Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 13 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính diện tích S

    Diện tích S của hình phẳng giới hạn bởi đường cong y = - x^{3} + 3x^{2} - 2, trục hoành và hai đường thẳng x = 0;x = 2

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    - x^{3} + 3x^{2} - 2 = 0 \Leftrightarrow
(1 - x)\left( x^{2} - 2x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 1 + \sqrt{3} \\
x = 1 - \sqrt{3} \\
\end{matrix} ight.

    Khi đó:

    S = \int_{0}^{2}{\left| - x^{3} + 3x^{2}
- 2 ight|dx}

    = \int_{0}^{1}{\left| - x^{3} + 3x^{2} -
2 ight|dx} + \int_{1}^{2}{\left| - x^{3} + 3x^{2} - 2
ight|dx}

    = \left| \int_{0}^{1}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight| + \left| \int_{1}^{2}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight|

    = \left| \left. \ \left( -
\frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{0}^{1} ight| + \left|
\left. \ \left( - \frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{1}^{2}
ight|

    = \frac{5}{2}

  • Câu 2: Thông hiểu
    Tính diện tích S của hình phẳng

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{3} -
1, trục hoành, trục tung và đường thẳng x = 2.

    Hướng dẫn:

    Phương trình hoành độ giao điểm x^{3} - 1
= 0 \Leftrightarrow x = 1.

    Ảnh có chứa hàng, Hình chữ nhật, biểu đồ, Song songMô tả được tạo tự động

    S = \int_{0}^{2}\left| x^{3} - 1
\right|\ dx = \int_{0}^{1}\left| x^{3} - 1 \right|dx +
\int_{1}^{2}\left| x^{3} - 1 \right|dx

    = \int_{0}^{1}\left( 1 - x^{3} \right)dx
+ \int_{1}^{2}\left( x^{3} - 1 \right)dx

    = \left. \ \left( x - \frac{x^{4}}{4}
\right) \right|_{0}^{1} + \left. \ \left( \frac{x^{4}}{4} - x \right)
\right|_{1}^{2} = \frac{7}{2}.

  • Câu 3: Vận dụng
    Tính thể tích của vật thể

    Cho một mô hình 3 - D mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài 5\ (cm); khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thứcy = 3 -
\frac{2}{5}x (cm), với x(cm) là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị cm^{3}) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )

    Hướng dẫn:

    Xét một thiết diện parabol có chiều cao là h và độ dài đáy 2h và chọn hệ trục Oxy như hình vẽ trên.

    Parabol (P) có phương trình (P):y = ax^{2} + h,(a < 0)

    B(h;0) \in (P) \Leftrightarrow 0 = ah^{2} + h \Leftrightarrow a = - \frac{1}{h}(do\ h >
0)

    Diện tích S của thiết diện: S = \int_{- h}^{h}{\left( - \frac{1}{h}x^{2}
+ h \right)dx} = \frac{4h^{2}}{3}, h = 3 - \frac{2}{5}x

    \Rightarrow S(x) = \frac{4}{3}\left( 3 -
\frac{2}{5}x \right)^{2}

    Suy ra thể tích không gian bên trong của đường hầm mô hình: V = \int_{0}^{5}{S(x)dx} =
\int_{0}^{5}{\frac{4}{3}\left( 3 - \frac{2}{5}x \right)^{2}dx} \approx
28,888

    \Rightarrow V \approx 29\ \ \left(
cm^{3} \right)

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0x = \pi, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 \leq x
\leq \pi) là một tam giác đều cạnh 2\sqrt{\sin x}.

    Hướng dẫn:

    Ta có diện tích thiết diện: S(x) = \left(
2\sqrt{\sin x} \right)^{2}.\frac{\sqrt{3}}{4} = \sqrt{3}\sin
x.

    V = \int_{0}^{\pi}{S(x)}\ dx =\int_{0}^{\pi}{\sqrt{3}\sin x}\ dx= - \sqrt{3}\cos x\left|\begin{matrix}\pi \\0 \\\end{matrix} \right.\  = 2\sqrt{3}.

  • Câu 5: Thông hiểu
    Tính thời gian bơm nước theo yêu cầu

    Người ta thay nước mới cho một bể bơi có dạng hình hộp chữ nhật có độ sâu là 280cm. Giả sử h(t)là chiều cao (tính bằng cm) của mực nước bơm được tại thời điểm t giây, biết rằng tốc độ tăng của chiều cao mực nước tại giây thứ th'(t) = \frac{1}{500}\sqrt[3]{t} và lúc đầu hồ bơi không có nước. Hỏi sau bao lâu thì bơm được số nước bằng \frac{3}{4} độ sâu của hồ bơi?

    Hướng dẫn:

    Gọi x là thời điểm bơm được số nước bằng \frac{3}{4} độ sâu của bể (x tính bằng giây).

    Ta có: \int_{0}^{x}{\frac{1}{500}\sqrt[3]{t}dt} =
\frac{3}{4}.280\left. \  \Rightarrow \frac{3}{4}t^{\frac{4}{3}}
\right|_{0}^{x} = 105000

    \Rightarrow x\sqrt[3]{x} =
140000

    \Rightarrow \sqrt[3]{x^{4}} = 140000
\Rightarrow x \approx 7237,6242 giây

    Vậy sau 7237,6242 giây thì bơm được số nước bằng \frac{3}{4} độ sâu của hồ bơi.

  • Câu 6: Thông hiểu
    Tính diện tích hình phẳng

    Hình phẳng giới hạn bởi các đường cong y
= x(1 - x)y = x^{3} -
x có diện tích bằng \frac{a}{b} là phân số tối giản. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Ta có: x(1 - x) = x^{3} - x

    \Leftrightarrow x^{3} + x^{2} - 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
x = 1 \\
\end{matrix} \right.

    Gọi S là diện tích hình phẳng giới hạn bởi các đường cong y = x(1 -
x)y = x^{3} - x.

    Khi đó S = \int_{- 2}^{1}{\left| x^{3} +
x^{2} - 2x \right|dx}

    = \int_{- 2}^{0}{\left| x^{3} + x^{2} -
2x \right|dx} + \int_{0}^{1}{\left| x^{3} + x^{2} - 2x
\right|dx}

    = \left| \int_{- 2}^{0}{\left( x^{3} +
x^{2} - 2x \right)dx} \right| + \left| \int_{0}^{1}{\left( x^{3} + x^{2}
- 2x \right)dx} \right|

    = \frac{8}{3} + \frac{5}{12} =
\frac{37}{12} (đvdt).

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Xét hình phẳng (H) giới hạn bởi đồ thị hàm số y = (x + 3)^{2}, trục hoành và đường thẳng x = 0. Gọi A(0;9),B(b;0);( - 3 < b < 0). Tính giá trị của tham số b để đoạn thẳng AB chia (H) thành hai phần có diện tích bằng nhau?

    Chỗ nhập nội dung câu trả lời tự luận
    Gợi ý:

    Ta có đồ thị hàm số y = (x +3)^{2} tiếp xúc với trục hoành tại x = - 3.

    Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x +3)^{2}, trục hoành và đường thẳng x= - 3,x = 0.

    Gọi S1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = (x + 3)^{2}, đoạn thẳng AB và trục hoành.

    Gọi S2 là diện tích của tam giác OAB.

    Theo bài ra ta có:

    S_{1} = S_{2}

    \Leftrightarrow S = 2S_{2}\Leftrightarrow \int_{- 3}^{0}{(x + 3)^{2}dx} =2.\frac{1}{2}.OA.OB

    \Leftrightarrow - 9b = 9 \Leftrightarrowb = - 1

    Vậy b = - 1

  • Câu 8: Thông hiểu
    Xác định thể tích khối (H)

    Gọi (H) là phần giao của hai khối \frac{1}{4} hình trụ có bán kính a, hai trục hình trụ vuông góc với nhau như hình vẽ sau. Tính thể tích của khối (H).

    Description: hình42_1

    Hướng dẫn:

    Description: hình42_2

    Đặt hệ toạ độ Oxyz như hình vẽ, xét mặt cắt song song với mp (Oyz) cắt trục Ox tại x, thiết diện mặt cắt luôn là hình vuông có cạnh \sqrt{a^{2} - x^{2}} (0 \leq x \leq a).

    Do đó thiết diện mặt cắt có diện tích: S(x) = a^{2} - x^{2}.

    Vậy V_{(H)} = \int_{0}^{a}{S(x)dx} =\int_{0}^{a}{\left( a^{2} - x^{2} \right)dx}= \left. \ \left( a^{2}x -\frac{x^{3}}{3} \right) \right|_{0}^{a} = \frac{2a^{3}}{3}.

  • Câu 9: Thông hiểu
    Tính thể tích V

    Tính thể tích V của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = x^{2} + 1;y = x^{3} + 1 quay quanh Ox.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    x^{2} + 1 = x^{3} + 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Thể tích khối tròn xoay cần tính là:

    V = \pi\int_{0}^{1}{\left| \left( x^{2}
+ 1 ight)^{2} - \left( x^{3} + 1 ight)^{2} ight|dx}

    = \pi\left| \int_{0}^{1}{\left\lbrack
\left( x^{2} + 1 ight)^{2} - \left( x^{3} + 1 ight)^{2}
ightbrack dx} ight|

    = \pi\left| \int_{0}^{1}{\left( - x^{6}
+ x^{4} - 2x^{3} + 2x^{2} ight)dx} ight|

    = \pi\left| \left. \ \left( -
\frac{1}{7}x^{7} + \frac{1}{5}x^{5} - \frac{1}{2}x^{4} +
\frac{2}{3}x^{3} ight) ight|_{0}^{1} ight| =
\frac{47\pi}{210}

  • Câu 10: Thông hiểu
    Tính thể tích nước trong bể sau khi bơm

    Một bác thợ xây bơm nước vào bể chứa nước. Gọi h(t) là thể tích nước bơm được sau t giây. Cho h'(t) = 6at^{2} + 2bt và ban đầu bể không có nước. Sau 3 giây thì thể tích nước trong bể là 90m^{3}, sau 6 giây thì thể tích nước trong bể là 504m^{3}. Tính thể tích nước trong bể sau khi bơm được 9 giây.

    Hướng dẫn:

    Ta có:

    \int_{0}^{3}{\left( 6at^{2} + 2bt
\right)dt = 90}\Leftrightarrow \left. \ \left( 2at^{3} +
bt^{2} \right) \right|_{0}^{3} = 90 \Leftrightarrow 54a + 9b =
90 (1)

    \int_{0}^{6}{\left( 6at^{2} + 2bt
\right)dt = 504}\Leftrightarrow \left. \ \left( 2at^{3} +
bt^{2} \right) \right|_{0}^{6} = 504 \Leftrightarrow 432a + 36b =
504 (2)

    Từ (1), (2) \Rightarrow \left\{
\begin{matrix}
a = \frac{2}{3} \\
b = 6 \\
\end{matrix} \right.. Sau khi bơm 9 giây thì thể tích nước trong bể là:

    V = \int_{0}^{9}{\left( 4t^{2} + 12t
\right)dt}= \left. \ \left(
\frac{4}{3}t^{3} + 6t^{2} \right) \right|_{0}^{9} = 1458\left( m^{3}
\right).

  • Câu 11: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳngx =
- 1;\ \ x = 3.

    Hướng dẫn:

    Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳngx =
- 1;\ \ x = 3 được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left( \frac{x^{3}}{3} + x^{2} + x ight)\left|
\begin{matrix}
3 \\
- 1 \\
\end{matrix} ight.\  = \frac{64}{3}

  • Câu 12: Thông hiểu
    Chọn công thức đúng

    Trong không gian Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = ax = b với a
< b. Gọi f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b. Biết hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack, khi đó thể tích V của vật thể (H) được cho bởi công thức:

    Hướng dẫn:

    f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b ta có: V = \int_{a}^{b}{f(x)}dx không phải là V = \pi{\int_{a}^{b}\left\lbrack f(x)
ightbrack}^{2}dx.

  • Câu 13: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Hướng dẫn:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 14: Thông hiểu
    Tính diện tích thiết diện

    Tính diện tích S của hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1?

    Hướng dẫn:

    Phương trình hoành độ giao điểm e^{x} = 2
\Leftrightarrow x = ln2 \in (0;1)

    Do đó, diện tích hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1

    S = \int_{0}^{1}{\left| e^{x} - 2
ight|dx}

    = - \int_{0}^{\ln2}{\left( e^{x} - 2ight)dx} + \int_{\ln2}^{1}{\left( e^{x} - 2 ight)dx}

    = - \left. \ \left( e^{x} - 2x ight)ight|_{0}^{\ln2} + \left. \ \left( e^{x} - 2x ight)ight|_{\ln2}^{1}

    = - (2 - 2\ln2 - 1) + (e - 2 - 2 +2\ln2)

    = 4\ln2 + e - 5

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Đáp án là:

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Gắn hệ trục tọa độ Oxy như hình vẽ:

    Ta có: A(30;0),B(0;20)

    \Rightarrow (P):y = \frac{- 1}{45}x^{2}
+ 20

    Khi đó diện tích phần parabol là:

    4\int_{0}^{30}{\left( \frac{-
1}{45}x^{2} + 20 ight)dx} = 1600\left( m^{2} ight)

    Vậy diện tích toàn phần của sân chơi là: 60.80 - 1600 = 3200\left( m^{2}
ight)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo