Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 3 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow 1^{-}}y = +
\infty nên đường thẳng x =
1 là đường tiệm cận đứng của đồ thị hàm số

    \lim_{x ightarrow - \infty}y =
2,\lim_{x ightarrow + \infty}y = 5 nên đường thẳng y = 2y =
5 là các đường tiệm cận ngang của đồ thị hàm số

    Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là 3

  • Câu 2: Vận dụng cao
    Xác định m để đồ thị hàm số có 4 tiệm cận thỏa mãn điều kiện

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Hướng dẫn:

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R}\backslash\left\{ 1
\right\} có bảng biến thiên như hình vẽ. Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số y = f(x)

    Hướng dẫn:

    Do \lim_{x ightarrow 1^{+}}y = -
\infty;\ \lim_{x ightarrow 1^{-}} = + \infty \Rightarrow TCĐ: x = 1.

    \lim_{x ightarrow + \infty}y = - 1;\
\lim_{x ightarrow - \infty}y = 1 \Rightarrowđồ thị có 2 tiệm cận ngang là y = \pm 1

    Vậy, đồ thị hàm số đã cho có tổng số TCĐ và TCN là 3.

  • Câu 4: Thông hiểu
    Chọn câu đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Hướng dẫn:

    “Đồ thị hàm số y = f(x) có tiệm cận ngang y = 1 khi và chỉ khi \lim_{x ightarrow + \infty}f(x) =
1\lim_{x ightarrow -
\infty}f(x) = 1“ sai vì chỉ cần một trong hai giới hạn \lim_{x ightarrow - \infty}f(x) = 1 hoặc \lim_{x ightarrow + \infty}f(x) =
1 tồn tại thì đã suy ra được tiệm cận ngang là y = 1.

    “Nếu hàm số y = f(x) không xác định tại x_{0} thì đồ thị hàm số y = f(x) có tiệm cận đứng x = x_{0}“ sai, ví dụ hàm số y = \sqrt{x^{3} - 1} không xác định tại x = - 2 nhưng \lim_{x ightarrow \ ( - 2)^{-}}f(x)\lim_{x ightarrow \ ( -
2)^{+}}f(x) không tiến đến vô cùng nên x = - 2 không phải là tiệm cận đứng của đồ thị hàm số.

    “Đồ thị hàm số y = f(x) có tiệm cận đứng x = 2 khi và chỉ khi \lim_{x ightarrow 2^{+}}f(x) = + \infty\lim_{x ightarrow 2^{-}}f(x) = +
\infty“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:

    \lim_{x ightarrow 2^{-}}f(x) = -
\infty,\lim_{x ightarrow 2^{-}}f(x) = + \infty,\lim_{x ightarrow \
2^{+}}f(x) = - \infty,\lim_{x ightarrow \ 2^{+}}f(x) = +
\infty.

    “Đồ thị hàm số y = f(x) bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn \lim_{x ightarrow - \infty}f(x),\ \
\lim_{x ightarrow + \infty}f(x).

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{\sqrt{4 -
x}}{\sqrt{x + 1}}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D = ( - 1;4brack suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị nhận đường thẳng x = - 1 làm tiệm cận đứng.

    Vậy đồ thị hàm số có một đường tiệm cận.

  • Câu 6: Vận dụng
    Tìm m để đồ thị hàm số không có tiệm cận đứng

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{2x^{2} - 3x + m}{x - m} không có tiệm cận đứng.

    Hướng dẫn:

    TXĐ: D\mathbb{= R}\backslash\left\{ m
ight\}.

    Ta có y = \frac{(x - m)(2x + 2m - 3) +
2m(m - 1)}{x - m} = 2x + 2m - 3 +
\frac{2m(m - 1)}{x - m}

    Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn \lim_{x ightarrow m^{\pm}}y tồn tại hữu hạn \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 0 \\
\end{matrix} ight.\ .

    Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)

    Từ yêu cầu bài toán suy ra phương trình 2x^{2} - 3x + m = 0 có một nghiệm là x = m

    \Rightarrow 2m^{2} - 3m + m = 0 \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 7: Vận dụng
    Tìm m để đồ thị hàm số có 3 tiệm cận

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x + 1}{x^{2} - 2mx + 4} có ba đường tiệm cận.

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm \infty} =
\frac{x + 1}{x^{2} - 2mx + 4} = 0 ightarrow y = 0 là tiệm cận ngang với mọi m.

    Do đó ycbt tương đương với phương trình x^{2} - 2mx + 4 = 0 có hai nghiệm phân biệt khác - 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
( - 1)^{2} - 2m.( - 1) + 4 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 4 > 0 \\
2m + 5 eq 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m > 2 \\
m < - 2 \\
\end{matrix} ight.\  \\
m eq - \frac{5}{2} \\
\end{matrix} ight.

  • Câu 8: Vận dụng
    Xác định số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{x - 1}{\sqrt{x^{2} +
2(m - 1)x + m^{2}}} với m là tham số thực và m >
\frac{1}{2}. Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Khi m > \frac{1}{2} thì phương trình x^{2} + 2(m - 1)x + m^{2} =
0 vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.

    Ta có \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{x - 1}{\sqrt{x^{2} + 2(m - 1)x +
m^{2}}} = 1 ightarrow y = 1 là TCN;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x - 1}{\sqrt{x^{2} + 2(m - 1)x + m^{2}}} = -
1 ightarrow y = - 1 là TCN.

    Vậy đồ thị hàm số có đúng hai tiệm cận.

  • Câu 9: Vận dụng
    Xác định tham số m thỏa mãn bài toán

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Hướng dẫn:

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 10: Thông hiểu
    Tìm tọa độ điểm M thỏa mãn điều kiện

    Tìm điểm M thuộc đồ thị hàm số y = \frac{{2x + 1}}{{x - 1}} sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Do M thuộc đồ thị hàm số nên tọa độ điểm M\left( {{x_0};\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight);{x_0} e 1

    Phương trình tiệm cận đứng là x – 1 = 0 (d’)

    Giải phương trình d(M,d’) = d(M, Ox)

    => \left| {{x_0} - 1} ight| = \left| {\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight| \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_0} = 0} \\   {{x_0} = 4} \end{array}} ight.

  • Câu 11: Thông hiểu
    Tìm tiệm cận ngang của hàm số

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Gợi ý:

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 12: Vận dụng
    Tìm m để đồ thị hàm số có tiệm cận ngang

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 13: Vận dụng
    Tìm m để đồ thị hàm số có 2 tiệm cận ngang

    Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = \frac{x + 1}{\sqrt{mx^{2} + 1}} có hai tiệm cận ngang.

    Hướng dẫn:

    Khi m > 0, ta có:

    \lim_{x ightarrow + \infty}\frac{x +
1}{\sqrt{mx^{2} + 1}} = \lim_{x ightarrow + \infty}\frac{1 +
\frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}} = \frac{1}{\sqrt{m}}ightarrow y = \frac{1}{\sqrt{m}} là TCN ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{m +
\frac{1}{x^{2}}}} = \frac{- 1 - \frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}}
= - \frac{1}{\sqrt{m}}ightarrow y = - \frac{1}{\sqrt{m}} là TCN.

    Với m = 0 suy y = \frac{x + 1}{1} suy ra đồ thị hàm số không có tiệm cận.

    Với m < 0 thì hàm số có TXĐ là một đoạn nên đồ thị hàm số không có TCN.

    Vậy với m > 0 thì đồ thị hàm số có hai tiệm cận ngang.

  • Câu 14: Vận dụng
    Tìm tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Tìm m để đồ thị hàm số có đúng 1 tiệm cận đứng

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 5;5brack để đồ thị hàm số y = \frac{x + 1}{x^{3} - 3x^{2} - m} có đúng một tiệm cận đứng?

    Hướng dẫn:

    Đồ thị hàm số y = \frac{x + 1}{x^{3} -
3x^{2} - m} có đúng một tiệm cận đứng khi và chỉ khi phương trình x^{3} - 3x^{2} - m = 0 có đúng một nghiệm x eq - 1

    Ta có: x^{3} - 3x^{2} - m = 0
\Leftrightarrow x^{3} - 3x^{2} = m

    Xét hàm số x^{3} - 3x^{2} = g(x) ta có: g'(x) = 3x^{2} - 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \left\lbrack
\begin{matrix}
m > 0 \\
m < - 4 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 5;5brack \\
\end{matrix} ight. nên m \in
\left\{ - 5;1;2;3;4;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 17: Vận dụng
    Tìm m thỏa mãn điều kiện

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Gợi ý:

    Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận ngang là y = \frac{a}{c}

    Hướng dẫn:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 18: Vận dụng
    Tính giá trị biểu thức T

    Cho hàm số y = \frac{{ax + 2}}{{cx + b}} có đồ thị (C) như hình vẽ bên. Tính tổng T = a + 2b + 3c

    Tính giá trị biểu thức T
    Gợi ý:

    Dựa vào đồ thị hàm số để xác định nghiệm của mẫu số và tử số từ đó suy ra các đường tiệm cận đứng của đồ thị hàm số.

    Tìm các giới hạn \mathop {\lim }\limits_{x \to  \pm \infty } y để tìm các đường tiệm cận ngang của đồ thị hàm số.

    Hướng dẫn:

    Từ đồ thị hàm số ta có nhận xét như sau:

    Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)

    => x = \frac{{ - b}}{c} = 2 \Rightarrow b =  - 2c

    Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)

    => y = \frac{a}{c} = 1 \Rightarrow a = c

    Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)

    => y(0) = -1 => \frac{2}{b} =  - 1 \Rightarrow b =  - 2

    => \left\{ {\begin{array}{*{20}{c}}  {b =  - 2} \\   {b =  - 2c} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  a = 1 \hfill \\  b =  - 2 \hfill \\ \end{gathered}  \\   {c = 1} \end{array}} ight. \Rightarrow T = a + 2b + 3c = 0

  • Câu 19: Vận dụng
    Tính a + b

    Cho hàm số y = \frac{{ax + b}}{{x + 1}}. Biết đồ thị hàm số đã cho đi qua điểm A\left( {0; - 1} ight) và có đường tiệm cận ngang là y = 1. Giá trị a + b bằng:

    Gợi ý:

     Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận ngang là y = \frac{a}{c}

    Hướng dẫn:

    Điều kiện để đồ thị hàm số có tiệm cận là a - b e 0

    => Đồ thị hàm số đi qua điểm A\left( {0; - 1} ight) nên b =  - 1

    Đồ thị hàm số có đường tiệm cận ngang là y = a \Rightarrow a = 1 (thỏa mãn)

    Vậy a + b = 0

  • Câu 20: Thông hiểu
    Tìm tổng số đường tiệm cận

    Cho hàm số y = \frac{x + 1}{x^{2} - 2x -
3}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow 3^{+}}y = \lim_{xightarrow 3^{+}}\dfrac{x + 1}{x^{2} - 2x - 3} = \lim_{x ightarrow3^{+}}\dfrac{\dfrac{1}{x} + \dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = + \infty suy ra đồ thị hàm số có tiệm cận đứng là x = 3

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x + 1}{x^{2} - 2x - 3} = \lim_{x
ightarrow ( - 1)^{+}}\frac{x + 1}{(x + 1)(x - 3)} = -
\frac{1}{4}

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 2x - 3}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}} ight) = 0 suy ra đồ thị hàm số có tiệm cận ngang là y
= 0

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo