Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Định tập hợp tâm I của mặt cầu (S) theo yêu cầu

    Tìm tập hợp các tâm I của mặt cầu (S) có bán kính thay đổi tiếp xúc với hai mặt phẳng (P):2x - y - 2z + 1 = 0;(Q):\ 3x + 2y - 6z + 5 = 0.

    Hướng dẫn:

    Tâm I(x,y,z) cách đều (P) và (Q) \Rightarrow d(I, P)=d(I, Q)

    \Rightarrow \frac{|2x - y - 2z + 1|}{3} =
\frac{|3x + 2y - 6z + 5|}{7}

    \Rightarrow Hai mặt phẳng: 5x - 13y + 4z - 8 = 0;23x - y - 32z + 22 =
0

  • Câu 2: Nhận biết
    Chọn câu đúng

    Cho đường tròn (C) đường kính AB và đường thẳng \triangle. Để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu thì cần có thêm điều kiện nào sau đây:

    Hướng dẫn:

    Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu là trục quay \triangle phải cố định và hai điểm A, B cũng cố định trên \triangle.

  • Câu 3: Nhận biết
    Tìm tâm mặt cầu

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2} có tâm I(a;b;c), bán kính R.

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là I\left( {1; - 2;0} \right).

  • Câu 4: Thông hiểu
    Chọn phương án đúng

    Cho mặt cầu (S): (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
9. Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):

    Hướng dẫn:

    Mặt cầu (S) tâm I(1;2;3), bán kính R = 3.

    Do mặt cầu (S') đối xứng với (S) qua mặt phẳng (Oxy) nên tâm I' của (S') đối xứng với I qua (Oxy), bán kính R' =R=3.

    Ta có: I'(1;2; - 3).

    Vậy (S):(x - 1)^{2} + (y - 2)^{2} + (z +
3)^{2} = 9.

    Lưu ý: Để ý thấy rằng trung điểm II' thuộc mặt phẳng (Oxy) \overrightarrow{II'}\bot(Oxy). Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ I' nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.

  • Câu 5: Thông hiểu
    Tìm phương trình tiếp diện của (S) tại một điểm

    Cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2}+ z^{2} = 14. Mặt cầu (S) cắt trục Oz tại AB (z_{A} <
0). Phương trình nào sau đây là phương trình tiếp diện của (S) tại B:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(2; -
1;0)

    A \in Oz \Rightarrow A\left( 0;0;z_{A}
\right) (z_{A} < 0)

    A \in (S) \Rightarrow (0 - 2)^{2} + (0 +
1)^{2} + {z_{A}}^{2} = 14

    \Rightarrow {z_{A}}^{2} = 9 \Rightarrow
z_{A} = - 3

    Nên mặt cầu (S) cắt trục Oz tại A(0;0;
- 3)B(0;0;3)

    Gọi (\alpha) là tiếp diện của mặt cầu (S) tại B.

    Mặt phẳng (\alpha) qua B(0;0;3) và có vectơ pháp tuyến \overrightarrow{n} = \overrightarrow{IB} = ( -
2;1;3)

    Vậy phương trình mặt phẳng (\alpha):2x -
y - 3z + 9 = 0.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một tháp kiểm soát không lưu ở sân bay cao 109 m đặt một đài kiểm soát không lưu ở độ cao 105m. Máy bay trong phạm vi cách đài kiểm soát 450\
km sẽ hiển thị trên màn hình ra đa. Chọn hệ trục toạ độ Oxyz có gốc O trùng với vị trí chân tháp, mặt phẳng (Oxy) trùng với mặt đất sao cho trục Ox là hướng tây, trục Oy là hướng nam và trục Oz là trục thẳng đứng (như hình vẽ), đơn vị trên mỗi trục là kilômét.

    Một máy bay đang ở vị trí Acách mặt đất 8\ km, cách 268\ km về phía đông, 185\ km về phía nam so với tháp kiểm soát không lưu và đang chuyển động theo đường thẳng dcó vectơ chỉ phương là \overrightarrow{u} = (82; 76; 0) hướng về đài kiểm soát không lưu. Các khẳng định dưới đây đúng hay sai?

    a) Đài kiểm soát không lưu có toạ độ là (0;0;0).Sai||Đúng

    b) Vị trí Acó toạ độ là ( - 268;185;8). Đúng||Sai

    c) Đài kiểm soát không lưu có phát hiện được máy bay tại vị trí A. Đúng||Sai

    d) Khoảng cách gần nhất giữa máy bay và đài kiểm soát không lưu là 217,96\ km. Sai||Đúng

    Đáp án là:

    Một tháp kiểm soát không lưu ở sân bay cao 109 m đặt một đài kiểm soát không lưu ở độ cao 105m. Máy bay trong phạm vi cách đài kiểm soát 450\
km sẽ hiển thị trên màn hình ra đa. Chọn hệ trục toạ độ Oxyz có gốc O trùng với vị trí chân tháp, mặt phẳng (Oxy) trùng với mặt đất sao cho trục Ox là hướng tây, trục Oy là hướng nam và trục Oz là trục thẳng đứng (như hình vẽ), đơn vị trên mỗi trục là kilômét.

    Một máy bay đang ở vị trí Acách mặt đất 8\ km, cách 268\ km về phía đông, 185\ km về phía nam so với tháp kiểm soát không lưu và đang chuyển động theo đường thẳng dcó vectơ chỉ phương là \overrightarrow{u} = (82; 76; 0) hướng về đài kiểm soát không lưu. Các khẳng định dưới đây đúng hay sai?

    a) Đài kiểm soát không lưu có toạ độ là (0;0;0).Sai||Đúng

    b) Vị trí Acó toạ độ là ( - 268;185;8). Đúng||Sai

    c) Đài kiểm soát không lưu có phát hiện được máy bay tại vị trí A. Đúng||Sai

    d) Khoảng cách gần nhất giữa máy bay và đài kiểm soát không lưu là 217,96\ km. Sai||Đúng

    a) Sai.

    Gốc O trùng với vị trí chân tháp và đài kiểm soát không lưu được đặt ở độ cao 105\ mnên có toạ độ là (0;0;0,105)

    b) Đúng.

    Hệ trục toạ độ Oxyzcó trục Oxlà hướng tây, trục Oylà hướng nam và trục Ozlà trục thẳng đứng và vị trí Acách mặt đất 8\ km, cách 268\ kmvề phía đông, 185\ kmvề phía nam nên có toạ độ là ( - 268;185;8).

    c) Đúng.

    Khoảng cách từ máy bay đến đài kiểm soát không lưu là:

    \sqrt{(0 + 268)^{2} + (0 - 185)^{2} +
(0,105 - 8)^{2}} \approx 325,75 (km).

    325,75 < 450 nên đài kiểm soát không lưu có phát hiện được máy bay tại vị trí A.

    d) Sai.

    Gọi I(0;0;0,105) là vị trí đài kiểm soát không lưu.

    Phương trình tham số của đường thẳng dlà:\left\{
\begin{matrix}
x = - 268 + 82t \\
y = 185 + 76t \\
z = 8
\end{matrix} \right. (tlà tham số)

    Gọi Mlà vị trí mà máy bay bay gần đài kiểm soát không lưu nhất khi đó:

    \left\{ \begin{matrix}
M \in d \\
IM\bot d
\end{matrix} \right. hay M( - 268
+ 82t;185 + 76t;8)

    \overrightarrow{IM}.\overrightarrow{u} =
0

    \Leftrightarrow ( - 268 + 82t).82 + (185
+ 76t).76 + (8 - 0,105).0 = 0

    \Leftrightarrow 12500t - 7916 = 0
\Leftrightarrow t = \frac{1979}{3125}

    \Rightarrow M( -
216,07;233,13;8)

    Khoảng cách gần nhất giữa máy bay và đài kiểm soát không lưu là:

    \sqrt{( - 216,07)^{2} + (233,13) + (8 -
0,105)^{2}} \approx 317,96(km).

  • Câu 7: Thông hiểu
    Xác định phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 8: Vận dụng
    Tìm tập hợp tất cả các điểm M

    Cho ba điểm A(1,0,1);\ \ B(2, - 1,0);\ \
C(0, - 3, - 1). Tìm tập hợp các điểm M(x,y,z) thỏa mãn AM^{2} - BM^{2} = CM^{2}

    Hướng dẫn:

    Theo bài ra ta có:

    AM^{2} - BM^{2} = CM^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} + (z
- 1)^{2}- (x - 2)^{2} - (y + 1)^{2} - z^{2}= x^{2} + (y + 3)^{2} + (z
+ 1)^{2}

    \Leftrightarrow Mặt cầu: x^{2} + y^{2} + z^{2} - 2x + 8y + 4z + 13 =
0

  • Câu 9: Thông hiểu
    Chọn đáp án chính xác

    Viết phương trình mặt cầu (S) tâm E( - 1,2,4) qua gốc O.

    Hướng dẫn:

    Ta có:

    M(x,y,z) \in (S) \Rightarrow EM^{2} =
OE^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 4)^{2} = 1 + 4 + 16

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
2x - 4y - 8z = 0

  • Câu 10: Nhận biết
    Tìm bán kính của đường tròn

    Cho mặt cầu tâm I bán kính R = 2,6{m{cm}} . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4 cm . Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:

    Hướng dẫn:

     Theo đề bài, mặt phẳng cắt mặt cầu S(I;2,6 cm) theo một đường tròn (H;r) .

    Vậy r = \sqrt {{R^2} - I{H^2}}  = \sqrt {{{\left( {2,6} ight)}^2} - {{\left( {2,4} ight)}^2}}  = 1{m{cm}}.

  • Câu 11: Thông hiểu
    Xác định phương trình đường thẳng d

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -
2x + 4y + 2z - 3 = 0 và mặt phẳng (P):x + y - 2z + 4 = 0. Phương trình đường thẳng d tiếp xúc với mặt cầu (S) tại A(3; - 1;1) và song song với mặt phẳng (P) là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; - 2; - 1) \Rightarrow \overrightarrow{IA} =
(2;1;2)

    Đường thẳng d tiếp xúc với mặt cầu (S) tại \left\lbrack \begin{matrix}
t = \frac{7}{2} \\
t = - 1 \\
\end{matrix} \right. và song song với mặt phẳng (P) nên đường thẳng d có vettơ chỉ phương \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{(P)}},\overrightarrow{IA} \right\rbrack = (4; - 6; -
1)

    Vậy phương trình đường thẳngd:\left\{
\begin{matrix}
x = 3 + 4t \\
y = - 1 - 6t \\
z = 1 - t \\
\end{matrix} \right.\ .

  • Câu 12: Thông hiểu
    Xác định phương trình mặt cầu thỏa mãn điều kiện

    Phương trình mặt cầu có tâm I(4;6; -
1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông là:

    Hướng dẫn:

    Gọi H là hình chiếu của I(4;6; -
1) trên Ox

    \Rightarrow H(4;0;0) \Rightarrow IH =
d(I;Ox) = \sqrt{37}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 37 + 37 = 74

    Vậy phương trình mặt cầu là: (x - 4)^{2}
+ (y - 6)^{2} + (z + 1)^{2} = 74.

  • Câu 13: Vận dụng
    Xác định phương trình mặt cầu

    Trong không gian Oxyz, viết phương trình mặt cầu đi qua điểm A(1; -
1;4) và tiếp xúc với các mặt phẳng tọa độ?

    Hướng dẫn:

    Gọi I(a;b;c) là tâm mặt cầu (S). Mặt cầu (S) tiếp xúc với các mặt phẳng tọa độ nên:

    d\left( I;(Oxy) ight) = d\left(
I;(Oyz) ight) = d\left( I;(Ozx) ight)

    \Leftrightarrow |a| = |b| = |c| =
R(*)

    Mặt cầu đi qua điểm A(1; -
1;4)

    \Rightarrow \left\{ \begin{matrix}
IA = R \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
IA^{2} = R^{2} \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + (b + 1)^{2} + (c - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + ( - a + 1)^{2} + (a - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a^{2} - 12a + 18 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a + 9 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = c = 3 \\
b = - 3 \\
R = 3 \\
\end{matrix} ight.\  \Rightarrow (S):(x - 3)^{2} + (y + 3)^{2} + (z -
3)^{2} = 9

  • Câu 14: Thông hiểu
    Xác định phương trình mặt cầu

    Phương trình mặt cầu có tâm I(3;6; -
4) và cắt trục Oz tại hai điểm A, B sao cho diện tích tam giác IAB bằng 6\sqrt{5} là:

    Hướng dẫn:

    Gọi H là hình chiếu của I(3;6; -
4) trên Oz

    \Rightarrow H(0;0; - 4) \Rightarrow IH =
d(I;Ox) = \sqrt{45}

    S_{\Delta AIB} = \frac{IH.AB}{2}
\Rightarrow AB = \frac{2S_{\Delta AIB}}{IH} = 4

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 49

    Vậy phương trình mặt cầu là: (x - 3)^{2}
+ (y - 6)^{2} + (z + 4)^{2} = 49.

  • Câu 15: Vận dụng
    Viết phương trình mặt cầu (S’)

    Cho mặt cầu (S):\ \ x^{2} + y^{2} + z^{2}
+ 2x - 2y + 6z - 5 = 0 và mặt phẳng (P):\ x - 2y + 2z + 3 = 0. Viết phương trình mặt cầu (S’) có bán kính nhỏ nhất chứa giao tuyến (C) của (S) và (P).

    Hướng dẫn:

    Ta có:

    (S'):x^{2} + y^{2} + z^{2} + 2x - 2y+ 6z - 5 + m(x - 2y + 2z + 3) = 0

    \Leftrightarrow (S'):x^{2} + y^{2} +
z^{2} +(m + 2)x - 2(m + 1)y + 2(m + 3)z + 3m - 5 = 0

    (S') có bán kính nhỏ nhất \Leftrightarrow Tâm H\left( - \frac{m + 2}{2},m + 1, - m - 3 \right)
\in (P)

    \Leftrightarrow - \frac{m + 2}{2} - 2(m +
1) + 2( - m - 3) + 3 = 0 \Leftrightarrow m = - \frac{4}{3}

    Vậy (S'):x^{2} + y^{2} + = z^{2} +
\frac{2}{3}x + \frac{2}{3}y + \frac{10}{3}z - 9 = 0

  • Câu 16: Vận dụng
    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4z - 4 =
0 và ba điểmA(1,2, - 2);B( -
4,2,3);C(1, - 3,3) nằm trên mặt cầu (S). Bán kính r của đường tròn ngoại tiếp tam giác ABC là:

    Hướng dẫn:

    Ta có:

    h = \frac{|1 + 5.0 - 2 - 8|}{\sqrt{1^{2}
+ 5^{2} + ( - 1)^{2}}} = \sqrt{3}

    \Rightarrow r = \sqrt{R^{2} - h^{2}} =
\sqrt{9 - 3} = \sqrt{6}.

  • Câu 17: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} + (z - 1)^{2} =
9. Tìm tọa độ tâm I và tính bán kính R của (S)

    Hướng dẫn:

    Mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} +
(z - 1)^{2} = 9 có tâm I( -
1;2;1) và bán kính R =
3.

  • Câu 18: Thông hiểu
    Xác định phương trình mặt cầu (S’)

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + z^{2} =
4. Một mặt cầu (S') có tâm I'(9;1;6) và tiếp xúc ngoài với mặt cầu (S). Kết luận nào sau đây đúng về phương trình mặt cầu (S')?

    Hướng dẫn:

    Ta có tâm và bán kính mặt cầu (S) lần lượt là I(1;1;0);R = 2.

    Suy ra II' = 10

    Gọi R' là bán kính mặt cầu (S'). Theo giả thiết ta có:

    R + R' = II' \Leftrightarrow
R' = II' - R = 8

    Khi đó phương trình mặt cầu cần tìm là: (S'):(x - 9)^{2} + (y - 1)^{2} + (z - 6)^{2} =
64.

  • Câu 19: Vận dụng
    Tính bán kính đường tròn

    Trong không gian Oxyz, cho mặt cầu (S):(x + 2)^{2} + (y - 1)^{2} + \left( z
+ \sqrt{2} ight)^{2} = 9 và hai điểm A\left( - 2;0; - 2\sqrt{2} ight),B( - 4; -
4;0). Biết tập hợp tất cả các điểm M \in (S) để MA^{2} + \overrightarrow{MO}.\overrightarrow{MB} =
16 là một đường tròn. Bán kính của đường tròn đó là:

    Hướng dẫn:

    Gọi M(x;y;z) \in (S) khi đó ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = \left( x + 2;y;z + 2\sqrt{2} ight) \\
\overrightarrow{OM} = (x;y;z) \\
\overrightarrow{BM} = (x + 4;y + 4;z) \\
\end{matrix} ight..

    Ta có:

    MA^{2} +
\overrightarrow{MO}.\overrightarrow{MB} = 16

    \Leftrightarrow MA^{2} +
\overrightarrow{OM}.\overrightarrow{BM} = 16

    \Leftrightarrow (x + 2)^{2} + y^{2} +
\left( z + 2\sqrt{2} ight)^{2} + x(x + 4) + y(y + 4) + z^{2} =
16

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x + 4y + 2\sqrt{2}z - 2 = 0

    Ta lại có:

    M \in (S) \Leftrightarrow (x + 2)^{2} +
(y - 1)^{2} + \left( z + \sqrt{2} ight)^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x - 2y + 2\sqrt{2}z - 2 = 0

    Từ (1) và (2) ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} + 4x + 4y + 2\sqrt{2}z - 2 = 0 \\
x^{2} + y^{2} + z^{2} + 4x - 2y + 2\sqrt{2}z - 2 = 0 \\
\end{matrix} ight.\  \Rightarrow y = 0

    Vậy tập hợp tất cả các điểm M là đường tròn giao tuyến (C) của (S) và mặt phẳng (P): y = 0.

    Mặt cầu (S) có bán kính R = 3, tâm I\left( - 2;1; - \sqrt{2} ight) nên d [I,(P)] = 1.

    Suy ra đường tròn (C) có bán kính:

    r = \sqrt{R^{2} - \left( d\left( I;(P)
ight) ight)^{2}} = 2\sqrt{2}

  • Câu 20: Thông hiểu
    Tìm điều kiện của tham số m

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Hướng dẫn:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo