Mặt cầu (S) có tâm và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông. Điểm nào sau đây thuộc mặt cầu (S):
Gọi H là hình chiếu của trên Ox
Vậy phương trình mặt cầu là :
Mặt cầu (S) có tâm và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông. Điểm nào sau đây thuộc mặt cầu (S):
Gọi H là hình chiếu của trên Ox
Vậy phương trình mặt cầu là :
Trong không gian với hệ tọa độ , giá trị dương của tham số
sao cho mặt phẳng
tiếp xúc với mặt cầu
là:
Ta có: có phương trình
Mặt cầu có tâm
và bán kính
Để mặt phẳng tiếp xúc với mặt cầu
thì
. Vì m nhận giá trị dương nên
.
Vậy thỏa yêu cầu đề bài.
Trong không gian , cho hai điểm
và
. Phương trình mặt cầu có tâm
và đi qua
là:
Ta có:
Vậy phương trình mặt cầu tâm và đi qua điểm
có phương trình là:
.
Cho các điểm và
. Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oy có đường kính là:
Gọi trên Oy vì
đường kính bằng
.
Cho mặt phẳng và mặt cầu
có phương trình lần lượt là
. Giá trị của
để
tiếp xúc
là:
Ta có:
có tâm
và bán kính
.
tiếp xúc
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Đường kính của mặt cầu bằng:
Mặt cầu có bán kính
suy ra đường kính có độ dài:
Đường kính của mặt cầu bằng: 4.
Trong không gian với hệ tọa độ , cho điểm M thuộc mặt cầu
và ba điểm
. Biết rằng quỹ tích các điểm M thỏa mãn
là đường tròn cố định, tính bán kính r đường tròn này?
Ta có: khi đó:
Mà
Suy ra .
Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)
Ta có:
Trong không gian với hệ tọa độ , cho
,
,
. Bán kính mặt cầu ngoại tiếp tứ diện
là
Gọi là mặt cầu ngoại tiếp tứ diện
.
Phương trình mặt cầu có dạng:
.
Vì ,
,
,
thuộc
nên ta có:
.
Vậy bán kính mặt cầu là:
.
Phương trình mặt cầu tâm nào sau đây tiếp xúc với trục Ox:
Mặt cầu tâm , bán kính R và tiếp xúc trục Ox
.
Vậy
Lưu ý : Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.
Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).
Phương trình mặt cầu tâm bán kính R có dạng:
Trong không gian với hệ toạ độ , cho phương trình
. Viết phương trình mặt phẳng
, biết
song song với mặt phẳng
và cắt mặt cầu theo thiết diện là một đường tròn có chu vi
?
Vì nên phương trình mặt phẳng (α) có dạng
Mặt cầu (S) có tâm và bán kính
.
Đường tròn lớn có chu vi là nên bán kính của
là
Khoảng cách từ tâm I đến mặt phẳng P bằng 3
Từ đó ta có:
Vì nên phương trình mặt phẳng (α) là
Cho mặt (S) tâm I ở trên z’Oz tiếp xúc với hai mặt phẳng và
. Tính tọa độ tâm I và bán kính R? (Có thể chọn nhiều đáp án).
Ta có:
Vậy:
Cho các điểm và đường thẳng
. Gọi
là mặt cầu đi qua
và có tâm thuộc đường thẳng
. Bán kính mặt cầu
bằng:
Tâm .
Vì đi qua
nên ta có
Vậy bán kính mặt cầu :
Cho mặt cầu và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)
Phương trình của
(S') qua
Trong không gian , cho mặt cầu
và mặt phẳng
. Viết phương trình mặt phẳng
, biết
song song với giá của vectơ
, vuông góc với
và tiếp xúc với
.
Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.
Vectơ pháp tuyến của (α) là
Theo giả thiết, suy ra (P) có vectơ pháp tuyến là
Phương trình của mặt phẳng (P) có dạng
Vì (P) tiếp xúc với mặt cầu (S) nên ta có:
Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là:
Trong không gian với hệ tọa độ , cho điểm
. Mặt cầu
có tâm
và đi qua hai điểm
có phương trình là:
Ta có:
Vì đi qua hai điểm
nên
Vậy phương trình mặt cầu cần tìm là: .
Mặt cầu tâm và tiếp xúc với mặt phẳng (Oxy) có phương trình:
Mặt cầu tâm , bán kính R và tiếp xúc với mặt phẳng (Oxy):
.
Vậy
Tìm tập các tâm I của mặt cầu tiếp xúc với hai mặt phẳng
.
Gọi và
lần lượt là giao điểm của trục x’Ox với (P) và (Q). Trung điểm
của AB cách đều (P) và (Q).
Tâm I cách đều (P) và (Q)
nằm trong mặt (R) qua E song song và cách đều (P) và (Q) ((P)//(Q)).
Vậy
Cho hình lập phương có cạnh bằng 1 có
trùng với ba trục
. Viết phương trình mặt cầu
tiếp xúc với tất cả các cạnh của hình lập phương.
tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.
Tâm là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng
Bán kính
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: