Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tìm điều kiện cần và đủ của tham số m theo yêu cầu

    Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất phương trình 3f(x) \geq x^{3} - 3x +
m (m là tham số thực). Điều kiện cần và đủ để bất phương trình 3f(x) \geq x^{3} - 3x + m đúng với mọi x \in \left\lbrack - \sqrt{3};\sqrt{3}
\right\rbrack

    Hướng dẫn:

    Ta có 3f(x) \geq x^{3} - 3x + m
\Leftrightarrow 3f(x) - x^{3} + 3x \geq m

    Đặt g(x) = 3f(x) - x^{3} + 3x. Tính g'(x) = 3f'(x) - 3x^{2} +
3

    g'(x) = 0 \Leftrightarrow
f'(x) = x^{2} - 1

    Nghiệm của phương trình g'(x) =
0 là hoành độ giao điểm của đồ thị hàm số y = f'(x) và parabol y = x^{2} - 1

    Dựa vào đồ thị hàm số ta có: f'(x) =
x^{2} - 1 \Leftrightarrow \left\lbrack \begin{matrix}
x = - \sqrt{3} \\
x = 0 \\
x = \sqrt{3} \\
\end{matrix} ight.

    BBT

    Để bất phương trình nghiệm đúng với mọi x
\in \left\lbrack - \sqrt{3};\sqrt{3} ightbrack thì m \leq \min_{\left\lbrack - \sqrt{3};\sqrt{3}
ightbrack}g(x) = g\left( \sqrt{3} ight) = 3f\left( \sqrt{3}
ight).

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x^{3} - 12x + 1 - m cắt trục hoành tại ba điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị hàm số x^{3} - 12x + 1 - m = 0

    Ta cps: x^{3} - 12x + 1 - m = 0
\Leftrightarrow x^{3} - 12x + 1 = m(*)

    Đặt \left\{ \begin{matrix}
y = x^{3} - 12x + 1 \\
y = m \\
\end{matrix} ight.. Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số y =
x^{3} - 12x + 1 và đường thẳng y =
m.

    Khảo sát sự biến thiên của hàm số y =
x^{3} - 12x + 1 ta có:

    y' = 3x^{2} - 12 \Rightarrow y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Với - 15 < m < 17 thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên m \in \left\{ - 14;...;16 ight\}.

    Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 4: Vận dụng
    Xác định các giá trị thực tham số m

    Cho hàm số y = x^{3} - 3mx^{2} +
2m. Có bao nhiêu giá trị của tham số thực m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ lập thành cấp số cộng?

    Hướng dẫn:

    Phương trình hoành độ giao điểm: x^{3} -
3mx^{2} + 2m = 0 (*)

    Phương trình ax^{3} + bx^{2} + cx + d =
0 có ba nghiệm lập thành cấp số cộng

    \overset{}{ightarrow} Phương trình có một nghiệm x_{0} = -
\frac{b}{3a}.

    Suy ra phương trình (*) có một nghiệm x = m.

    Thay x = m vào phương trình (*), ta được m^{3} - 3m\ .\ m^{2} + 2m = 0 \Leftrightarrow -
2m^{3} + 2m = 0 \leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 0 \\
\end{matrix} ight..

    Thử lại:

    Với m = 1, ta được x^{3} - 3x^{2} + 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = 1 - \sqrt{3} \\
x = 1 \\
x = 1 + \sqrt{3} \\
\end{matrix} ight..

    Do đó m = 1 thỏa mãn.

    Với m = - 1, ta được x^{3} + 3x^{2} - 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 + \sqrt{3} \\
x = - 1 \\
x = - 1 - \sqrt{3} \\
\end{matrix} ight..

    Do đó m = - 1 thỏa mãn.

    Với m = 0, ta được x^{3} = 0 \Leftrightarrow x = 0.

    Do đó m = 0 không thỏa mãn.

    Vậy m = \pm 1 là hai giá trị cần tìm.

  • Câu 5: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng cao
    Tìm m để phương trình có 6 nghiệm phân biệt

    Tìm tất cả các giá trị thực của m để phương trình \left| x^{4} - 2x^{2} - 3 \right| = 2m -
1 có đúng 6 nghiệm thực phân biệt.

    Hướng dẫn:

    Xét g(x) = x^{4} - 2x^{2} - 3 có tập xác định:D\mathbb{= R}

    g'(x) = 4x^{3} - 4x

    g'(x) = 0 \Leftrightarrow 4x^{3} - 4x
= 0. \Leftrightarrow 4x\left( x^{2}
- 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Đồ thị hàm số f(x) = \left| x^{4} -
2x^{2} - 3 ight| là:

    Để phương trình \left| x^{4} - 2x^{2} - 3
ight| = 2m - 1 có đúng 6 nghiệm thực phân biệt.

    \Leftrightarrow 3 < 2m - 1 <
4 \Leftrightarrow 4 < 2m < 5
\Leftrightarrow 2 < m < \frac{5}{2}

  • Câu 7: Vận dụng cao
    Tìm m để phương trình có 3 nghiệm thực phân biệt

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 6f\left( x^{2} - 4x \right) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0\ ;\  + \infty)?

    Hướng dẫn:

    Ta đặt: g(x) = f\left( x^{2} - 4x
ight).

    g'(x) = (2x - 4)f'\left( x^{2} -
4x ight)

    = 2(x - 2)\left( x^{2} - 4x + 4
ight)\left( x^{2} - 4x + 2 ight)\left( x^{2} - 4x ight) (dựa vào bảng biến thiên) = 2(x -
2)^{3}\left( x^{2} - 4x + 2 ight)x(x - 4).

    Mặt khác:

    g(0) = f(0) = - 3;

    g\left( 2 - \sqrt{2} ight) = g\left( 2
+ \sqrt{2} ight) = f( - 2) = 2;

    g(2) = f( - 4) = - 2;

    g(4) = f(0) = - 3.

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta được: yêu cầu bài toán tương đương - 3 < \frac{m}{6} \leq 2

    \Leftrightarrow - 18 < m \leq
12. Vậy có tất cả 30 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 8: Vận dụng
    Tính giá trị biểu thức

    Một đường thẳng cắt đồ thị hàm số y =
x^{4} - 2x^{2} tại 4 điểm phân biệt có hoành độ là 0,1,m,n. Tính S = m^{2} + n^{2}.

    Hướng dẫn:

    Gọi phương trình đường thẳng là d:y = ax
+ b.

    Theo đề ta có 0,1,m,n là các nghiệm của phương trình: x^{4} - 2x^{2} - ax
- b = 0 (1).

    Vì x=0 ,x=1 là nghiệm của phương trình (1) nên ta có: \left\{ \begin{matrix}
b = 0 \\
a + b = - 1 \\
\end{matrix} ight.

    Khi đó phương trình (1) trở thành: x^{4}
- 2x^{2} + x = 0 \Leftrightarrow x(x - 1)(x^{2} + x - 1) =
0.

    Dễ thấy m,n là nghiệm của phương trình: x^{2} + x - 1 = 0.

    S = m^{2} + n^{2} = (m + n)^{2} - 2mn = (
- 1)^{2} + 2 = 3.

  • Câu 9: Vận dụng
    Giá trị của biểu thức K

    Đồ thị (C) của hàm số y = \frac{{ax + 2}}{{cx + b}} có bảng biến thiên như hình vẽ.

    Giá trị của biểu thức K

    Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng y = 2x + 2018. Giá trị của biểu thức K = a + 2b + 3c là:

    Hướng dẫn:

    Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3

    => Hàm số có dạng y = \frac{{ - 3x + b}}{{x - 1}} \Rightarrow y' = \frac{{3 - b}}{{{{\left( {x - 1} ight)}^2}}} \Rightarrow y'\left( 0 ight) = 3 - b

    Do tiếp tuyến song song với đường thẳng

    => 3 – b = 2 => b = 1

    Vậy a = -3; b = 1; c = 1 => K = 2

  • Câu 10: Vận dụng cao
    Tính giá trị biểu thức

    Trong số các cặp số thực (a;b) để bất phương trình (x - 1)(x - a)\left(
x^{2} + x + b \right) \geq 0 nghiệm đúng với mọi x\mathbb{\in R}, tích ab nhỏ nhất bằng

    Hướng dẫn:

    Đặt f(x) = (x - 1)(x - a)\left( x^{2} + x
+ b ight)g(x) = (x - a)\left(
x^{2} + x + b ight)

    Giả sử x = 1 không phải là nghiệm của phương trình g(x) = (x - a)\left(
x^{2} + x + b ight) = 0 thì hàm số f(x) = (x - 1)(x - a)\left( x^{2} + x + b
ight) sẽ đổi dấu khi qua điểm x =
1, nghĩa là(x - 1)(x - a)\left(
x^{2} + x + b ight) \geq 0 không nghiệm đúng với mọi x\mathbb{\in R}.

    Do đó yêu cầu bài toán được thỏa mãn thì một điều kiện cần làg(x) = (x - a)\left( x^{2} + x + b ight) =
0 có nghiệm x = 1 suy ra hoặc \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\ \forall x\mathbb{\in R} \\
\end{matrix} ight. hoặc là phương trình x^{2} + x + b = 0 có hai nghiệm x = 1x =
a

    Trường hợp 1: \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\forall x \in R \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
1 > 0 \\
\Delta = 1 - 4b \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.

    Trường hợp 2: phương trình x^{2} + x + b
= 0 có hai nghiệm x = 1x = a

    Ta thay x = 1vào phương trình x^{2} + x + b = 01^{2} + 1 + b = 0 \Rightarrow b = - 2.

    Với b = - 2 có phương trình x^{2} + x + b = 0 \Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    x = a cũng là nghiệm của phương trình nên a = - 2.

    Trong trường hợp 1: \left\{
\begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.\  \Rightarrow ab \geq \frac{1}{4} suy ra tích ab nhỏ nhất khi ab = \frac{1}{4}

    Và với a = 1,b = \frac{1}{4}, tích ab = \frac{1}{4} thì bất phương trình đã cho tương đương với (x -
1)(x - 1)\left( x^{2} + x + \frac{1}{4} ight) \geq 0 \Leftrightarrow (x - 1)^{2}\left( x + \frac{1}{2}
ight)^{2} \geq 0 thỏa mãn với mọi x\mathbb{\in R} (nhận)

    Trong trường hợp 2: Tích ab = 4 >
\frac{1}{4}

    Vậy tích ab nhỏ nhất khi ab = \frac{1}{4}.

  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Tìm hàm số tương ứng với đồ thị hàm số sau đây?

    Hướng dẫn:

    Đồ thị hàm số có hệ số a < 0 và có hai điểm cực trị là A(0;1),B(2;5) nên chỉ có hàm số y = - x^{3} + 3x^{2} + 1 thỏa mãn vì

    y' = - 3x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
x = 0 \Rightarrow y = 1 \Rightarrow A(0;1) \\
x = 2 \Rightarrow y = 5 \Rightarrow B(2;5) \\
\end{matrix} ight..

    Vậy hàm số xác định được là y = - x^{3} +
3x^{2} + 1.

  • Câu 12: Vận dụng cao
    Xác định tất cả giá trị nguyên tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = x^{3} + x + 2. Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình f\left( \sqrt[3]{f^{3}(x) + f(x) + m} \right) = -
x^{3} - x + 2 có nghiệm x \in
\lbrack - 1;2\rbrack?

    Hướng dẫn:

    Xét hàm số f(t) = t^{3} + t + 2, ta có f'(t) = 3t^{2} + 1 > 0,\forall
t\mathbb{\in R}.

    Do đó hàm số f đồng biến trên \mathbb{R}.

    Ta có f\left( \sqrt[3]{f^{3}(x) + f(x) +
m} ight) = f( - x)

    \Leftrightarrow - x = \sqrt[3]{f^{3}(x)
+ f(x) + m} \Leftrightarrow f^{3}(x) + f(x) + x^{3} + m = 0\ \ \ \ \ \
(1)

    Xét h(x) = f^{3}(x) + f(x) + x^{3} +
m trên đoạn \lbrack -
1;2brack.

    Ta có h'(x) = 3f'(x) \cdot
f^{2}(x) + f'(x) + 3x^{2}

    = f'(x)\left\lbrack 3f^{2}(x) + 1
ightbrack + 3x^{2}.

    Ta có f'(x) = 3x^{2} + 1 >
0,\forall x \in \lbrack - 1;2brack \Rightarrow h'(x) >
0,\forall x \in \lbrack - 1;2brack.

    Hàm số h(x) đồng biến trên \lbrack - 1;2brack nên \min_{\lbrack - 1;2brack}h(x) = h( - 1) = m -
1,\max_{\lbrack - 1;2brack}h(x) = h(2) = m +1748.

    Phương trình (1) có nghiệm khi và chỉ khi

    \begin{matrix}
  \mathop {\min }\limits_{[ - 1;2]} h\left( x ight) \cdot \mathop {\max }\limits_{[ - 1;2]} h\left( x ight) \leqslant 0 \Leftrightarrow h\left( { - 1} ight) \cdot h\left( 2 ight) \hfill \\
   \Leftrightarrow \left( {m - 1} ight)\left( {1748 + m} ight) \leqslant 0 \hfill \\
   \Leftrightarrow  - 1748 \leqslant m \leqslant 1. \hfill \\ 
\end{matrix}

    Do m nguyên nên tập các giá trị m thỏa mãn là S = \{ - 1748; - 1747;\ldots;0;1\}.

    Vậy có tất cả 1750 giá trị nguyên của m thỏa mãn.

  • Câu 13: Vận dụng
    Xác định tính đúng sai của từng phương án

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    Đáp án là:

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại làP(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}.

    b) Sai. Đạo hàm của P(x)P'(x) = \frac{3}{2}x -
\frac{3}{40}x^{2}.

    c) Sai. Xét phương trình P'(x) = 0
\Leftrightarrow \frac{3}{2}x - \frac{3}{40}x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    d) Đúng. Ta có bảng biến thiên:

    Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.

  • Câu 14: Vận dụng
    Tìm m thỏa mãn yêu cầu bài toán

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \left\lbrack
0;\frac{7}{2} ightbrack của phương trình f\left( \cos x ight) = 1 bằng:

    Hướng dẫn:

    Dựa vào bảng biến thiến ta suy ra f\left(
\cos x ight) = 1 \Leftrightarrow \left\lbrack \begin{matrix}
\cos x = a < - 1\ \ \ \ (1) \\
\cos x = b \in ( - 1;0)\ \ \ (2) \\
\cos x = c \in (0;1)\ \ (3) \\
\cos x = d > 1\ \ (4) \\
\end{matrix} ight.

    Các phương trình (1) và (4) vô nghiệm

    Ta có bảng sau:

    Phương trình \cos x = b \in ( -
1;0) có 4 nghiệm thuộc \left\lbrack
0;\frac{7}{2} ightbrack

    Phương trình \cos x = c \in
(0;1) có 3 nghiệm thuộc \left\lbrack 0;\frac{7}{2}
ightbrack

    Vậy phương trình đã cho có tất cả 7 nghiệm thuộc đoạn \left\lbrack 0;\frac{7}{2}
ightbrack.

  • Câu 15: Vận dụng
    Xác định các giá trị tham số m

    Cho đồ thị hàm số \left( C_{m} ight):y
= x^{3} - 2x^{2} + (1 - m)x + m. Tìm tất cả các giá trị của tham số m để \left( C_{m} ight) cắt trục hoành tại ba điểm phân biệt cách hoành độ x_{1};x_{2};x_{3} thỏa mãn {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2} =
4?

    Hướng dẫn:

    Để hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì phương trình hoành độ giao điểm phải có ba nghiệm phân biệt:

    x^{3} - 2x^{2} + (1 - m)x + m =
0

    \Leftrightarrow (x - 1)\left( x^{2} - x
- m ight) = 0

    Ta đặt x_{1} = 1. Khi đó để phương trình có 3 nghiệm phân biệt thì phương trình sau phải có 2 nghiệm phân biệt khác 1.

    x^{2} - x + m = 0

    Do có nghiệm khác 1 nên 1 - 1 - m eq
0 hay m eq 0

    Ta có: \Delta = 1 + 4m

    Để có hai nghiệm phân biệt thì \Delta
> 0 hay m > -
\frac{1}{4}

    Theo bài ra ta có:

    {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2}
= 4

    \Leftrightarrow 1 + \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 4 \Leftrightarrow \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 3 với x_{2};x_{3} là nghiệm của phương trình bậc hai trên.

    Áp dụng hệ thức Vi – et ra có:

    1^{2} - 2.( - m) = 3 \Leftrightarrow m =
1

    Kết hợp các điều kiện ta có: m =
1.

    Vậy đáp án đúng là m = 1.

  • Câu 16: Vận dụng
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    a) Đồ thị hàm số y = \left| \frac{x +
1}{x - 1} ight|

    - Giữ nguyên phần trên trục Ox.

    - Đối xứng với phần bị bỏ của đồ thị y =
\frac{x + 1}{x - 1} qua trục Ox.

    b) Ta có: y = \frac{|x + 1|}{x - 1} =
\left\{ \begin{matrix}
\frac{x + 1}{x - 1};\ \ \ khi\ x \geq - 1;x eq 1 \\
- \frac{x + 1}{x - 1};\ \ \ khi\ x < - 1 \\
\end{matrix} ight.

    Do đó đồ thị hàm số y = \frac{|x + 1|}{x
- 1} gồm hai phần:

    Phần 1: Đồ thị hàm số y = \frac{x + 1}{x
- 1} với x \geq - 1;x eq
1.

    Phần 2: Đối xứng với phần còn lại của đồ thị y = f(x)với x < −1 qua trục Ox.

    c) Đồ thị y = \left| \frac{|x + 1|}{x -
1} ight| gồm hai phần:

    Phần 1: Giữ nguyên phần trên Ox

    Phần 2: Đối xứng với phần bị bỏ của đồ thị y = \frac{|x + 1|}{x - 1} qua trục Ox.

    d) Đồ thị của hàm số y = \left| \frac{x +
1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là giống nhau.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2x^{2} có đồ thị (C), có bao nhiêu đường thẳng dcó đúng 3 điểm chung với đồ thị (C) và các điểm chung có hoành độ x_{1},x_{2},x_{3} thỏa mãn\ {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Hướng dẫn:

    Vì đường thẳng d cắt đồ thị hàm số (C) tại 3 điểm phân biệt nên đường thẳng dlà đường thẳng có hệ số góc dạng y = ax + b.

    Phương trình hoành độ giao điểm của d (C) là: x^{4}
- 2x^{2} = ax + b.

    Mà phương trình là phương trình bậc 4 nên phương trình muốn có 3 nghiệm phân biệt thì trong đó sẽ có 1 nghiệm kép gọi là x_{1}, hai nghiệm còn lại là x_{2},x_{3}.

    Suy ra đường thẳng dlà tiếp tuyến của đồ thị (C), không mất tính tổng quát giả sử đường thẳng dtiếp xúc với đồ thị hàm số (C)tại x_{1}.

    Gọi dlà tiếp tuyến của (C)tại điểm có hoành độ x_{1}, d cắt (C) tại 2 điểm phân biệt có hoành độ x_{2},x_{3}( eq x_{1}) thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Ta có: d:y = (4{x_{1}}^{3} - 4x_{1})(x -
x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}.

    Phương trình hoành độ giao điểm của d(C)là:

    x^{4} - 2x^{2} = (4{x_{1}}^{3} -
4x_{1})(x - x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}(1)

    Yêu cầu bài toán \Leftrightarrow
(1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    (1) \Leftrightarrow (x -
x_{1})^{2}(x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2) = 0\Leftrightarrow
\left\{ \begin{matrix}
x = x_{1} \\
f(x) = x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2 = 0 \\
\end{matrix} ight.

    Để phương trình (1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3}
+ {x_{3}}^{3} = - 1thì phương trình f(x) = 0 phải có 2 nghiệm phân biệt x_{2},x_{3} khác x_{1}và thỏa mãn định lí Vi – ét:

    \left\{ \begin{matrix}
x_{2} + x_{3} = - 2x_{1} \\
x_{2}.x_{3} = 3{x_{1}}^{2} - 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
\Delta' = {x_{1}}^{2} - 3{x_{1}}^{2} + 2 > 0 \\
{x_{1}}^{2} + 2{x_{1}}^{2} + 3{x_{1}}^{2} - 2 eq 0 \\
{x_{1}}^{3} + (x_{2} + x_{3})^{3} - 3x_{2}x_{3}(x_{2} + x_{3}) = - 1 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
- 1 < x_{1} < 1 \\
3{x_{1}}^{2} - 1 eq 0 \\
{x_{1}}^{3} + ( - 2x_{1})^{3} - 3(3{x_{1}}^{2} - 2).( - 2x_{1}) = - 1 \\
\end{matrix} ight.

     

    \Leftrightarrow x_{1} = \frac{- 11 +
\sqrt{165}}{22}.

    Vậy có đúng 1 đường thẳng thỏa mãn yêu cầu bài toán.

  • Câu 19: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Số nghiệm thực của phương trình \left|
f\left( x^{4} - 2x^{2} \right) \right| = 2

    Hướng dẫn:

    Phương trình \left| f\left( x^{4} -
2x^{2} ight) ight| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
f\left( x^{4} - 2x^{2} ight) = 2 \\
f\left( x^{4} - 2x^{2} ight) = - 2 \\
\end{matrix}. ight.

    * Phương trình f\left( x^{4} - 2x^{2}
ight) = 2

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{4} - 2x^{2} = b,( - 1 < b < 0) \\
\begin{matrix}
x^{4} - 2x^{2} = c,(0 < c < 1) \\
x^{4} - 2x^{2} = d,(2 < d < 3) \\
\end{matrix} \\
\end{matrix} ight..

    * Phương trình f\left( x^{4} - 2x^{2}
ight) = - 2 \Leftrightarrow x^{4} - 2x^{2} = a,( - 2 < a < -
1).

    Đồ thị hàm số y = x^{4} - 2x^{2} như hình vẽ sau:

    Dựa vào đồ thị trên ta có:

    - Phương trình x^{4} - 2x^{2} = a,( - 2
< a < - 1) không có nghiệm thực.

    - Phương trình x^{4} - 2x^{2} = b,( - 1
< b < 0) có 4 nghiệm thực phân biệt.

    - Phương trình x^{4} - 2x^{2} = c,(0 <
c < 1) có 2 nghiệm thực phân biệt.

    - Phương trình x^{4} - 2x^{2} = d,(2 <
d < 3) có 2 nghiệm thực phân biệt.

    Vậy phương trình \left| f\left( x^{4} -
2x^{2} ight) ight| = 2 có 8 nghiệm thực phân biệt.

    Nhận xét: Khi bài toán chứa dấu giá trị tuyệt đối ta đi phá dấu giá trị tuyệt đối bằng phép biến đổi tương đương \left| f(x) ight| = A \Leftrightarrow
\left\lbrack \begin{matrix}
f(x) = A \\
f(x) = - A \\
\end{matrix} ight. .

  • Câu 20: Thông hiểu
    Xác định số tập con của tập S

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số y = x^{4} + x^{3} - 5x^{2} - x +
m cắt trục hoành tại bốn điểm phân biệt có các hoành độ là x_{1},\ \ x_{2},\ \ x_{3},\ \ x_{4} thỏa mãn \left( x_{1}^{2} + 1 \right)\left(
x_{2}^{2} + 1 \right)\left( x_{3}^{2} + 1 \right)\left( x_{4}^{2} + 1
\right) \geq 68.Tập Scó bao nhiêu tập con ?

    Hướng dẫn:

    Xét hàm h(x) = x^{4} + x^{3} - 5x^{2} - x
+ m,

    TXD:\mathbb{R},h'(x) = 4x^{3} +
3x^{2} - 10x - 1 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \approx - 1,9 \\
x \approx 1.3 \\
x \approx - 0.09 \\
\end{matrix} ight.

    Có BBT

    Dựa vào BBT YCBT \Leftrightarrow \left\{
\begin{matrix}
m + 0.05 > 0 \\
m - 4.69 < 0 \\
\end{matrix} ight.\  \Leftrightarrow - 0.05 < m <
4.69

    Khi đó

    y(x) = (x - x_{1})(x - x_{2})(x -
x_{3})(x - x_{4})

    \Rightarrow y( - x) = ( - x - x_{1})( -
x - x_{2})( - x - x_{3})( - x - x_{4})

    \Rightarrow y(x).y( - x) = (x^{2} -
x_{1}^{2})(x^{2} - x_{2}^{2})(x^{2} - x_{3}^{2})(x^{2} -
x_{4}^{2})

    \Rightarrow y(i).y( - i) = (x_{1}^{2} +
1)(x_{2}^{2} + 1)(x_{3}^{2} + 1)(x_{4}^{2} + 1)

    \Rightarrow (x_{1}^{2} + 1)(x_{2}^{2} +
1)(x_{3}^{2} + 1)(x_{4}^{2} + 1)

    = \left( i^{4} + i^{3} - 5i^{2} + m
ight)\left( i^{4} - i^{3} - 5i^{2} + m ight)

    = (6 + m - 2i)(6 + m + 2i) = (6 + m)^{2}
+ 4 \geq 68

    \Leftrightarrow - 14 \leq m \leq
2

    Kết hợp trên ta có S = \left\{ 0;1;2
ight\}. Vậy số tập con của S2^{3} =
8.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo