Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 3 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng
    Tìm m để đồ thị hàm số có tiệm cận theo yêu cầu

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x + 2}{x^{2} - 4x + m} có đúng một tiệm cận ngang và đúng một tiệm cận đứng.

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{x + 2}{x^{2} - 4x + m} = 0 ightarrow y = 0 là tiệm cận ngang với mọi m.

    Để đồ thị hàm số y = \frac{x + 2}{x^{2} -
4x + m} có đúng một tiệm cận ngang và đúng một tiệm cận đứng \Leftrightarrow Phương trình x^{2} - 4x + m = 0 có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có một nghiệm bằng - 2

    \Leftrightarrow \left\lbrack
\begin{matrix}
\Delta' = 4 - m = 0 \\
\left\{ \begin{matrix}
\Delta' = 4 - m > 0 \\
( - 2)^{2} - 4( - 2) + m = 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 12 \\
\end{matrix} ight.

  • Câu 3: Vận dụng
    Tính tổng các tham số

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Gợi ý:

     Điều kiện để đồ thị hàm số y = \frac{{f\left( x ight)}}{{g\left( x ight)}} có tiệm cận ngang là bậc f(x) không lớn hơn bậc của g(x).

    Điều kiện để đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = \frac{{f\left( x ight)}}{{g\left( x ight)}} là x0 là nghiệm của g(x) nhưng không là nghiệm của f(x) hoặc x0 là nghiệm bội n của g(x) đồng thời là nghiệm bội m của f(x) và m < n

    Hướng dẫn:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 4: Vận dụng
    Tìm m thỏa mãn điều kiện

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Gợi ý:

    Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận ngang là y = \frac{a}{c}

    Hướng dẫn:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 5: Vận dụng
    Tính giá trị biểu thức T

    Cho hàm số y = \frac{{ax + 2}}{{cx + b}} có đồ thị (C) như hình vẽ bên. Tính tổng T = a + 2b + 3c

    Tính giá trị biểu thức T
    Gợi ý:

    Dựa vào đồ thị hàm số để xác định nghiệm của mẫu số và tử số từ đó suy ra các đường tiệm cận đứng của đồ thị hàm số.

    Tìm các giới hạn \mathop {\lim }\limits_{x \to  \pm \infty } y để tìm các đường tiệm cận ngang của đồ thị hàm số.

    Hướng dẫn:

    Từ đồ thị hàm số ta có nhận xét như sau:

    Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)

    => x = \frac{{ - b}}{c} = 2 \Rightarrow b =  - 2c

    Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)

    => y = \frac{a}{c} = 1 \Rightarrow a = c

    Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)

    => y(0) = -1 => \frac{2}{b} =  - 1 \Rightarrow b =  - 2

    => \left\{ {\begin{array}{*{20}{c}}  {b =  - 2} \\   {b =  - 2c} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  a = 1 \hfill \\  b =  - 2 \hfill \\ \end{gathered}  \\   {c = 1} \end{array}} ight. \Rightarrow T = a + 2b + 3c = 0

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{\sqrt{4 -
x}}{\sqrt{x + 1}}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D = ( - 1;4brack suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị nhận đường thẳng x = - 1 làm tiệm cận đứng.

    Vậy đồ thị hàm số có một đường tiệm cận.

  • Câu 7: Vận dụng
    Xác định số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{x - 1}{\sqrt{x^{2} +
2(m - 1)x + m^{2}}} với m là tham số thực và m >
\frac{1}{2}. Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Khi m > \frac{1}{2} thì phương trình x^{2} + 2(m - 1)x + m^{2} =
0 vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.

    Ta có \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{x - 1}{\sqrt{x^{2} + 2(m - 1)x +
m^{2}}} = 1 ightarrow y = 1 là TCN;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x - 1}{\sqrt{x^{2} + 2(m - 1)x + m^{2}}} = -
1 ightarrow y = - 1 là TCN.

    Vậy đồ thị hàm số có đúng hai tiệm cận.

  • Câu 8: Thông hiểu
    Tìm câu sai

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây là sai?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow \pm \infty}y = 0
ightarrow y = 0 là TCN;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 3)^{+}}y = - \infty \\
\lim_{x ightarrow \ ( - 3)^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = - 3 là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ 3^{+}}y = - \infty \\
\lim_{x ightarrow \ 3^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số có tất cả ba đường tiệm cận. Do đó “Đồ thị hàm số có tất cả hai đường tiệm cận” sai.

  • Câu 9: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có:

    \mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x ight) =  - \infty, suy ra đường thẳng x = -
2 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 0^{-}}f(x) = +
\infty, suy ra đường thẳng x =
0 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow + \infty}f(x) =0, suy ra đường thẳng y =
0 là tiệm cận ngang của đồ thị hàm số.

    Vậy đồ thị hàm số có 3 đường tiệm cận.

  • Câu 10: Thông hiểu
    Chọn phương án thích hợp

    Cho hàm số f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Ta có: \lim_{x ightarrow + \infty}f(x)= 3 ta được tiệm cận ngang y =
3

    \lim_{x ightarrow ( - 2)^{-}}f(x) = +
\infty ta được tiệm cận đứng x = -
2

  • Câu 11: Vận dụng
    Xác định số TCĐ và TCN của đồ thị hàm số

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Hướng dẫn:

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 12: Vận dụng cao
    Tính số tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất bao nhiêu tiệm cận đứng:

    Hướng dẫn:

    Điều kiện f\left( x ight) e m

    Để đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có đường tiệm cận đứng f\left( x ight) = m thì phải có nghiệm.

    Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = b} \end{array}} ight. với - 1 < a < 0 < b

    Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    => Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt

    Vậy đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất ba đường tiệm cận đứng.

  • Câu 13: Vận dụng
    Xác định tham số m thỏa mãn bài toán

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Hướng dẫn:

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 14: Vận dụng
    Tìm m để đồ thị hàm số có đúng 1 tiệm cận đứng

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 5;5brack để đồ thị hàm số y = \frac{x + 1}{x^{3} - 3x^{2} - m} có đúng một tiệm cận đứng?

    Hướng dẫn:

    Đồ thị hàm số y = \frac{x + 1}{x^{3} -
3x^{2} - m} có đúng một tiệm cận đứng khi và chỉ khi phương trình x^{3} - 3x^{2} - m = 0 có đúng một nghiệm x eq - 1

    Ta có: x^{3} - 3x^{2} - m = 0
\Leftrightarrow x^{3} - 3x^{2} = m

    Xét hàm số x^{3} - 3x^{2} = g(x) ta có: g'(x) = 3x^{2} - 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \left\lbrack
\begin{matrix}
m > 0 \\
m < - 4 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 5;5brack \\
\end{matrix} ight. nên m \in
\left\{ - 5;1;2;3;4;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 15: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Cho hàm số y = f(x) có bảng biến thiên:

    Số giá trị nguyên của m \in \lbrack -
4;4brack để đồ thị hàm số có 4 tiệm cận là:

    Hướng dẫn:

    Từ bảng biến thiên ta thấy đồ thị có hai tiệm cận đứng x = - 2;x = 1 và các tiệm cận ngang y = 4;y = m^{2}. Suy ra đồ thị có bốn tiệm cận khi m^{2} eq 4 \Leftrightarrow m
eq \pm 2

    Do \left\{ \begin{matrix}
m \in \lbrack - 4;4brack \\
m\mathbb{\in Z} \\
\end{matrix} ight. nên m \in
\left\{ \pm 4; \pm 3; \pm 1;0 ight\}

    Vậy có 7 giá trị của tham số m thỏa mãn.

  • Câu 16: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Đáp án là:

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Ta có: y = \frac{3x^{2} + 2x}{4x + 4} =
\frac{3}{4}x - \frac{1}{4} + \frac{1}{4x + 4}.

    Xét \lim_{x ightarrow \pm \infty}\left(
y - \left( \frac{3}{4}x - \frac{1}{4} ight) ight) = \lim_{x
ightarrow \pm \infty}\frac{1}{4x + 4} = 0.

    Vậy đường tiệm cận xiên có phương trình y
= \frac{3}{4}x - \frac{1}{4} \Leftrightarrow 3x - 4y - 1 =
0.

    Khoảng cách từ điểm M đến đường tiệm cận xiên là:

    d = \frac{\left| 3.3 - 4.( - 2) - 1
ight|}{\sqrt{3^{2} + ( - 4)^{2}}} = \frac{16}{5} = 3,2

  • Câu 17: Vận dụng
    Tìm m để khoảng cách nhỏ nhất

    Cho hàm số y = \frac{x - m}{x +
1} (C) với m là tham số thực. Gọi M là điểm thuộc (C) sao cho tổng khoảng cách từ M đến hai đường tiệm cận của (C) nhỏ nhất. Tìm tất cả các giá trị của m để giá trị nhỏ nhất đó bằng 2.

    Hướng dẫn:

    Áp dụng công thức giải nhanh:

    Điểm M\left( x_{0};y_{0} = \frac{ax_{0} +
b}{cx_{0} + d} ight) thuộc đồ thị hàm số y = \frac{ax + b}{cx + d}.

    Đồ thị hàm số có TCĐ \Delta_{1}:x +
\frac{d}{c} = 0; TCN \Delta_{2}:y -
\frac{a}{c} = 0.

    Ta có \left\{ \begin{matrix}
d_{1} = d\left\lbrack M,\Delta_{1} ightbrack = \left| x_{0} +
\frac{d}{c} ight| = \left| \frac{cx_{0} + d}{c} ight| \\
d_{2} = d\left\lbrack M,\Delta_{2} ightbrack = \left| y_{0} -
\frac{a}{c} ight| = \left| \frac{ad - bc}{c\left( cx_{0} + d ight)}
ight| \\
\end{matrix} ight..

    Khi đó d_{1} + d_{2} \geq
2\sqrt{\frac{|ad - bc|}{c^{2}}}.

    Áp dụng: Ycbt \Leftrightarrow
\sqrt{\frac{|ad - bc|}{c^{2}}} = 1

    \Leftrightarrow \frac{|ad - bc|}{c^{2}} =
1 \Leftrightarrow |1 + m| = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 0 \\
m = - 2 \\
\end{matrix} ight.

  • Câu 18: Vận dụng
    Tìm m để hàm số có tiệm cận đứng

    Tìm tập hợp các giá trị thực của m để đồ thị hàm số y = \frac{{x - 1}}{{mx - 1}} có tiệm cận đứng là:

    Gợi ý:

    Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận đứng là y =  - \frac{d}{c}

    Hướng dẫn:

     Điều kiện để đồ thị hàm số có tiệm cận là \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   { - 1 + m e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   {m e 1} \end{array}} ight.

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    a) Sai. Hàm số đồng biến trên (−2; −1), (−1; 0) và nghịch biến trên (−∞; −2), (0; +∞).

    b) Sai. Hàm số đạt cực tiểu tại x = −2.

    c) Đúng.

    d) Đúng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo