Với giá trị nào của thì hàm số
đạt giá trị nhỏ nhất trên khoảng
?
TXD: .
,
Dựa vào BBT thì hàm số đạt giá trị nhỏ nhất trên
.
Với giá trị nào của thì hàm số
đạt giá trị nhỏ nhất trên khoảng
?
TXD: .
,
Dựa vào BBT thì hàm số đạt giá trị nhỏ nhất trên
.
Cho hàm số xác định trên
và có đồ thị như hình bên.
Khẳng định nào sau đây là sai?
Dựa vào đồ thị suy ra hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.
Tìm giá trị lớn nhất của hàm số trên đoạn
Đạo hàm
Ta có
Cách 2. Sử dụng chức năng MODE 7 và nhập hàm với thiết lập Start 1, End
Step
.
Quan sát bảng giá trị ta thấy giá trị lớn nhất
bằng
khi
Có bao nhiêu số thực dương để giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số trên đoạn
bằng
thì
.
Khi đó
Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số có bảng biến thiên trên đoạn
như sau:
Mệnh đề nào sau đây đúng?
Từ bảng biến thiên ta suy ra
Gọi là giá trị cực tiểu của hàm số
trên
. Mệnh đề nào sau đây là đúng?
Ta có:
Qua điểm thì hàm số đổi dấu từ
sang
trong khoảng
.
Suy ra trên khoảng hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.
Vậy
Cho hàm số f(x) có đạo hàm trên . Đồ thị của hàm số
trên đoạn
là đường cong hình bên. Mệnh đề nào dưới đây đúng?
Dựa vào thị của hàm số trên đoạn
ta thấy
.
Ta có bảng BBT:
Do đó .
Cho hàm số với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Ta có .
Bảng biến thiên
Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.
Cho hàm số có bảng biến thiên sau:
Khẳng định nào sau đây là đúng?
"Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là
"Hàm số đạt giá trị lớn nhất bằng " sai vì hàm số không có giá trị lớn nhất.
"Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là và
Gọi lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Gọi lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Cho hàm số và có bảng biến thiên trên
như sau:
Mệnh đề nào sau đây là đúng?
Dựa vào bảng biến thiên, ta nhận thấy:
Hàm số có giá trị nhỏ nhất bằng , đạt tại
.
Ta có .
Mà nên không tồn tại
sao cho
.
Do đó hàm số không đạt GTLN trên
Vậy và hàm số không đạt giá trị lớn nhất trên
.
Tìm giá trị lớn nhất của hàm số
.
TXĐ:
Đặt
Khi đó, bài toán trở thành Tìm giá trị lớn nhất của hàm số
trên đoạn
.
Xét hàm số xác định và liên tục trên
Đạo hàm .
Suy ra hàm số đồng biến trên đoạn
Do đó
Giả sử m là giá trị nhỏ nhất của hàm số trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số . Giá trị của biểu thức
là:
Điều kiện xác định:
Xét hàm số trên
ta có:
Phương trình
Ta lại có:
=>
Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?
Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?
Giá trị lớn nhất của hàm số trên đoạn [-1;2] có giá trị là một số thuộc khoảng nào dưới đây?
Cho hàm số có bảng biến thiên như hình dưới đây.

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.
Người ta muốn xây một cái bể hình hộp đứng có thể tích , biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Người ta muốn xây một cái bể hình hộp đứng có thể tích , biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: