Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định phương trình mặt cầu tương ứng

    Mặt cầu tâm I(2;4;6) tiếp xúc với trục Oz có phương trình:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc trục Ox\Leftrightarrow R = d(I;Oz)

    \Leftrightarrow R = \sqrt{x_{I}^{2} +
y_{I}^{2}} = \sqrt{20}.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 20.

    Lưu ý : Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.

  • Câu 2: Nhận biết
    Xác định đường kính mặt cầu

    Đường kính của mặt cầu (S):x^{2} + y^{2}
+ (z - 1)^{2} = 4 bằng:

    Hướng dẫn:

    Mặt cầu (S) có bán kính R = 2 suy ra đường kính có độ dài: 2R = 4.

    Đường kính của mặt cầu (S):x^{2} + y^{2}
+ (z - 1)^{2} = 4 bằng: 4.

  • Câu 3: Vận dụng
    Tính diện tích mặt cầu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = a\sqrt 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được:

    Hướng dẫn:

     Tính diện tích mặt cầu

    Gọi O = AC \cap BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.

    Gọi I là trung điểm SC, suy ra IO\parallel SA \Rightarrow IO \bot \left( {ABCD} ight)

    Do đó IO là trục của hình vuông ABCD, suy ra IA = IB = IC = ID.  (1)

    Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS = IC = IA.   (2)

    Từ (1) và (2), ta có: R = IA = IB = IC = ID = IS = \frac{{SC}}{2} = a\sqrt 2

    Vậy diện tích mặt cầu S = 4\pi {R^2} = 8\pi {a^2} (đvdt).

  • Câu 4: Thông hiểu
    Tìm giá trị tham số m theo yêu cầu

    Với giá trị nào của m thì mặt phẳng (Q):x
+ y + z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} - 2(m + 1)x + 2my - 2mz
+ 2m^{2} + 9 = 0?

    Hướng dẫn:

    a = m + 1;b = - m;c = m;d = 2m^{2} +
9. Tâm I(m + 1, - m,m)

    \Rightarrow R^{2} = (m + 1)^{2} + m^{2} +
m^{2} - 2m^{2} - 9 = m^{2} + 2m - 8 > 0

    \Rightarrow m < - 4 \vee m >
2. (P) cắt (S) khi:

    d(I,P) < R \Leftrightarrow \frac{|m +
4|}{\sqrt{3}} < \sqrt{m^{2} + 2m - 8}

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 4 \\
m > 5 \\
\end{matrix} \right.

  • Câu 5: Vận dụng
    Tính góc tạo bởi hai mặt phẳng

    Cho mặt cầu (S): x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 2 = 0 và điểm A( -
6, - 1,3). Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua A. Gọi (P) là tiếp điểm của (S) tại M và (Q) là mặt phẳng qua M cắt hình cầu (S) theo hình trơn (C) có diện tích bằng \frac{1}{2} diện tích hình trơn lớn của (S). Tính góc tạo bởi (P) và (Q).

    Hướng dẫn:

    Diện tích thiết diện r^{2}\pi = \frac{\pi
R^{2}}{2}

    \Leftrightarrow \left( R^{2} - IH^{2}
\right)\pi = \frac{\pi R^{2}}{2} \Leftrightarrow IH =
\frac{R\sqrt{2}}{2}

    \overrightarrow{IM}\bot(P);\ \
\overrightarrow{IH}\bot(Q) \Rightarrow \overrightarrow{MIH} =
\alpha

    Là góc tạ bởi (P)(Q)

    \Rightarrow \cos\alpha = \frac{IH}{IM} =
\frac{\sqrt{2}}{2} \Rightarrow \alpha = 45^{o}

  • Câu 6: Thông hiểu
    Viết phương trình mặt phẳng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -2x - 4y - 6z - 2 = 0 và mặt phẳng (\alpha):4x + 3y - 12z + 10 = 0 . Mặt phẳng tiếp xúc với (S) và song song với (\alpha) có phương trình là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R = \sqrt{1^{2} + 2^{2} + 3^{2} + 2} =
4

    Gọi (\beta) là mặt phẳng tiếp xúc với (S) và song song với (\alpha).

    (\beta)//(\alpha) \Rightarrow
(\beta):4x + 3y - 12z + D = 0\ \ (D \neq 10)

    Mặt phẳng (\beta) tiếp xúc với mặt cầu (S) \Leftrightarrow d\left( I,(\beta) \right) =
R

    \Leftrightarrow \frac{|4.1 + 3.2 - 12.3 +
D|}{\sqrt{4^{2} + 3^{2} + ( - 12)^{2}}} = 4

    \Leftrightarrow |D - 26| = 52
\Leftrightarrow \left\lbrack \begin{matrix}
D = 78 \\
D = - 26 \\
\end{matrix} \right. (thỏa điều kiện)

    Vậy phương trình mặt phẳng (\beta):4x +
3y - 12z + 78 = 0 hoặc (\beta):4x +
3y - 12z - 26 = 0 .

    Lưu ý: Nếu hình dung phác họa hình học bài toán được thì ta có thể dự đoán được có 2 mặt phẳng thỏa mãn yêu cầu đề bài.

  • Câu 7: Thông hiểu
    Tính diện tích đường tròn

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):x + \sqrt{2}y - z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} = 5 theo giao tuyến là đường tròn có diện tích là:

    Hướng dẫn:

    Mặt cầu (S) có tâm O(0;0;0) và bán kính R = \sqrt{5}

    Khoảng cách từ O đến (P): d\left( O;(P) ight) = \frac{3}{2}

    Bán kính đường tròn giao tuyến

    r = \sqrt{R^{2} - \left\lbrack d\left(
O;(P) ight) ightbrack^{2}} = \sqrt{5 - \frac{9}{4}} =
\sqrt{\frac{11}{4}}

    Diện tích đường tròn giao tuyến S = 2\pi
r^{2} = \frac{11\pi}{4}.

  • Câu 8: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là mét), một ngon hải đăng được đặt ở vị trí I(20;\ 35;\
60), biết rằng ngọn hải đăng được thiết kế với bán kính phủ sáng là 4 km.

    a) Phương trình mặt cầu để mô tả ranh giới vùng phủ sáng trên biển của hải đăng là: (x - 20)^{2} + (y - 35)^{2}
+ (z - 60)^{2} = 4^{2}.Sai||Đúng

    b) Điểm B( - 290;\ \  - 165;\ \
3660) nằm phía trong mặt cầu đó.Đúng||Sai

    c) Nếu người đi biển ở vị trí C(541\ ;\
137\ ;\  - 690) thì không thể nhìn được ánh sáng từ ngọn hải đăng. Sai||Đúng

    d) Giả sử người đi biển di chuyển theo đường thẳng từ vị trí điểm I(20;\ \ 35;\ \ 60) đến vị trí D(4020;\ \ 35;\ \ 3060). Vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển vẫn còn nhìn thấy được ánh sáng từ ngọn hải đăng là M( - 3180;\ 35;\ 2460). Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là mét), một ngon hải đăng được đặt ở vị trí I(20;\ 35;\
60), biết rằng ngọn hải đăng được thiết kế với bán kính phủ sáng là 4 km.

    a) Phương trình mặt cầu để mô tả ranh giới vùng phủ sáng trên biển của hải đăng là: (x - 20)^{2} + (y - 35)^{2}
+ (z - 60)^{2} = 4^{2}.Sai||Đúng

    b) Điểm B( - 290;\ \  - 165;\ \
3660) nằm phía trong mặt cầu đó.Đúng||Sai

    c) Nếu người đi biển ở vị trí C(541\ ;\
137\ ;\  - 690) thì không thể nhìn được ánh sáng từ ngọn hải đăng. Sai||Đúng

    d) Giả sử người đi biển di chuyển theo đường thẳng từ vị trí điểm I(20;\ \ 35;\ \ 60) đến vị trí D(4020;\ \ 35;\ \ 3060). Vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển vẫn còn nhìn thấy được ánh sáng từ ngọn hải đăng là M( - 3180;\ 35;\ 2460). Sai||Đúng

    a) Sai

    Mặt cầu tâm I(20;\ 35;\ 60), bán kính R = 4\ km\ \  = 4000\ m có phương trình là:

    (x - 20)^{2} + (y - 35)^{2} + (z -
60)^{2} = 4000^{2}

    b) Đúng

    Ta có: IB = \sqrt{( - 310)^{2} + ( -
200)^{2} + 3600^{2}} \approx 3618,9 < R.

    Do đó, điểm B nằm phía trong mặt cầu đó.

    c) Sai

    Với C(541\ ;\ 137\ ;\  - 690), ta có: IC = \sqrt{521^{2} + 102^{2} + ( -
750)^{2}} \approx 918,9 < R.

    Do đó, nếu người đi biển đứng ở vị trí C(541\ ;\ 137\ ;\  - 690) thì vẫn nhìn thấy ánh sáng từ ngọn hải đăng.

    d) Sai

    Gọi M(x\ ;\ \ y\ ;\ \ z) là điểm cuối cùng trên đoạn thẳng ID mà người đi biển vẫn còn nhìn thấy ánh sáng của ngon hải đăng.

    Khi đó, IM = R = 4000m.

    Ta có: ID = \sqrt{4000^{2} + 0^{2} +
3000^{2}} = 5000m.

    \overrightarrow{IM} = (x - 20; y -35; z - 60); \overrightarrow{ID} = (4000; 0;3000).

    M thuộc đoạn thẳng ID\frac{IM}{ID} = \frac{4000}{5000} =
\frac{4}{5} nên \overrightarrow{IM}
= \frac{4}{5}\overrightarrow{ID}.

    \Leftrightarrow \left\{ \begin{matrix}x - 20 = \dfrac{4}{5}.4000 \\y - 35 = \dfrac{4}{5}.0 \\z - 60 = \dfrac{4}{5}.3000\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}x = 3220 \\y = 35 \\z = 2460\end{matrix} \right.\Rightarrow M(3220 ;35 ;2460).

  • Câu 9: Thông hiểu
    Tìm phương trình mặt cầu (S)

    Viết phương trình mặt cầu (S) tâm I( - 2,1, - 1) qua A(4,3, - 2).

    Hướng dẫn:

    Ta có:

    M(x,y,z) \in (S) \Rightarrow IM^{2} =
IA^{2}

    \Leftrightarrow (x + 2)^{2} + (y -
1)^{2} + (z + 1)^{2} = (4 + 2)^{2} + (3 - 1)^{2} + ( - 2 +
1)^{2}

    \Leftrightarrow x^{2} + y^{2} + 4x - 2y
+ 2z - 35 = 0

  • Câu 10: Vận dụng
    Tìm số phần bằng nhau

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Sáu mặt phẳng x - y = 0;\ \ y - z = 0;z - x = 0; x + y = 1;\ \ y + z = 1;\ \ z + x = 1 chia hình lập phương thành bao nhiêu phân bằng nhau?

    Hướng dẫn:

     

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(1;0;0)và đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + 2t \\
z = - 2 + t \\
\end{matrix} \right.. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

    Hướng dẫn:

    Đường thẳng\Deltađi qua M = (1;\ 1;\  - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;1)

    Ta có \overrightarrow{MI} = (0; -1;2)\left\lbrack
\overrightarrow{u},\overrightarrow{MI} \right\rbrack = (5; - 2; -
1)

    Gọi H là hình chiếu của I trên d.

    Ta có : IH = d(I;AB) = \frac{\left|\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}.

    Xét tam giác IAB, có IH =
R.\frac{\sqrt{3}}{2} \Rightarrow R = \frac{2IH}{\sqrt{3}} =
\frac{2\sqrt{15}}{3}

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ y^{2} + z^{2} = \frac{20}{3}.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Phương trình mặt cầu có tâm I\left(
3;\sqrt{3}; - 7 \right) và tiếp xúc trục tung là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
3;\sqrt{3}; - 7 \right) trên Oy

    \Rightarrow H\left( 0;\sqrt{3};0 \right)
\Rightarrow R = IH = \sqrt{58}

    Vậy phương trình mặt cầu là: (x - 3)^{2}+ \left( y - \sqrt{3} \right)^{2} + (z + 7)^{2} = 58.

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Điều kiện để (S):x^{2} + y^{2} + z^{2} +
Ax + By + Cz + D = 0 là một mặt cầu là:

    Hướng dẫn:

    (S):x^{2} + y^{2} + z^{2} + Ax + By + Cz
+ D = 0 có dạng:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0

    \Rightarrow a = - \frac{A}{2};\ \ b = -
\frac{B}{2};\ \ c = - \frac{C}{2};\ \ d = D

    (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d > 0
\Leftrightarrow A^{2} + B^{2} + C^{2} - 4D > 0

  • Câu 14: Thông hiểu
    Xác định đường kính của mặt cầu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)?

    Hướng dẫn:

    Gọi tâm mặt cầu là I(x;y;0)

    Ta có:

    \left\{ \begin{matrix}
IA = IB \\
IA = IC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 1)^{2} + (y +
3)^{2} + 1^{2}} \\
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 2)^{2} + (y -
2)^{2} + 3^{2}} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(y - 2)^{2} + 4^{2} = (y + 3)^{2} + 1 \\
x^{2} - 2x + 1 + 16 = x^{2} - 4x + 4 + 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10y = 10 \\
2x = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 1 \\
x = - 2 \\
\end{matrix} ight.

    \Rightarrow l = 2R = 2\sqrt{( - 3)^{2} +
( - 1)^{2} + 4^{2}} = 2\sqrt{26}.

  • Câu 15: Nhận biết
    Tính độ dài vecto

    Gọi I là tâm mặt cầu (S):x^{2} +
y^{2} + (z - 2)^{2} = 4. Độ dài \left| \overrightarrow{OI} \right| (O là gốc tọa độ) bằng:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(0;0;2) \Rightarrow \overrightarrow{OI} = (0;0;2)
\Rightarrow \left| \overrightarrow{OI} \right| = 2.

  • Câu 16: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính của (S) bằng

    Hướng dẫn:

    Ta có bán kính của (S)\sqrt{6} nên đường kính của (S) bằng 2\sqrt{6}.

  • Câu 17: Vận dụng
    Chọn phương án thích hợp

    Viết phương trình mặt cầu (S) qua ba điểm A(2,0,1);\ \ \ B(1,3,2);\ \ \ C(3,2,0) có tâm nằm trong mặt phẳng (xOy)

    Hướng dẫn:

    Ta có:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by + d
= 0 vì tâm I \in (xOy) \Rightarrow c = 0

    A,\ B,\ C \in (S)\Rightarrow \left\{
\begin{matrix}
4a - d = 5 \\
2a + 6b - d = 14 \\
6a + 4b - d = 13 \\
\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}
2a - 6b = - 9 \\
2a + 4b = 8 \\
\end{matrix} \right.

    \Rightarrow a = \frac{3}{5};\ \ b =
\frac{17}{10};\ \ c = 0;\ \ d = - \frac{13}{5}

    \Rightarrow (S):x^{2} + y^{2} + z^{2} -
\frac{6x}{5} - \frac{17y}{5} - \frac{13}{5} = 0

  • Câu 18: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Hướng dẫn:

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Cho điểm A(1; - 2;3) và đường thẳng d có phương trình \frac{x + 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{-
1}. Phương trình mặt cầu tâm A, tiếp xúc với d là:

    Hướng dẫn:

    Ta có:

    d(A,d) = \frac{\left| \left\lbrack
\overrightarrow{BA},\overrightarrow{a} \right\rbrack \right|}{\left|
\overrightarrow{a} \right|} = \frac{\sqrt{4 + 196 + 100}}{\sqrt{4 + 1 +
1}} = 5\sqrt{2}.

    Trong đó B( - 1;2; - 3) \in
d

    Phương trình mặt cầu tâm A(1; -
2;3), bán kính R =
5\sqrt{2}

    (S):(x–1)^{2} + (y + 2)^{2} + (z–3)^{2} = 50.

  • Câu 20: Vận dụng
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm M(1; −1; 2) và mặt cầu (S):x^{2} + y^{2} +
z^{2} = 9. Mặt phẳng đi qua M cắt S theo một đường tròn có bán kính nhỏ nhất có phương trình là:

    Hướng dẫn:

    Ta có:

    (S) có bán kính R = 3 và tâm I(0; 0; 0), IM = \sqrt{6} < 3 nên I nằm trong hình cầu (S).

    Gọi r là bán kính của đường tròn, (P) là mặt phẳng qua M, ta có:

    r^{2} = R^{2} - d^{2}\left( I;(P)
ight) = 9 - d^{2}\left( I;(P) ight) \geq 9 - IM^{2} = 3

    Suy ra bán kính r_{\min} =
\sqrt{3} khi \overrightarrow{IM} là vectơ pháp tuyến của (P).

    Vậy phương trình của mặt phẳng (P): (x − 1) − (y + 1) + 2(z − 2) = 0⇔ x − y + 2z − 6 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo