Tìm giá trị của tham số m sao cho đồ thị hàm số có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Tìm giá trị của tham số m sao cho đồ thị hàm số có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Biết rằng đồ thị hàm số nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng
Ta có:
là TCN;
là TCĐ.
Từ giả thiết, ta có
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
Ta có là TCN.
Xét phương trình
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số đã cho có ba đường tiệm cận.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: Ta có:
là TCĐ;
TCĐ;
là TCN.
Vậy đồ thị hàm số có đúng ba tiệm cận
Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Cho hàm số có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Số đường tiệm cận đứng là số nghiệm của phương trình
Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.
Cho hàm số . Mệnh đề nào sau đây là đúng?
TXĐ: suy ra đồ thị hàm số không có tiệm cận đứng.
Ta có:
là TCN;
là TCN.
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng hai tiệm cận ngang.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Điều kiện xác định của hàm số
Tập xác định
suy ra đồ thị hàm số có tiệm cận ngang là
.
suy ra
là tiệm cận đứng của đồ thị hàm số
suy ra
không là tiệm cận đứng.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là .
Cho hàm số . Tìm tất cả các giá trị thực của tham số
để đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng
.
Điều kiện để đồ thị hàm số có tiệm cận là
Khi đó đồ thị hàm số có:
Tiệm cận đúng: , song song với
và cắt
tại điểm
Tiệm cận ngang: song song với
và cắt
tại điểm
Diện tích hình chữ nhật tạo bởi hai đường tiệm cận cùng với hai trục tọa độ là
Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20

Đồ thị hàm số (m là tham số thực) có bốn tiệm cận khi và chỉ khi:
Điều kiện
Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:

Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận
Nếu thì
=> y = 1 là tiệm cận ngang của đồ thị hàm số
Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20
=> Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a
=> f(3) < m < f(-1)
Biết đồ thị hàm số nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:
Điều kiện để đồ thị hàm số có tiệm cận ngang là bậc f(x) không lớn hơn bậc của g(x).
Điều kiện để đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số là x0 là nghiệm của g(x) nhưng không là nghiệm của f(x) hoặc x0 là nghiệm bội n của g(x) đồng thời là nghiệm bội m của f(x) và m < n
Điều kiện
Phương trình đường tiệm cận ngang của đồ thị hàm số là
=>
Đặt
Nhận thấy với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0
=> n – 6 = 0 => n = 6
Kết hợp với (*) => m = 3
Vậy m + n = 9
Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

Số đường tiệm cận đứng của đồ thị hàm số là:
Đường thẳng là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có:
Phương trình có 3 nghiệm phân biệt khác 2.
Phương trình có một nghiệm kép là x = 2 (do vậy mẫu số có dạng
nên x = 2 vẫn là TCĐ của đồ thị hàm số
=> Đồ thị hàm số có 4 đường tiệm cận đứng.
Cho hàm số . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Số đường tiệm cận của đồ thị hàm số là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Tồn tại đúng một điểm M(a,b) trên đường cong sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: suy ra không tồn tại
và
Do đó đồ thị hàm số không có tiệm cận ngang.
Ta có:
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số đã cho có đúng hai tiệm cận.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận đứng.
Để đồ thị hàm số có đúng một tiệm cận đứng
có nghiệm duy nhất
.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận ngang.
Ta có:
với
;
với
Nếu thì
suy ra hàm số chỉ có đúng một TCN là
(Do
khi
)
Do đó giá trị thỏa yêu cầu bài toán.
Nếu , để đồ thị hàm số có một tiệm cận ngang
Vậy thỏa mãn yêu cầu bài toán.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: