như hình dưới đây.

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.
Giá trị nhỏ nhất của hàm số trên tập xác định của nó là
Tập xác định của hàm số là:
Ta có
Bảng biến thiên
Từ bảng biến thiên suy ra khi
.
Cho hàm số xác định, liên tục trên và có bảng biến thiên:
Khẳng định nào sau đây là khẳng định đúng?
Đáp án “Hàm số có giá trị cực tiểu bằng ." sai vì hàm số có
điểm cực trị.
Đáp án “Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng -1” sai vì hàm số có giá trị cực tiểu khi
.
Đáp án “Hàm số đạt cực đại tại và đạt cực tiểu tại x = 1” sai vì hàm số không có GTLN và GTNN trên
.
Đáp án “Hàm số có đúng một cực trị” đúng vì hàm số đạt cực đại tại và đạt cực tiểu tại
.
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Số tiền hãng thu được khi đại lí nhập chiếc điện thoại là
.
Ta có: .
Khi đó,
Học sinh tự vẽ bảng biến thiên
Ta suy ra:
Đại lí nhập cùng lúc chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với
(đồng).
Đáp số: .
Giá trị nhỏ nhất của hàm số trên khoảng
bằng bao nhiêu?
Áp dụng bất đẳng thức Cô – si ta có:
Dấu bằng xảy ra khi (vì
).
Vậy
Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ bên. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
. Giá trị của
là
Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn là
đạt được tại
và GTNN của hàm số số trên đoạn
là
đạt được tại
Cho hàm số có đồ thị như hình bên.
Giá trị lớn nhất của hàm số này trên đoạn bằng:
Nhận thấy trên đoạn đồ thị hàm số có điểm cao nhất có tọa độ
Giá trị lớn nhất của hàm số này trên đoạn
bằng 4
Cho hàm số . Gọi M là giá trị lớn nhất của hàm số trên khoảng
. Tìm M.
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên ta có M = 1
Cho hàm số , đồ thị của hàm số
là đường cong như hình vẽ:
Giá trị nhỏ nhất của hàm số trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Giả sử m là giá trị nhỏ nhất của hàm số trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: