Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tìm m để biểu thức đạt giá trị nhỏ nhất

    Cho hàm số y = \frac{x}{1 - x}\ \ \ \ \
(C) và điểm A( - 1;1). Tìm m để đường thẳng d:\ \ y = mx - m - 1 cắt (C)tại hai điểm phân biệt M,N sao cho AM^{2} + AN^{2} đạt giá trị nhỏ nhất.

    Hướng dẫn:

    Phương trình hoành độ giao điểm của (C)d là: \frac{x}{1 - x} = mx - m - 1 (đk: x eq 1)

    \begin{matrix}
\Rightarrow x = (1 - x)(mx - m - 1) \\
\Leftrightarrow x = mx - m - 1 - mx^{2} + mx + x \\
\Leftrightarrow mx^{2} - 2mx + m + 1 = 0\ \ (*) \\
\end{matrix}

    Để (C)d cắt nhau tại hai điểm phân biệt M,N thì (*) phải có 2 nghiệm phân biệt khác 1 \Leftrightarrow \left\{
\begin{matrix}
m eq 0 \\
\Delta' = m^{2} - m(m + 1) = - m > 0 \\
m - 2m + m + 1 eq 0 \\
\end{matrix} ight.

    \Leftrightarrow m < 0

    Giả sửM\left( x_{1};y_{1} ight),N\left(
x_{2};y_{2} ight).

    Theo hệ thức viét : x_{1} + x_{2} = 2;\ \
x_{1}x_{2} = \frac{m + 1}{m}

    \Rightarrow y_{1} + y_{2} = m\left(
x_{1} + x_{2} ight) - 2m - 2 = 2m - 2m - 2 = - 2

    y_{1}.y_{2} = \left( mx_{1} - m - 1
ight)\left( mx_{2} - m - 1 ight)

    = m^{2}x_{1}x_{2} - m(m + 1)\left( x_{1}
+ x_{2} ight) + (m + 1)^{2}

    = m(m + 1) - 2m(m + 1) + (m + 1)^{2} = m+ 1

    Ta có:

    AM^{2} + AN^{2} = \left( x_{1} + 1
ight)^{2} + \left( y_{1} - 1 ight)^{2} + \left( x_{2} + 1
ight)^{2} + \left( y_{2} - 1 ight)^{2}

    = \left( x_{1} + x_{2} + 2 ight)^{2} -
2\left( x_{1} + 1 ight)\left( x_{2} + 1 ight) + \left( y_{1} + y_{2}
- 2 ight)^{2} - 2\left( y_{1} - 1 ight)\left( y_{2} - 1
ight)

    = \left( x_{1} + x_{2} + 2 ight)^{2} -
2\left( x_{1}x_{2} + x_{1} + x_{2} + 1 ight)+ \left( y_{1} + y_{2} -
2 ight)^{2} - 2\left( y_{1}y_{2} - \left( y_{1} + y_{2} ight) + 1
ight)

    = (2 + 2)^{2} - 2\left( \frac{m + 1}{m}
+ 2 + 1 ight)+ ( - 2 - 2)^{2} - 2\left( m + 1 - ( - 2) + 1
ight)

    = 18 - 2\left( \frac{m + 1}{m} ight) -
2m = 18 - 2 - 2.\frac{1}{m} - 2m

    = 16 + 2.\left\lbrack \frac{1}{- m} + ( -
m) ightbrack \geq 16 + 2.2 = 20 (Áp dụng BĐT Côsi)

    Suy ra: AM^{2} + AN^{2} đạt giá trị nhỏ nhất là 20 khi \frac{1}{- m} = - m \Leftrightarrow m^{2} = 1
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 1 \\
\end{matrix} ight.

    Vậy m = - 1 (vì m < 0).

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng
    Chọn mệnh đề đúng

    Đường thẳng y = m^{2} cắt đồ thị hàm số y = x^{4} - x^{2} - 10 tại hai điểm phân biệt sao cho tam giác OAB vuông (với O là gốc tọa độ). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Xét hàm số y = x^{4} - x^{2} -
10 ta có y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{\sqrt{2}}{2} \\x = - \dfrac{\sqrt{2}}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    m^{2} \geq 0;\forall m nên từ bảng biến thiên ta thấy đường thẳng y =
m^{2} luôn cắt đồ thị hàm số y =
x^{4} - x^{2} - 10 tại những cặp điểm đối xứng nhau qua trục tung.

    Giả sử A\left( x_{1};m^{2}
ight);B\left( - x_{1};m^{2} ight). Tam giác OAB vuông

    \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{0}
\Leftrightarrow - {x_{1}}^{2} + m^{4} = 0 \Leftrightarrow x_{1} =
m^{2}

    Suy ra A\left( m^{2};m^{2}
ight)A\left( m^{2};m^{2}
ight) thuộc đồ thị hàm số nên

    m^{8} - m^{4} - 10 = m^{2}
\Leftrightarrow m^{2} = 2 \in (1;3)

  • Câu 4: Thông hiểu
    Xác định hàm số trùng phương

    Cho đồ thị:

    Xác định hàm số tương ứng với đồ thị hàm số đã cho?

    Hướng dẫn:

    Nhận diện đồ thị hàm số bậc 4 trùng phương có a < 0

    Đồ thị hàm số đi qua điểm (0; -
1) nên loại hàm số y = - x^{4} +
2x^{2} - 3.

    Đồ thị hàm số có các cực trị là (1;0),( -
1;0) nên hàm số cần tìm là y = -
x^{4} + 2x^{2} - 1.

  • Câu 5: Vận dụng cao
    Xác định tổng các phần tử của tập S

    Gọi S là tập tất cả các giá trị thực của tham số m để đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C với B nằm giữa A;C sao cho AB = 2BC. Tính tổng các phần tử thuộc tập S?

    Hướng dẫn:

    Ta có bảng biến thiên

    Suy ra đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C \Leftrightarrow - 4 < m < 0

    Khi đó \[\left\{ \begin{gathered}
  {x_A} + {x_B} + {x_C} = 3 \hfill \\
  {x_A}.{x_B} + {x_B}.{x_C} + {x_C}.{x_A} = 0 \hfill \\
  {x_A}.{x_B}.{x_C} = m \hfill \\ 
\end{gathered}  ight.

    Để B nằm giữa A và C và AB = 2BC thì \begin{matrix}
\left\{ \begin{matrix}
x_{A} < x_{B} < x_{C} \\
x_{B} - x_{A} = 2\left( x_{C} - x_{B} ight) \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x_{C} < x_{B} < x_{A} \\
x_{A} - x_{B} = 2\left( x_{B} - x_{C} ight) \\
\end{matrix} ight.\  \\
\end{matrix}

    \Leftrightarrow 3x_{B} = x_{A} + 2x_{C}
\Leftrightarrow 4x_{B} - 3 = x_{C} \Rightarrow x_{A} = 6 -
5x_{B}

    \Rightarrow \left\{ \begin{gathered}
  \left( {6 - 5{x_B}} ight) + {x_B}.\left( {4{x_B} - 3} ight) + \left( {4{x_B} - 3} ight)\left( {6 - 5{x_B}} ight) = 0\left( * ight) \hfill \\
  \left( {4{x_B} - 3} ight).{x_B}.\left( {6 - 5{x_B}} ight) = m \hfill \\ 
\end{gathered}  ight.

    Từ (*) ta được x_{B} = \frac{7 \pm
\sqrt{7}}{7}. Thay (**) được \left\lbrack \begin{matrix}m = \dfrac{- 98 - 20\sqrt{7}}{49} \\m = \dfrac{- 98 + 20\sqrt{7}}{49} \\\end{matrix} ight.

    Suy ra S = \left\{ \frac{- 98 -
20\sqrt{7}}{49};\frac{- 98 + 20\sqrt{7}}{49} ight\}. Vậy tổng các phần tử của S bằng - 4.

  • Câu 6: Vận dụng
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    a) Đồ thị hàm số y = \left| \frac{x +
1}{x - 1} ight|

    - Giữ nguyên phần trên trục Ox.

    - Đối xứng với phần bị bỏ của đồ thị y =
\frac{x + 1}{x - 1} qua trục Ox.

    b) Ta có: y = \frac{|x + 1|}{x - 1} =
\left\{ \begin{matrix}
\frac{x + 1}{x - 1};\ \ \ khi\ x \geq - 1;x eq 1 \\
- \frac{x + 1}{x - 1};\ \ \ khi\ x < - 1 \\
\end{matrix} ight.

    Do đó đồ thị hàm số y = \frac{|x + 1|}{x
- 1} gồm hai phần:

    Phần 1: Đồ thị hàm số y = \frac{x + 1}{x
- 1} với x \geq - 1;x eq
1.

    Phần 2: Đối xứng với phần còn lại của đồ thị y = f(x)với x < −1 qua trục Ox.

    c) Đồ thị y = \left| \frac{|x + 1|}{x -
1} ight| gồm hai phần:

    Phần 1: Giữ nguyên phần trên Ox

    Phần 2: Đối xứng với phần bị bỏ của đồ thị y = \frac{|x + 1|}{x - 1} qua trục Ox.

    d) Đồ thị của hàm số y = \left| \frac{x +
1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là giống nhau.

  • Câu 7: Vận dụng
    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Cho hàm số y = f\left( x ight) có đồ thị như hình vẽ:

    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Hỏi phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 có tất cả bao nhiêu nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)?

    Hướng dẫn:

    Đặt t= x - 2;\left( {t >  - 2} ight)

    Phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 tương đương

    \left| {f\left( t ight) - 2} ight| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( t ight) = 3} \\   {f\left( t ight) = 1} \end{array}} ight.

    Dựa vào đồ thị ta thấy phương trình có 6 nghiệm phân biệt t \in \left( { - 2; + \infty } ight)

    => Phương trình đã cho có 6 nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)

  • Câu 8: Vận dụng cao
    Xác định các giá trị nguyên của tham số m

    Cho hai hàm số y = \frac{x}{x - 1} +
\frac{x + 1}{x} + \frac{x + 2}{x + 1}y = e^{x} + 2023 + 3m (m là tham số thực) có đồ thị lần lượt là (C_{1})(C_{2}). Có bao nhiêu số nguyên m thuộc ( -
2022;2023) để (C_{1})(C_{2}) cắt nhau tại 3 điểm phân biệt?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm \frac{x}{x - 1} + \frac{x + 1}{x} + \frac{x + 2}{x
+ 1} = e^{x} + 2023 + 3m

    \Leftrightarrow \frac{x}{x - 1} + \frac{x
+ 1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023 = 3m (1).

    Đặt g(x) = \frac{x}{x - 1} + \frac{x +
1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023.

    Ta có g'(x) = - \frac{1}{(x - 1)^{2}}
- \frac{1}{x^{2}} - \frac{1}{(x + 1)^{2}} - e^{x} < 0 với mọi x thuộc các khoảng sau ( - \infty; - 1), ( - 1;0), (0;1)(1;
+ \infty) nên hàm số y =
g(x) nghịch biến trên mỗi khoảng đó.

    Mặt khác ta có \lim_{x ightarrow -
\infty}g(x) = - 2020\lim_{x
ightarrow + \infty}g(x) = - \infty.

    Bảng biến thiên hàm sốy =
g(x)

    Do đó để (C_{1})(C_{2}) cắt nhau tại đúng ba điểm phân biệt thì phương trình (1) phải có ba nghiệm phân biệt.

    Điều này xảy ra khi và chỉ khi đường thẳng y = 3m cắt đồ thị hàm số y = g(x) tại ba điểm phân biệt khi và chỉ khi 3m \geq - 2020
\Leftrightarrow m \geq - \frac{2020}{3} \approx - 673,3.

    Do m nguyên thuộc( - 2022;2023) nên m \in \left\{ - 673; - 672;...;2022
ight\}. Vậy có tất cả 2696 giá trịm thỏa mãn.

  • Câu 9: Vận dụng
    Tìm giá trị lớn nhất của tham số m

    Giá trị lớn nhất của m để đường thẳng (d):y = x - m + 1 cắt đồ thị hàm số y = x^{3} + 2(m - 2)x^{2} + (8 - 5m)x
+ m - 5 tại 3 điểm phân biệt có hoành độ x_{1},\ x_{2},\ x_{3} thỏa mãn điều kiện x_{1}^{2} + x_{2}^{2} + x_{3}^{2} =
20

    Hướng dẫn:

    Hoành độ giao điểm của đường thẳng (d) và đồ thị hàm số là nghiệm của phương trình

    x^{3} + 2(m - 2)x^{2} + (8 - 5m)x + m -
5 = x - m + 1

    \Leftrightarrow (x - 2)\left\lbrack
x^{2} + (2m - 2)x - m + 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{3} = 2 \\
x^{2} + (2m - 2)x - m + 3 = 0(1) \\
\end{matrix} ight..

    Đường thẳng (d) cắt đồ thị hàm số tại 3 điểm phân biệt \Leftrightarrow phương trình (1) có hai nghiệm phân biệt x_{1};x_{2} khác 2 \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m - 1)^{2} + (m - 3) > 0 \\
4 + (2m - 2).2 - m + 3 eq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight.\  \\
m eq - 1 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight. (2).

    Khi đó, \left\{ \begin{matrix}
x_{1} + x_{2} = - (2m - 2) \\
x_{1}x_{2} = - m + 3 \\
\end{matrix} ight..

    Theo giả thiết x_{1}^{2} + x_{2}^{2} +
x_{3}^{2} = 20 \Leftrightarrow \left( x_{1} + x_{2} ight)^{2} -
2x_{1}x_{2} + x_{3}^{2} = 20

    \Leftrightarrow (2m - 2)^{2} + 2(m - 3) +
4 = 20

    \Leftrightarrow 2m^{2} - 3m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - \frac{3}{2} \\
\end{matrix} ight.(thỏa mãn (2)).

    Vậy giá trị lớn nhất của m thỏa mãn yêu cầu bài toán là 3.

  • Câu 10: Vận dụng cao
    Định m để bất phương trình nghiệm đúng với mọi x

    Cho hàm số f(x). Hàm số y = f'(x) có đồ thị như hình sau.

    Tìm tất cả các giá trị thực của tham số m để bất phương trình 2f\left( \sin x - 2 \right) - \frac{2sin^{3}x}{3}
+ \sin x > m + \frac{5cos2x}{4} nghiệm đúng với mọi x \in \left( - \frac{\pi}{2};\frac{\pi}{2}
\right).

    Hướng dẫn:

    Ta có

    2f\left( \sin x - 2 ight) -
\frac{2sin^{3}x}{3} + \sin x > m + \frac{5cos2x}{4}

    \Leftrightarrow m < 2f\left( \sin x -
2 ight) - \frac{2sin^{3}x}{3} + \sin x - \frac{5\left( 1 - 2sin^{2}x
ight)}{4}

    Đặt t = \sin x - 2 (với x \in \left( - \frac{\pi}{2};\frac{\pi}{2}
ight) thì t \in ( - 3; -
1)

    Khi đó bất phương trình được viết lại thành:

    m < 2f(t) - \frac{2(t + 2)^{3}}{3} +
(t + 2) - \frac{5\left\lbrack 1 - 2(t + 2)^{2}
ightbrack}{4}.

    Hay m < 2f(t) - \frac{2}{3}t^{3} -
\frac{3}{2}t^{2} + 3t + \frac{65}{12}(*).

    Xét hàm số g(t) = 2f(t) -
\frac{2}{3}t^{3} - \frac{3}{2}t^{2} + 3t + \frac{65}{12} trên đoạn \lbrack - 3; - 1brack.

    Ta có g'(t) = 2f'(t) - 2t^{2} -
3t + 3.

    Do đó g'(t) = 0 \Leftrightarrow
f'(t) = t^{2} + \frac{3}{2}t - \frac{3}{2}.

    Dựa vào sự tương giao của đồ thị hàm số y
= f'(t) và parabol y = t^{2} +
\frac{3}{2}t - \frac{3}{2} trên đoạn \lbrack - 3; - 1brack thì g'(t) = 0 \Leftrightarrow t \in \left\{ - 3; -
1 ight\}.

    Suy ra bảng biến thiên của hàm số g(t) trên đoạn \lbrack - 3; - 1brack như sau:

    Bất phương trình đã cho nghiệm đúng với mọi x \in \left( - \frac{\pi}{2};\frac{\pi}{2}
ight) khi và chỉ khi bất phương trình (*) nghiệm đúng với mọi t \in ( - 3; - 1). Điều đó tương đương với m \leq g( - 1) = 2f( - 1) +
\frac{19}{12} dựa vào tính liên tục của hàm số g(t).

  • Câu 11: Vận dụng
    Xác định các giá trị thực tham số m

    Cho hàm số y = x^{3} - 3mx^{2} +
2m. Có bao nhiêu giá trị của tham số thực m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ lập thành cấp số cộng?

    Hướng dẫn:

    Phương trình hoành độ giao điểm: x^{3} -
3mx^{2} + 2m = 0 (*)

    Phương trình ax^{3} + bx^{2} + cx + d =
0 có ba nghiệm lập thành cấp số cộng

    \overset{}{ightarrow} Phương trình có một nghiệm x_{0} = -
\frac{b}{3a}.

    Suy ra phương trình (*) có một nghiệm x = m.

    Thay x = m vào phương trình (*), ta được m^{3} - 3m\ .\ m^{2} + 2m = 0 \Leftrightarrow -
2m^{3} + 2m = 0 \leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 0 \\
\end{matrix} ight..

    Thử lại:

    Với m = 1, ta được x^{3} - 3x^{2} + 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = 1 - \sqrt{3} \\
x = 1 \\
x = 1 + \sqrt{3} \\
\end{matrix} ight..

    Do đó m = 1 thỏa mãn.

    Với m = - 1, ta được x^{3} + 3x^{2} - 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 + \sqrt{3} \\
x = - 1 \\
x = - 1 - \sqrt{3} \\
\end{matrix} ight..

    Do đó m = - 1 thỏa mãn.

    Với m = 0, ta được x^{3} = 0 \Leftrightarrow x = 0.

    Do đó m = 0 không thỏa mãn.

    Vậy m = \pm 1 là hai giá trị cần tìm.

  • Câu 12: Vận dụng cao
    Chọn phương án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số nghiệm trên khoảng ( -
\pi;4\pi) của phương trình f\left(
2|cos2x| \right) = 1

    Hướng dẫn:

    Đặt t = 2|cos2x|.

    x \in ( - \pi;4\pi) nên t \in \lbrack 0;2brack

    Phương trình trở thành: f(t) =
1.

    Từ đồ thị hàm số ta suy ra phương trình f(t) = 1 có các nghiệm thuộc \lbrack 0;2brack\left\lbrack \begin{matrix}
t = 1 \\
t = 2 \\
\end{matrix} ight..

    Với t = 1 \Leftrightarrow |cos2x| =
\frac{1}{2} \Leftrightarrow
\left\lbrack \begin{matrix}
cos2x = \frac{1}{2} \\
cos2x = \frac{- 1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{\pm \pi}{6} + k\pi \\
x = \frac{\pm \pi}{3} + k\pi \\
\end{matrix} ight.

    x \in ( - \pi;2\pi) \Rightarrow
\left\lbrack \begin{matrix}
- \pi < \frac{\pi}{6} + k\pi < 4\pi \\
- \pi < \frac{- \pi}{6} + k\pi < 4\pi \\
- \pi < \frac{\pi}{3} + k\pi < 4\pi \\
- \pi < \frac{- \pi}{3} + k\pi < 4\pi \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
\frac{- 7}{6} < k < \frac{23}{6} \\
\frac{- 5}{6} < k < \frac{25}{6} \\
\frac{- 4}{3} < k < \frac{11}{3} \\
\frac{- 2}{3} < k < \frac{13}{3} \\
\end{matrix} ight.

    \Rightarrowphương trình có 20 nghiệm thuộc khoảng ( - \pi;4\pi).

    Với t = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
cos2x = 1 \\
cos2x = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = k\pi \\
x = \frac{\pi}{2} + k\pi \\
\end{matrix} ight.

    x \in ( - \pi;2\pi) \Rightarrow
\left\lbrack \begin{matrix}
- \pi < k\pi < 4\pi \\
- \pi < \frac{\pi}{2} + k\pi < 4\pi \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
- 1 < k < 4 \\
\frac{- 3}{2} < k < \frac{7}{2} \\
\end{matrix} ight.

    \Rightarrowphương trình có 9nghiệm thuộc khoảng ( - \pi;4\pi).

    Vậy phương trình đã cho có tất cả 29 nghiệm.

  • Câu 13: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Đáp án là:

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Câu 2

    a)

    b)

    c)

    d)

    ý

    Đúng

    Sai

    Sai

    Sai

    Ta có: y' = 3x^{2} - 6x, y' = 0 \Leftrightarrow x = 0 hoặc x = 2.

    Bảng biến thiên của hàm số đã cho là:

    Hàm số đồng biến trên các khoảng ( -
\infty;0)(2; +
\infty), hàm số nghịch biến trên khoảng (0;2).

    Đồ thị hàm số đã cho là:

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

  • Câu 14: Thông hiểu
    Tìm số điểm chung

    Đồ thị hàm số y = x^{4} - 3x^{2} +
1 và đồ thị hàm số y = - 2x^{2} +
7có bao nhiêu điểm chung?

    Hướng dẫn:

    Phương trình hoành độ giao điểm:

    x^{4} - 3x^{2} + 1 = - 2x^{2} +
7

    \Leftrightarrow x^{4} - x^{2} - 6 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = 3 \\
x^{2} = - 2 \\
\end{matrix} ight.\  \Leftrightarrow x = \pm \sqrt{3}.

    Do phương trình có 2 nghiệm nên đồ thị hai hàm số có 2 điểm chung.

  • Câu 15: Vận dụng
    Chọn khẳng định đúng

    Cho đồ thị hàm số (C):y = \frac{2x + 1}{x
+ 2}. Giả sử M(a;b) \in
(C) có khoảng cách đến đường thẳng d:y = 3x + 6 nhỏ nhất. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có: M\left( a;\frac{2a + 1}{a + 2}
ight);(a eq - 2)

    Khoảng cách từ M đến đường thẳng (d) bằng:

    d(M;d) = \dfrac{\left| 3a - \dfrac{2a +1}{a + 2} + 6 ight|}{\sqrt{3^{2} + 1}}= \frac{1}{\sqrt{10}}.\left| 3a+ 6 - \frac{2a + 1}{a + 2} ight|= \frac{1}{\sqrt{10}}.\left|\frac{3a^{2} + 10a + 11}{a + 2} ight|

    Xét hàm số f(a) = \frac{3a^{2} + 10a +
11}{a + 2};(a eq - 2)

    f'(a) = \frac{3\left( a^{2} + 4a + 3
ight)}{(a + 2)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = - 3 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy giá trị nhỏ nhất của hàm số \left|
f(a) ight| = 4 tại a = -
1

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b = - 2

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Tìm số giao điểm của đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x?

    Hướng dẫn:

    Cách 1: Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x \Leftrightarrow
\sqrt{x^{4} - 4} = x - 5

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - 4 = (x - 5)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - x^{2} + 10x - 29 = 0\ \ \ (*) \\
\end{matrix} ight.

    Do x \geq 5nên x^{4} - x^{2} = x^{2}(x^{2} - 1) > 010x - 29 > 0. Vì vậy (*) vô nghiệm

    Như vậy phương trình \sqrt{x^{4} - 4} + 5
= x vô nghiệm hay đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào.

    Cách 2:

    Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x. Ta có điều kiện xác định \left\lbrack \begin{matrix}
x \geq \sqrt{2} \\
x \leq - \sqrt{2} \\
\end{matrix} ight.

    Với điều kiện trên ta có \sqrt{x^{4} - 4}
+ 5 = x \Leftrightarrow \sqrt{x^{4} - 4} + 5 - x = 0

    Xét hàm số h(x) = \sqrt{x^{4} - 4} + 5 -
x. Ta có h'(x) =
\frac{2x^{3}}{\sqrt{x^{4} - 4}} - 1; h'(x) = 0 \Leftrightarrow 2x^{3} = \sqrt{x^{4}
- 4}

    Với x \geq \sqrt{2} ta có 2x^{3} > \sqrt{x^{4} - 4}. Với x \leq - \sqrt{2} ta có 2x^{3} < \sqrt{x^{4} - 4}

    Ta có Bảng biến thiên:

    Số nghiệm của phương trình\sqrt{x^{4} -
4} + 5 = x là số giao điểm của đồ thịy = h(x) = \sqrt{x^{4} - 4} + 5 - x và trục hoànhy = 0.

    Dựa vào BBT ta thấy phương trình \sqrt{x^{4} - 4} + 5 = x vô nghiệm hay đồ thị hàm số y = \sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào. 

  • Câu 17: Vận dụng cao
    Tìm các giá trị nguyên m thỏa mãn yêu cầu

    Cho hàm y = f(x) là hàm đa thức bậc bốn. Biết rằng f(0) = 0, f( - 3) = f\left( \frac{3}{2} \right) = -
\frac{19}{4} và đồ thị hàm số y =
f'(x) có dạng như hình vẽ.

    Xét hàm số g(x) = \left| 4f(x) + 2x^{2}
\right| - 2m^{2} + 1 với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên m \in ( - 50;50) để phương trình g(x) = 1 có đúng hai nghiệm thực?

    Hướng dẫn:

    Ta có \left| 4f(x) + 2x^{2} ight| -
2m^{2} + 1 = 1

    \Leftrightarrow \left| 4f(x) + 2x^{2}
ight| = 2m^{2}(1)

    Xét hàm số h(x) = 4f(x) +
2x^{2}, ta có h'(x) =
4\left\lbrack f'(x) - ( - x) ightbrack.

    Dựa vào đồ thị hàm số f'(x) và đường thẳng y = - x.

    Ta thấy: h'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = 0 \\
x = \frac{3}{2} \\
\end{matrix} ight.

    h( - 3) = 4f( - 3) + 2( - 3)^{2} = -
1, h(0) = 0, h\left( \frac{3}{2} ight) = 4f\left( \frac{3}{2}
ight) + 2\left( \frac{3}{2} ight)^{2} = - \frac{29}{2}.

    Do đó ta có bảng biến thiên hàm số h(x) như sau

    Từ đó suy ra bảng biến thiên của hàm số \left| h(x) ight|như sau

    Do đó để phương trình (1)có đúng hai nghiệm thực thì 2m^{2} > \frac{29}{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{\sqrt{29}}{2} \\
m < - \frac{\sqrt{29}}{2} \\
\end{matrix} ight..

    m là số nguyên thuộc ( - 50;50) nên \left\lbrack \begin{matrix}
3 \leq m \leq 49 \\
- 49 \leq m \leq - 3 \\
\end{matrix} ight..

    Vậy có 94 số nguyên m thỏa mãn.

  • Câu 18: Vận dụng
    Ghi đáp án vào ô trống

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Đáp án là:

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Gọi hàm số mô phỏng đường bay của máy bay là y = ax^{3} + bx^{2} + cx + d\ (a eq0).

    Đồ thị hàm số đi qua điểm O(0;0) nên ta có d = 0.

    Đồ thị hàm số đi qua điểm ( -4;1) nên ta có phương trình - 64a +16b - 4c = 1\ \ (1).

    Mặt khác, ta có ( - 4;1)O(0;0) là hai điểm cực trị của đồ thị hàm số nên ta có y'( - 4) = 0;\y'(0) = 0 tức là \left\{\begin{matrix}48a - 8b + c = 0 \\c = 0 \\\end{matrix} ight. (2).

    Từ (1)(2) ta có a =\frac{1}{32};\ b = \frac{3}{16};\ c = 0.

    Suy ra y = \frac{1}{32}x^{3} +\frac{3}{16}x^{2}.

    Thay x = - 3 ta được y = \frac{27}{32} \approx 0,84.

    Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng 0,84 dặm.

  • Câu 19: Vận dụng cao
    Tính giá trị của biểu thức

    Cho hàm số y = x^{4} + 2mx^{2} +
m (với mlà tham số thực). Tập tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt đường thẳng y = - 3 tại bốn điểm phân biệt, trong đó có một điểm có hoành độ lớn hơn 2 còn ba điểm kia có hoành độ nhỏ hơn 1, là khoảng (a;b) (với a,b\mathbb{\in Q}, a,b là phân số tối giản). Khi đó, 15ab nhận giá trị nào sau đây?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm x^{4}
+ 2mx^{2} + m = - 3.

    Đặt x^{2} = t, t \geq 0. Khi đó phương trình trở thành t^{2} + 2mt + m + 3 = 0 (1)

    và đặt f(t) = t^{2} + 2mt + m +
3.

    Để đồ thị hàm số cắt đường thẳng y = -
3 tại 4 điểm phân biệt thì phương trình (1) có hai nghiệm thỏa mãn 0 < t_{1} < t_{2} và khi đó hoành độ bốn giao điểm là - \sqrt{t_{2}}
< - \sqrt{t_{1}} < \sqrt{t_{1}} < \sqrt{t_{2}}.

    Do đó, từ điều kiện của bài toán suy ra \left\{ \begin{matrix}
\sqrt{t_{2}} > 2 \\
\sqrt{t_{1}} < 1 \\
\end{matrix} ight. hay 0 <
t_{1} < 1 < 4 < t_{2}.

    Điều này xảy ra khi và chỉ khi \left\{
\begin{matrix}
f(0) > 0 \\
f(1) < 0 \\
f(4) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m + 3 > 0 \\
3m + 4 < 0 \\
9m + 19 < 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m < -
\frac{19}{9}.

    Vậy a = - 3, b = - \frac{19}{9} nên 15ab = 95.

  • Câu 20: Vận dụng
    Xác định tính đúng sai của từng phương án

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    Đáp án là:

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại làP(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}.

    b) Sai. Đạo hàm của P(x)P'(x) = \frac{3}{2}x -
\frac{3}{40}x^{2}.

    c) Sai. Xét phương trình P'(x) = 0
\Leftrightarrow \frac{3}{2}x - \frac{3}{40}x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    d) Đúng. Ta có bảng biến thiên:

    Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo