Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận ngang và đúng một tiệm cận đứng.
Ta có là tiệm cận ngang với mọi
Để đồ thị hàm số có đúng một tiệm cận ngang và đúng một tiệm cận đứng
Phương trình
có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có một nghiệm bằng
Biết đồ thị hàm số nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:
Điều kiện để đồ thị hàm số có tiệm cận ngang là bậc f(x) không lớn hơn bậc của g(x).
Điều kiện để đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số là x0 là nghiệm của g(x) nhưng không là nghiệm của f(x) hoặc x0 là nghiệm bội n của g(x) đồng thời là nghiệm bội m của f(x) và m < n
Điều kiện
Phương trình đường tiệm cận ngang của đồ thị hàm số là
=>
Đặt
Nhận thấy với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0
=> n – 6 = 0 => n = 6
Kết hợp với (*) => m = 3
Vậy m + n = 9
Giá trị của tham số m để đồ thị hàm số có đường tiệm cận ngang
là:
Để tồn tại các đường tiệm cận của đồ thị hàm số thì
Khi đó phương trình đường tiệm cận ngang là
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Cho hàm số | ![]() |
Dựa vào đồ thị hàm số để xác định nghiệm của mẫu số và tử số từ đó suy ra các đường tiệm cận đứng của đồ thị hàm số.
Tìm các giới hạn để tìm các đường tiệm cận ngang của đồ thị hàm số.
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Cho hàm số . Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên
suy ra đồ thị nhận đường thẳng
làm tiệm cận đứng.
Vậy đồ thị hàm số có một đường tiệm cận.
Cho hàm số với
là tham số thực và
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Khi thì phương trình
vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.
Ta có là TCN;
là TCN.
Vậy đồ thị hàm số có đúng hai tiệm cận.
Cho hàm số có bảng biến thiên như sau:
Mệnh đề nào sau đây là sai?
Từ bảng biến thiên, ta có:
là TCN;
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số có tất cả ba đường tiệm cận. Do đó “Đồ thị hàm số có tất cả hai đường tiệm cận” sai.
Cho hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có:
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận ngang của đồ thị hàm số.
Vậy đồ thị hàm số có 3 đường tiệm cận.
Cho hàm số có bảng biến thiên như sau:
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Ta có: ta được tiệm cận ngang
ta được tiệm cận đứng
Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Tập hợp tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số có bảng biến thiên:
Số giá trị nguyên của để đồ thị hàm số có
tiệm cận là:
Từ bảng biến thiên ta thấy đồ thị có hai tiệm cận đứng và các tiệm cận ngang
. Suy ra đồ thị có bốn tiệm cận khi
Do nên
Vậy có 7 giá trị của tham số thỏa mãn.
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Ta có:
Xét
Vậy đường tiệm cận xiên có phương trình
Khoảng cách từ điểm đến đường tiệm cận xiên là:
Cho hàm số
với
là tham số thực. Gọi
là điểm thuộc
sao cho tổng khoảng cách từ
đến hai đường tiệm cận của
nhỏ nhất. Tìm tất cả các giá trị của
để giá trị nhỏ nhất đó bằng
Áp dụng công thức giải nhanh:
Điểm thuộc đồ thị hàm số
.
Đồ thị hàm số có TCĐ ; TCN
.
Ta có .
Khi đó
Áp dụng: Ycbt
Tìm tập hợp các giá trị thực của m để đồ thị hàm số có tiệm cận đứng là:
Để tồn tại các đường tiệm cận của đồ thị hàm số thì
Khi đó phương trình đường tiệm cận đứng là
Điều kiện để đồ thị hàm số có tiệm cận là
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hàm số có đồ thị
như hình vẽ:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên . Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là . Đúng||Sai
Cho hàm số có đồ thị
như hình vẽ:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên . Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là . Đúng||Sai
a) Sai. Hàm số đồng biến trên và nghịch biến trên
.
b) Sai. Hàm số đạt cực tiểu tại .
c) Đúng.
d) Đúng.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: