Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn đáp án chính xác

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f\left( \left| \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \right| + 2 \right) = f\left( \sqrt{(m + 2)^{2} + 4}
\right) có nghiệm?

    Hướng dẫn:

    Ta có: - 1 \leq \sin x \leq 1,\ \  - 1
\leq \cos x \leq 1 nên suy ra 2cosx
- \sin x + 4 > 0,\ \ \forall x\mathbb{\in R}.

    Đặt t = \frac{3sinx - \cos x - 1}{2cosx -
\sin x + 4} \Rightarrow t(2cosx -
\sin x + 4) = 3sinx - \cos x - 1

    \Leftrightarrow (2t + 1)cosx - (t +
3)sinx = - (4t + 1).

    Phương trình trên có nghiệm khi

    (2t + 1)^{2} + (t + 3)^{2} \geq (4t +
1)^{2}

    \Leftrightarrow \frac{- 9}{11} \leq t
\leq 1 \Rightarrow 2 \leq |t| + 2 \leq 3.

    Nhìn vào hình trên ta thấy hàm số f(x) luôn đồng biến trên \lbrack 2\ ;\ 3brack nên phương trình f\left( \left| \frac{3sinx - \cos x -
1}{2cosx - \sin x + 4} ight| + 2 ight) = f\left( \sqrt{(m + 2)^{2} +
4} ight) hay phương trình f\left(
|t| + 2 ight) = f\left( \sqrt{(m + 2)^{2} + 4} ight) có nghiệm khi và chỉ khi phương trình |t| + 2 =
\sqrt{(m + 2)^{2} + 4} có nghiệm t thỏa mãn điều kiện 2 \leq |t| + 2 \leq 3

    \Leftrightarrow 2 \leq \sqrt{(m + 2)^{2}
+ 4} \leq 3 \Rightarrow m^{2} + 4m - 1 \leq 0 \Leftrightarrow - 2 -
\sqrt{5} \leq m \leq - 2 + \sqrt{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị m thỏa mãn.

  • Câu 2: Vận dụng
    Tính giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = \frac{x + 3}{x +
1} có đồ thị (C) và đường thẳng d:y = x - m, với m là tham số thực. Biết rằng đường thẳng d cắt (C) tại hai điểm phân biệt AB sao cho điểm G(2; - 2) là trọng tâm của tam giác OAB (O là gốc toạ độ). Giá trị của m bằng

    Hướng dẫn:

    Hàm số y = \frac{x + 3}{x + 1}y' = \frac{- 2}{(x + 1)^{2}} <
0, \forall x \in D và đường thẳng d:y = x - m có hệ số a = 1 > 0 nên d luôn cắt (C) tại hai điểm phân biệt A\left( x_{A};\ y_{A} ight)B\left( x_{B};\ y_{B} ight) với mọi giá trị của tham số m.

    Phương trình hoành độ giao điểm của d(C) là: \frac{x + 3}{x + 1} = x - m

    \Leftrightarrow x^{2} - mx - m - 3 = 0\ \
\ \ (x eq - 1).

    Suy ra x_{A}, x_{B} là 2 nghiệm của phương trình x^{2} - mx - m - 3 = 0.

    Theo định lí Viet, ta có x_{A} + x_{B} =
m.

    Mặt khác, G(2; - 2) là trọng tâm của tam giác OAB nên x_{A} + x_{B} + x_{O} = 3x_{G}

    \Leftrightarrow x_{A} + x_{B} =
6 \Leftrightarrow m =
6.

    Vậy m = 6 thoả mãn yêu cầu đề bài.

  • Câu 3: Vận dụng
    Xác định tính đúng sai của từng phương án

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Đáp án là:

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Sau t phút, khối lượng muối trong bể là 25.30.t = 750t (gam)

    Thể tích của lượng nước trong bể là 5000
+ 25t (lít).

    Vậy nồng độ muối sau t phút là: f(t) = \frac{750t}{5000 + 25t} =
\frac{30t}{200 + t} (gam/lít).

    Ta có \lim_{t ightarrow + \infty}f(t) =
\lim_{t ightarrow + \infty}\frac{30t}{200 + t} = \lim_{x ightarrow +
\infty}\left( 30 - \frac{6000}{200 + t} ight) = 30

    Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t):

    Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).

    Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.

    a) Đúng. b) Sai. c) Đúng. d) Đúng.

  • Câu 4: Vận dụng
    Chọn khẳng định đúng

    Cho đồ thị hàm số (C):y = \frac{2x + 1}{x
+ 2}. Giả sử M(a;b) \in
(C) có khoảng cách đến đường thẳng d:y = 3x + 6 nhỏ nhất. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có: M\left( a;\frac{2a + 1}{a + 2}
ight);(a eq - 2)

    Khoảng cách từ M đến đường thẳng (d) bằng:

    d(M;d) = \dfrac{\left| 3a - \dfrac{2a +1}{a + 2} + 6 ight|}{\sqrt{3^{2} + 1}}= \frac{1}{\sqrt{10}}.\left| 3a+ 6 - \frac{2a + 1}{a + 2} ight|= \frac{1}{\sqrt{10}}.\left|\frac{3a^{2} + 10a + 11}{a + 2} ight|

    Xét hàm số f(a) = \frac{3a^{2} + 10a +
11}{a + 2};(a eq - 2)

    f'(a) = \frac{3\left( a^{2} + 4a + 3
ight)}{(a + 2)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = - 3 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy giá trị nhỏ nhất của hàm số \left|
f(a) ight| = 4 tại a = -
1

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b = - 2

  • Câu 5: Thông hiểu
    Chọn hình vẽ thích hợp

    Hình vẽ nào sau đây là đồ thị của hàm số y = (x - c)(d - x)^{2} với c > d > 0?

    Hướng dẫn:

    Với c > d > 0 thì đồ thị hàm số y = (x - c)(d - x)^{2} theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ x = dx =
c

    Mặt khác với x \leq c thì y \leq 0 nên khi x \leq c thì đồ thị hàm số nằm phía dưới trục hoành

    Vậy đồ thị hàm số cần tìm là .

  • Câu 6: Vận dụng cao
    Xác định tổng các phần tử của tập S

    Gọi S là tập tất cả các giá trị thực của tham số m để đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C với B nằm giữa A;C sao cho AB = 2BC. Tính tổng các phần tử thuộc tập S?

    Hướng dẫn:

    Ta có bảng biến thiên

    Suy ra đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C \Leftrightarrow - 4 < m < 0

    Khi đó \[\left\{ \begin{gathered}
  {x_A} + {x_B} + {x_C} = 3 \hfill \\
  {x_A}.{x_B} + {x_B}.{x_C} + {x_C}.{x_A} = 0 \hfill \\
  {x_A}.{x_B}.{x_C} = m \hfill \\ 
\end{gathered}  ight.

    Để B nằm giữa A và C và AB = 2BC thì \begin{matrix}
\left\{ \begin{matrix}
x_{A} < x_{B} < x_{C} \\
x_{B} - x_{A} = 2\left( x_{C} - x_{B} ight) \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x_{C} < x_{B} < x_{A} \\
x_{A} - x_{B} = 2\left( x_{B} - x_{C} ight) \\
\end{matrix} ight.\  \\
\end{matrix}

    \Leftrightarrow 3x_{B} = x_{A} + 2x_{C}
\Leftrightarrow 4x_{B} - 3 = x_{C} \Rightarrow x_{A} = 6 -
5x_{B}

    \Rightarrow \left\{ \begin{gathered}
  \left( {6 - 5{x_B}} ight) + {x_B}.\left( {4{x_B} - 3} ight) + \left( {4{x_B} - 3} ight)\left( {6 - 5{x_B}} ight) = 0\left( * ight) \hfill \\
  \left( {4{x_B} - 3} ight).{x_B}.\left( {6 - 5{x_B}} ight) = m \hfill \\ 
\end{gathered}  ight.

    Từ (*) ta được x_{B} = \frac{7 \pm
\sqrt{7}}{7}. Thay (**) được \left\lbrack \begin{matrix}m = \dfrac{- 98 - 20\sqrt{7}}{49} \\m = \dfrac{- 98 + 20\sqrt{7}}{49} \\\end{matrix} ight.

    Suy ra S = \left\{ \frac{- 98 -
20\sqrt{7}}{49};\frac{- 98 + 20\sqrt{7}}{49} ight\}. Vậy tổng các phần tử của S bằng - 4.

  • Câu 7: Vận dụng
    Tìm các số thực dương m theo yêu cầu bài toán

    Cho hàm số y = x^{4} - 3x^{2} -
2. Tìm số thực dương m để đường thẳng y = m cắt đồ thị hàm số tại 2 điểm phân biệt A, B sao cho tam giác OAB vuông tại O, trong đó O là gốc tọa độ.

    Hướng dẫn:

    Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:

    x^{4} - 3x^{2} - 2 = m \Leftrightarrow
x^{4} - 3x^{2} - 2 - m = 0\ \ \ \ \ \ \ \ \ (1).

    m > 0 \Leftrightarrow - 2 - m <
0 hay phương trình (1) luôn có hai nghiệm phân biệt thỏa mãn:

    x^{2} = \frac{3 + \sqrt{4m + 17}}{2}
\Rightarrow x_{1} = \sqrt{\frac{3 + \sqrt{4m + 17}}{2}}x_{2} = - \sqrt{\frac{3 + \sqrt{4m +
17}}{2}}.

    Khi đó: A\left( x_{1};m ight), B\left( x_{2};m ight).

    Ta có tam giác OAB vuông tại O, trong đó O là gốc tọa độ \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = 0 \Leftrightarrow x_{1}.x_{2}
+ m^{2} = 0.

    \Leftrightarrow \frac{3 + \sqrt{4m +
17}}{2} = m^{2}

    \Leftrightarrow \left\{ \begin{matrix}
2m^{2} - 3 \geq 0 \\
4m^{4} - 12m^{2} - 4m - 8 = 0 \\
\end{matrix} ight.\ \overset{m > 0}{\leftrightarrow}m =
2.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 8: Vận dụng cao
    Tìm m để phương trình có 3 nghiệm thực phân biệt

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 6f\left( x^{2} - 4x \right) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0\ ;\  + \infty)?

    Hướng dẫn:

    Ta đặt: g(x) = f\left( x^{2} - 4x
ight).

    g'(x) = (2x - 4)f'\left( x^{2} -
4x ight)

    = 2(x - 2)\left( x^{2} - 4x + 4
ight)\left( x^{2} - 4x + 2 ight)\left( x^{2} - 4x ight) (dựa vào bảng biến thiên) = 2(x -
2)^{3}\left( x^{2} - 4x + 2 ight)x(x - 4).

    Mặt khác:

    g(0) = f(0) = - 3;

    g\left( 2 - \sqrt{2} ight) = g\left( 2
+ \sqrt{2} ight) = f( - 2) = 2;

    g(2) = f( - 4) = - 2;

    g(4) = f(0) = - 3.

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta được: yêu cầu bài toán tương đương - 3 < \frac{m}{6} \leq 2

    \Leftrightarrow - 18 < m \leq
12. Vậy có tất cả 30 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 9: Vận dụng cao
    Tìm số nghiệm thực phân biệt của phương trình

     Cho hàm số bậc bay = f(x)có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực phân biệt của phương trình f\left( \left| \sqrt{4 - x^{2}} -
\left| x^{2} - 1 \right| \right| \right) = \frac{1}{2023}

    Hướng dẫn:

    Ta có:

    y = g(x) = f\left( \left| \sqrt{4 -
x^{2}} - \left| x^{2} - 1 ight| ight| ight) với g(x) = \frac{1}{2023}

    Ta đặt: t = \sqrt{4 - x^{2}},\forall x
\in \lbrack - 2;2brack thì suy ra y = g(t) = f\left( \left| t - \left| t^{2} - 3
ight| ight| ight),\forall t \in \lbrack 0;2brack

    Suy ra: h(t) = t - \left| t^{2} - 3
ight| = \left\{ \begin{matrix}
t^{2} + t - 3,t \in \left\lbrack 0;\sqrt{3} ightbrack \\
- t^{2} + t + 3,t \in \left\lbrack \sqrt{3};2 ightbrack \\
\end{matrix} ight..

    Từ đó ta có BBT của hàm số h(t) như hình vẽ bên:

    Đặt u = \left| t - \left| t^{2} - 3
ight| ight|thì ta cũng có BBT của unhư sau:

    Nhìn vào đồ thị y = f(x)trên ta có được:

     

    Như vậy ta suy ra f(x) = \frac{2}{3}x(x -
1)(x - 2).

    Mà hàm số đó có cực trị bằng - \frac{4\sqrt{3}}{9} tại x = x_{0}

    Suy ra f\left( x_{0} ight) = \frac{- 4\sqrt{3}}{9}
\Rightarrow x_{0} = \frac{3 + \sqrt{3}}{3}

    Như vậy: f(3) = 4,f\left( \sqrt{3}
ight) = - 0,2,f\left( \frac{3 + \sqrt{3}}{3} ight) = \frac{-
4\sqrt{3}}{9}

    Từ đó, ta phác họa được đồ thị y =
f(u) với u = \left| t - \left|
t^{2} - 3 ight| ight| như sau:

    Dựa vào hình vẽ trên, ta kết luận phương trình g(x) = \frac{1}{2023}có tất cả 10 nghiệm phân biệt

  • Câu 10: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Vận dụng
    Chọn đáp án đúng:

    Gọi M và N là giao điểm của đường cong y = \frac{7x+6}{x-2} và đường thẳng y = x + 2. Khi đó hoành độ trung điểm I của đoạn MN bằng:

  • Câu 13: Vận dụng
    Số nghiệm của phương trình

    Cho hàm số y = a{x^3} + b{x^2} + cx + d;\left( {a e 0} ight) có bảng biến thiên như hình vẽ dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình f\left( {f\left( x ight)} ight) = 0 là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = a\left( 1 ight)} \\   {f\left( x ight) = b\left( 2 ight)} \\   {f\left( x ight) = c\left( 3 ight)} \end{array}} ight.;\left( {a < b < c} ight)

    Khi đó \left\{ {\begin{array}{*{20}{c}}  {a < 2} \\   {b \in \left( { - 2;2} ight)} \\   {c > 2} \end{array}} ight. suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.

    => Phương trình f\left( {f\left( x ight)} ight) = 0 có 5 nghiệm

  • Câu 14: Thông hiểu
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong dưới đây?

    Hướng dẫn:

    Từ hình dạng của đồ thị ta loại phương án y = x^{3} - 3x^{2}y = - x^{3} + 3x^{2}

    Nhận thấy\lim_{x ightarrow \pm
\infty}f(x) = - \infty suy ra hệ số của x^{4} âm nên chọn phương ány = - x^{4} +
2x^{2}.

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Tìm số giao điểm của đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x?

    Hướng dẫn:

    Cách 1: Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x \Leftrightarrow
\sqrt{x^{4} - 4} = x - 5

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - 4 = (x - 5)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - x^{2} + 10x - 29 = 0\ \ \ (*) \\
\end{matrix} ight.

    Do x \geq 5nên x^{4} - x^{2} = x^{2}(x^{2} - 1) > 010x - 29 > 0. Vì vậy (*) vô nghiệm

    Như vậy phương trình \sqrt{x^{4} - 4} + 5
= x vô nghiệm hay đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào.

    Cách 2:

    Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x. Ta có điều kiện xác định \left\lbrack \begin{matrix}
x \geq \sqrt{2} \\
x \leq - \sqrt{2} \\
\end{matrix} ight.

    Với điều kiện trên ta có \sqrt{x^{4} - 4}
+ 5 = x \Leftrightarrow \sqrt{x^{4} - 4} + 5 - x = 0

    Xét hàm số h(x) = \sqrt{x^{4} - 4} + 5 -
x. Ta có h'(x) =
\frac{2x^{3}}{\sqrt{x^{4} - 4}} - 1; h'(x) = 0 \Leftrightarrow 2x^{3} = \sqrt{x^{4}
- 4}

    Với x \geq \sqrt{2} ta có 2x^{3} > \sqrt{x^{4} - 4}. Với x \leq - \sqrt{2} ta có 2x^{3} < \sqrt{x^{4} - 4}

    Ta có Bảng biến thiên:

    Số nghiệm của phương trình\sqrt{x^{4} -
4} + 5 = x là số giao điểm của đồ thịy = h(x) = \sqrt{x^{4} - 4} + 5 - x và trục hoànhy = 0.

    Dựa vào BBT ta thấy phương trình \sqrt{x^{4} - 4} + 5 = x vô nghiệm hay đồ thị hàm số y = \sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào. 

  • Câu 16: Vận dụng
    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Cho hàm số y = f\left( x ight) có đồ thị như hình vẽ:

    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Hỏi phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 có tất cả bao nhiêu nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)?

    Hướng dẫn:

    Đặt t= x - 2;\left( {t >  - 2} ight)

    Phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 tương đương

    \left| {f\left( t ight) - 2} ight| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( t ight) = 3} \\   {f\left( t ight) = 1} \end{array}} ight.

    Dựa vào đồ thị ta thấy phương trình có 6 nghiệm phân biệt t \in \left( { - 2; + \infty } ight)

    => Phương trình đã cho có 6 nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng cao
    Xác định các giá trị nguyên của tham số m

    Cho hai hàm số y = \frac{x}{x - 1} +
\frac{x + 1}{x} + \frac{x + 2}{x + 1}y = e^{x} + 2023 + 3m (m là tham số thực) có đồ thị lần lượt là (C_{1})(C_{2}). Có bao nhiêu số nguyên m thuộc ( -
2022;2023) để (C_{1})(C_{2}) cắt nhau tại 3 điểm phân biệt?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm \frac{x}{x - 1} + \frac{x + 1}{x} + \frac{x + 2}{x
+ 1} = e^{x} + 2023 + 3m

    \Leftrightarrow \frac{x}{x - 1} + \frac{x
+ 1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023 = 3m (1).

    Đặt g(x) = \frac{x}{x - 1} + \frac{x +
1}{x} + \frac{x + 2}{x + 1} - e^{x} - 2023.

    Ta có g'(x) = - \frac{1}{(x - 1)^{2}}
- \frac{1}{x^{2}} - \frac{1}{(x + 1)^{2}} - e^{x} < 0 với mọi x thuộc các khoảng sau ( - \infty; - 1), ( - 1;0), (0;1)(1;
+ \infty) nên hàm số y =
g(x) nghịch biến trên mỗi khoảng đó.

    Mặt khác ta có \lim_{x ightarrow -
\infty}g(x) = - 2020\lim_{x
ightarrow + \infty}g(x) = - \infty.

    Bảng biến thiên hàm sốy =
g(x)

    Do đó để (C_{1})(C_{2}) cắt nhau tại đúng ba điểm phân biệt thì phương trình (1) phải có ba nghiệm phân biệt.

    Điều này xảy ra khi và chỉ khi đường thẳng y = 3m cắt đồ thị hàm số y = g(x) tại ba điểm phân biệt khi và chỉ khi 3m \geq - 2020
\Leftrightarrow m \geq - \frac{2020}{3} \approx - 673,3.

    Do m nguyên thuộc( - 2022;2023) nên m \in \left\{ - 673; - 672;...;2022
ight\}. Vậy có tất cả 2696 giá trịm thỏa mãn.

  • Câu 19: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Số nghiệm thực của phương trình \left|
f\left( x^{4} - 2x^{2} \right) \right| = 2

    Hướng dẫn:

    Phương trình \left| f\left( x^{4} -
2x^{2} ight) ight| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
f\left( x^{4} - 2x^{2} ight) = 2 \\
f\left( x^{4} - 2x^{2} ight) = - 2 \\
\end{matrix}. ight.

    * Phương trình f\left( x^{4} - 2x^{2}
ight) = 2

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{4} - 2x^{2} = b,( - 1 < b < 0) \\
\begin{matrix}
x^{4} - 2x^{2} = c,(0 < c < 1) \\
x^{4} - 2x^{2} = d,(2 < d < 3) \\
\end{matrix} \\
\end{matrix} ight..

    * Phương trình f\left( x^{4} - 2x^{2}
ight) = - 2 \Leftrightarrow x^{4} - 2x^{2} = a,( - 2 < a < -
1).

    Đồ thị hàm số y = x^{4} - 2x^{2} như hình vẽ sau:

    Dựa vào đồ thị trên ta có:

    - Phương trình x^{4} - 2x^{2} = a,( - 2
< a < - 1) không có nghiệm thực.

    - Phương trình x^{4} - 2x^{2} = b,( - 1
< b < 0) có 4 nghiệm thực phân biệt.

    - Phương trình x^{4} - 2x^{2} = c,(0 <
c < 1) có 2 nghiệm thực phân biệt.

    - Phương trình x^{4} - 2x^{2} = d,(2 <
d < 3) có 2 nghiệm thực phân biệt.

    Vậy phương trình \left| f\left( x^{4} -
2x^{2} ight) ight| = 2 có 8 nghiệm thực phân biệt.

    Nhận xét: Khi bài toán chứa dấu giá trị tuyệt đối ta đi phá dấu giá trị tuyệt đối bằng phép biến đổi tương đương \left| f(x) ight| = A \Leftrightarrow
\left\lbrack \begin{matrix}
f(x) = A \\
f(x) = - A \\
\end{matrix} ight. .

  • Câu 20: Thông hiểu
    Tìm tung độ của điểm

    Biết rằng đường thẳng y = - 2x +
2 cắt đồ thị hàm số y = x^{3} + x +
2 tại điểm duy nhất; kí hiệu \left(
x_{0};y_{0} \right) là tọa độ của điểm đó. Tìm y_{0}

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    - 2x + 2 = x^{3} + x + 2

    \Leftrightarrow x^{3} + 3x = 0
\Leftrightarrow x = 0

    Với x_{0} = 0 \Rightarrow y_{0} =
2.

    Vậy đáp án cần tìm là: y_{0} =
2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo