Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 18 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Hướng dẫn:

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 2: Vận dụng
    Tính số viên bi ban đầu có trong túi

    Một hộp gồm một số viên bi cùng loại, chỉ khác màu, trong đó có 6 bi xanh, còn lại là bi màu đỏ. Minh lấy ngẫu nhiên 1 viên bi trong hộp (không bỏ lại), sau đó Minh lại lấy ngẫu nhiên tiếp 1 viên bi trong hộp. Biết xác suất để Minh lấy được cả hai viên bi màu xanh là…..Hỏi ban đầu trong túi có số viên bi đỏ là bao nhiêu?

    Hướng dẫn:

    Gọi A là biến cố “Lần 1 Minh lấy được bi màu xanh”,

    B là biến cố “Lần 2 Minh lấy được bi có màu xanh”

    Khi đó AB là biến cố “Cả hai lần Minh lấy được bi màu xanh”. Ta có P(AB) =
\frac{5}{7}

    Gọi x là số kẹo ban đầu trong túi (x > 0)

    Ta có P(A) = \frac{6}{n}, P\left( B|A \right) = \frac{5}{n -
1}.

    Theo công thức nhân xác suất, ta có P(AB)
= P(A).P\left( B|A \right)

    Hay \frac{6}{n} \cdot \frac{5}{n - 1} =
\frac{5}{7} \Rightarrow n = 7.

    Vậy số bi đỏ trong túi ban đầu là 7 - 6 =
1 bi

  • Câu 3: Vận dụng
    Tìm giá trị xác suất

    Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?

    Hướng dẫn:

    Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ

    B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.

    Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A), P(B).

    Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).

    Khi đó ta có: A = A_1 . A_2B = A_1 . A_2 . A_3

    Vì vậy các xác suất cần tìm là:

    P(A) = P\left( A_{1}.\ A_{2} ight) =
P\left( A_{1} ight).P\left( A_{2}|A_{1} ight) =
\frac{8}{10}.\frac{7}{9} = \frac{28}{45}

    P(B) = P\left( A_{1}.\
A_{2}.\overline{A_{3}} ight)

    = P\left( A_{1} ight).P\left(
A_{2}|A_{1} ight).P\left( \overline{A_{3}}|A_{1}.\ A_{2}
ight)

    = \frac{8}{10}.\frac{7}{9}.\frac{2}{8} =
\frac{7}{45}

  • Câu 4: Vận dụng
    Tính xác suất theo yêu cầu

    Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng 4?

    Hướng dẫn:

    Gọi Ti: "Tổng số nốt hai lần tung bằng i" (i = 1, 6)

    Nj,k: "Số nốt trên lần tung thứ j bằng k" (j = 1, 2; k = 1, 6)

    Ta tìm

    P\left( T_{i}|N_{1,2} \cup N_{1,4} \cup N_{1,6} ight) = \frac{P\left( N_{1,2} \cup N_{2;2} ight)}{P\left(N_{1,2} \cup N_{1,4} \cup N_{1,6} ight)}= \dfrac{\left( \dfrac{1}{6}ight)^{2}}{\dfrac{1}{2}} = \dfrac{1}{18}

  • Câu 5: Nhận biết
    Chọn phát biểu đúng

    Cho hai biến cố ABcủa một phép thử T. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, ký hiệu là P\left( \left. \ A ight|B ight). Phát biểu nào sau đây đúng?

    Hướng dẫn:

    Nếu P(B) > 0 thì P\left( \left. \ A ight|B ight) =
\frac{P(A).P\left( \left. \ B ight|A ight)}{P(B)}.

  • Câu 6: Thông hiểu
    Chọn đáp án thích hợp

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng. Xác suất để có tên Hiền, nhưng với điều kiện bạn đó nữ là

    Hướng dẫn:

    Gọi A là biến cố “bạn học sinh được thầy giáo gọi lên bảng tên là Hiền”.

    Gọi B là biến cố “bạn học sinh được thầy giáo gọi lên bảng là nữ”.

    Ta có P(B) = \frac{17}{30},\ P(AB) = \frac{1}{30}.

    Xác suất để thầy giáo gọi bạn đó lên bảng có tên Hiền, nhưng với điều kiện bạn đó nữ là:

    P\left( A|B \right) =\dfrac{P(AB)}{P(B)} = \dfrac{\dfrac{1}{30}}{\dfrac{17}{30}} =\dfrac{1}{17}.

  • Câu 7: Nhận biết
    Tính xác suất của biến cố

    Cho AB là hai biến cố độc lập thoả mãn P(A) = 0,5P(B) = 0,4. Khi đó, P(A \cap B) bằng:

    Hướng dẫn:

    A và B là hai biến cố độc lập nên

    P(A
\cap B) = P(A).P(B) = 0,4.0,5 = 0,2

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là 0,90,8. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?

    Hướng dẫn:

    Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc

    Theo yêu cầu của đầu bài, ta phải tính P(A)

    Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với (i = 1, 2)

    Khi đó ta có: A = A_1.A_2

    Vì vậy xác suất cần tìm là: P(A) = P(A_1.A_2)

    Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:

    P(A) = P(A_1.A_2) = P(A_1).P(A_2) = 0,72

  • Câu 9: Thông hiểu
    Tính xác suất có điều kiện

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A \right) = \frac{1}{6}

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các phương án

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Đáp án là:

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Gọi A : “Học sinh được chọn giỏi môn Toán”

    B: “Học sinh được chọn giỏi môn Văn”

    Gọi C : “Học sinh được chọn không giỏi môn Toán”

    D: “Học sinh được chọn không giỏi môn Văn”

    Số học sinh giỏi cả 2 môn là: 23 + 20 -
35 = 8

    a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:

    P\left( A|B ight) = \frac{8}{20} =
\frac{2}{5}

    b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:

    P\left( B|A ight) =
\frac{8}{23}

    c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.

    Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:

    P\left( C|B ight) = \frac{12}{20} =
\frac{3}{5}

    d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 - 8 = 15

    Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là: P\left( D|A ight) =
\frac{15}{23}

  • Câu 11: Thông hiểu
    Tính xác suất của biến cố

    Trong một kỳ thi, có 60\% học sinh đã làm đúng bài toán đầu tiên và 40\% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20\% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?

    Hướng dẫn:

    Gọi biến cố A: "học sinh đã làm đúng bài toán đầu tiên"

    \Rightarrow P(A) =
60\% = 0,6

    Biến cố B: "học sinh đã làm đúng bài toán thứ hai”

    \Rightarrow P(B) = 40\% =
0,4

    Biến cố A \cap B: "học sinh làm đúng cả hai bài toán"

    \Rightarrow P(A \cap
B) = 20\% = 0,2

    Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3} \approx 0,333

  • Câu 12: Nhận biết
    Chọn phương án thích hợp

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A \right) = \frac{1}{6}

  • Câu 13: Thông hiểu
    Xác định công thức đúng

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( \overline{A}\overline{B}\overline{C}
ight)?

    Hướng dẫn:

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

    Vì A, B, C có vai trò như nhau nên P\left( A\overline{B}C ight) = P\left(
AB\overline{C} ight)

    \Rightarrow P\left(
\overline{A}\overline{B}\overline{C} ight) = P\left(
\overline{B}\overline{C} ight) - P\left( A\overline{B}\overline{C}
ight)

    = (1 - p)^{2} - p - 2p^{2} = 3p^{2} - 3p
+ 1

  • Câu 14: Nhận biết
    Chọn công thức đúng

    Nếu A,B là hai biến cố bất kì thì

    Hướng dẫn:

    Công thức cần tìm là: P(A \cap B) =
P(A).P(B|A)

  • Câu 15: Thông hiểu
    Tính xác suất thỏa mãn điều kiện

    Một trường trung học phổ thông có 600 học sinh, trong đó có 245 học sinh nam và 355 học sinh nữ. Tổng kết học kỳ I, có 170 học sinh đạt danh hiệu học sinh giỏi, trong đó có 80 học sinh nam và 90 học sinh nữ. Chọn ra ngẫu nhiên một học sinh trong số 600 học sinh đó. Tính xác suất để học sinh được chọn có danh hiệu học sinh giỏi và là nam (làm tròn kết quả đến hàng phần trăm).

    Hướng dẫn:

    Xét hai biến cố sau:

    A: "Học sinh được chọn ra đạt điểm giỏi";

    B: "Học sinh được chọn ra là học sinh nam".

    Khi đó, xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam, chính là xác suất của A với điểu kiện B.

    P(A \cap B) = \frac{80}{600} =
\frac{2}{15}.

    Do có 245 học sinh nam nên P(B) =
\frac{245}{600} = \frac{49}{120}.

    Vì thế, ta có; P(A \mid B) = \frac{P(A \cap B)}{P(B)} =
\frac{\frac{2}{15}}{\frac{49}{120}} = \frac{16}{49}.

    Vậy xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam bằng \frac{16}{49}.

  • Câu 16: Thông hiểu
    Ghi đáp án đúng vào ô trống

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 17: Thông hiểu
    Tính xác suất của biến cố

    Cho một hộp kín có 6 thẻ ATM của ACB và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của ACB.

    Hướng dẫn:

    Gọi A là biến cố “lần thứ hai lấy được thẻ ATM Vietcombank”, B là biến cố “lần thứ nhất lấy được thẻ ATM của ACB”.

    Ta cần tìm Ρ\left( A|B
\right).

    Sau khi lấy lần thứ nhất (biến cố B xảy ra) trong hộp còn lại 9 thẻ (trong đó có 4 thẻ Vietcombank) nên Ρ\left( A|B \right) = \frac{4}{9}.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,8, P(B) = 0,65, P\left( A \cap \overline{B} \right) =
0,55. Tính P(A \cap
B).

    Hướng dẫn:

    Ta có: P\left( A \cap \overline{B}
\right) + P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} \right) = 0,8 - 0,55 = 0,25

  • Câu 19: Vận dụng
    Ghi kết quả bài toán vào ô trống

    Áo sơ mi G9 trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 95% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 92% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là \frac{a}{b} với \frac{a}{b} là phân số tối giản. Tính a + b.

    Đáp án: 937

    Đáp án là:

    Áo sơ mi G9 trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 95% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 92% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là \frac{a}{b} với \frac{a}{b} là phân số tối giản. Tính a + b.

    Đáp án: 937

    Gọi A là biến cố “qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,95

    Gọi B là biến cố “qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,92

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện A và B hay ta đi tính P(A \cap B)

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A)

    = 0,95.0,92 =
\frac{437}{500}

    Suy ra a + b = 937.

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo