Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Giá trị của biểu thức K

    Đồ thị (C) của hàm số y = \frac{{ax + 2}}{{cx + b}} có bảng biến thiên như hình vẽ.

    Giá trị của biểu thức K

    Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng y = 2x + 2018. Giá trị của biểu thức K = a + 2b + 3c là:

    Hướng dẫn:

    Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3

    => Hàm số có dạng y = \frac{{ - 3x + b}}{{x - 1}} \Rightarrow y' = \frac{{3 - b}}{{{{\left( {x - 1} ight)}^2}}} \Rightarrow y'\left( 0 ight) = 3 - b

    Do tiếp tuyến song song với đường thẳng

    => 3 – b = 2 => b = 1

    Vậy a = -3; b = 1; c = 1 => K = 2

  • Câu 2: Thông hiểu
    Tìm điều kiện của tham số m

    Tìm tất cả các giá trị của tham số m để đường thẳng y = my =
- x^{3} + 6x^{2} tại ba điểm phân biệt?

    Hướng dẫn:

    Ta có: y = - x^{3} + 6x^{2} \Rightarrow
y' = - 3x^{2} + 12x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Để đường thẳng y = - x^{3} +
6x^{2}y = m tại ba điểm phân biệt thì 0 < m <
32.

  • Câu 3: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng cao
    Chọn phương án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số nghiệm trên khoảng ( -
\pi;4\pi) của phương trình f\left(
2|cos2x| \right) = 1

    Hướng dẫn:

    Đặt t = 2|cos2x|.

    x \in ( - \pi;4\pi) nên t \in \lbrack 0;2brack

    Phương trình trở thành: f(t) =
1.

    Từ đồ thị hàm số ta suy ra phương trình f(t) = 1 có các nghiệm thuộc \lbrack 0;2brack\left\lbrack \begin{matrix}
t = 1 \\
t = 2 \\
\end{matrix} ight..

    Với t = 1 \Leftrightarrow |cos2x| =
\frac{1}{2} \Leftrightarrow
\left\lbrack \begin{matrix}
cos2x = \frac{1}{2} \\
cos2x = \frac{- 1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{\pm \pi}{6} + k\pi \\
x = \frac{\pm \pi}{3} + k\pi \\
\end{matrix} ight.

    x \in ( - \pi;2\pi) \Rightarrow
\left\lbrack \begin{matrix}
- \pi < \frac{\pi}{6} + k\pi < 4\pi \\
- \pi < \frac{- \pi}{6} + k\pi < 4\pi \\
- \pi < \frac{\pi}{3} + k\pi < 4\pi \\
- \pi < \frac{- \pi}{3} + k\pi < 4\pi \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
\frac{- 7}{6} < k < \frac{23}{6} \\
\frac{- 5}{6} < k < \frac{25}{6} \\
\frac{- 4}{3} < k < \frac{11}{3} \\
\frac{- 2}{3} < k < \frac{13}{3} \\
\end{matrix} ight.

    \Rightarrowphương trình có 20 nghiệm thuộc khoảng ( - \pi;4\pi).

    Với t = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
cos2x = 1 \\
cos2x = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = k\pi \\
x = \frac{\pi}{2} + k\pi \\
\end{matrix} ight.

    x \in ( - \pi;2\pi) \Rightarrow
\left\lbrack \begin{matrix}
- \pi < k\pi < 4\pi \\
- \pi < \frac{\pi}{2} + k\pi < 4\pi \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
- 1 < k < 4 \\
\frac{- 3}{2} < k < \frac{7}{2} \\
\end{matrix} ight.

    \Rightarrowphương trình có 9nghiệm thuộc khoảng ( - \pi;4\pi).

    Vậy phương trình đã cho có tất cả 29 nghiệm.

  • Câu 5: Vận dụng
    Tính giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = \frac{x + 3}{x +
1} có đồ thị (C) và đường thẳng d:y = x - m, với m là tham số thực. Biết rằng đường thẳng d cắt (C) tại hai điểm phân biệt AB sao cho điểm G(2; - 2) là trọng tâm của tam giác OAB (O là gốc toạ độ). Giá trị của m bằng

    Hướng dẫn:

    Hàm số y = \frac{x + 3}{x + 1}y' = \frac{- 2}{(x + 1)^{2}} <
0, \forall x \in D và đường thẳng d:y = x - m có hệ số a = 1 > 0 nên d luôn cắt (C) tại hai điểm phân biệt A\left( x_{A};\ y_{A} ight)B\left( x_{B};\ y_{B} ight) với mọi giá trị của tham số m.

    Phương trình hoành độ giao điểm của d(C) là: \frac{x + 3}{x + 1} = x - m

    \Leftrightarrow x^{2} - mx - m - 3 = 0\ \
\ \ (x eq - 1).

    Suy ra x_{A}, x_{B} là 2 nghiệm của phương trình x^{2} - mx - m - 3 = 0.

    Theo định lí Viet, ta có x_{A} + x_{B} =
m.

    Mặt khác, G(2; - 2) là trọng tâm của tam giác OAB nên x_{A} + x_{B} + x_{O} = 3x_{G}

    \Leftrightarrow x_{A} + x_{B} =
6 \Leftrightarrow m =
6.

    Vậy m = 6 thoả mãn yêu cầu đề bài.

  • Câu 6: Vận dụng cao
    Chọn đáp án chính xác

    Cho hàm số f(x) liên tục trên \lbrack 2;4brack và có bảng biến thiên như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình x + 2\sqrt{x^{2} - 2x} = m.f(x) có nghiệm thuộc đoạn \lbrack 2;4brack?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có\underset{\lbrack 2;4brack}{Min}f(x) = f(4) =
2\underset{\lbrack
2;4brack}{Max}f(x) = f(2) = 4

    Hàm số g(x) = x + 2\sqrt{x^{2} -
2x} liên tục và đồng biến trên \lbrack 2;4brack

    Suy ra \underset{\lbrack
2;4brack}{Min}g(x) = g(2) = 2\underset{\lbrack 2;4brack}{Max}g(x) = g(4) = 4
+ 4\sqrt{2}

    Ta có x + 2\sqrt{x^{2} - 2x} = m.f(x)
\Leftrightarrow \frac{x + 2\sqrt{x^{2} - 2x}}{f(x)} = m \Leftrightarrow
\frac{g(x)}{f(x)} = m

    Xét hàm số h(x) =
\frac{g(x)}{f(x)} liên tục trên \lbrack 2;4brack

    g(x) nhỏ nhất và f(x) lớn nhất đồng thời xảy ra tại x = 2 nên \underset{\lbrack 2;4brack}{Min}h(x) =
\frac{\underset{\lbrack 2;4brack}{Min}g(x)}{\underset{\lbrack
2;4brack}{Max}f(x)} = \frac{g(2)}{f(2)} = h(2) =
\frac{1}{2}

    g(x) lớn nhất và f(x) nhỏ nhất đồng thời xảy ra tại x = 4 nên \underset{\lbrack 2;4brack}{Max}h(x) =
\frac{\underset{\lbrack 2;4brack}{Max}g(x)}{\underset{\lbrack
2;4brack}{Min}f(x)} = \frac{g(4)}{f(4)} = h(4) = 2 +
2\sqrt{2}

    Từ đó suy ra phương trình h(x) =
m có nghiệm khi và chỉ khi \frac{1}{2} \leq m \leq 2 +
2\sqrt{2}.

    Vậy có 4 giá trị nguyên của m để phương trình có nghiệm.

  • Câu 7: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;4brack và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 3f(x) - 5 = 0 trên đoạn \lbrack - 2;4brack

    Hướng dẫn:

    Ta có 3f(x) - 5 = 0 \Leftrightarrow f(x)= \frac{5}{3}.

    Dựa vào đồ thị ta thấy đường thẳng y =
\frac{5}{3} cắt đồ thị hàm số y =
f(x) tại ba điểm phân biệt thuộc đoạn \lbrack - 2;4brack.

    Do đó phương trình 3f(x) - 5 = 0 có ba nghiệm thực.

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Tính tổng tất cả các giá trị của m biết đồ thị hàm số y = x^{3} + 2mx^{2} + (m + 3)x + 4 và đường thẳng y = x + 4 cắt nhau tại ba điểm phân biệt A(0\ ;\ 4), B, C sao cho diện tích tam giác IBC bằng 8\sqrt{2} với I(1\ ;\ 3).

    Hướng dẫn:

    +) Gọi đồ thị hàm số y = x^{3} + 2mx^{2}
+ (m + 3)x + 4\left( C_{m}
ight) và đồ thị hàm số y = x +
4(d).

    +) Phương trình hoành độ giao điểm của \left( C_{m} ight)(d)

    x^{3} + 2mx^{2} + (m + 3)x + 4 = x + 4

    \Leftrightarrow x^{3} + 2mx^{2} + (m + 2)x = 0\ (*)\Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x^{2} + 2mx + m + 2 = 0 \\
\end{matrix} ight.

    +) Gọi g(x) = x^{2} + 2mx + m +
2.

    +) (d) cắt \left( C_{m} ight) tại ba điểm phân biệt \Leftrightarrow phương trình (*) có ba nghiệm phân biệt

    \Leftrightarrow phương trình g(x) = 0 có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
{\Delta'}_{g} > 0 \\
g(0) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - m - 2 > 0 \\
m + 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight.\ \  \\
m eq - 2 \\
\end{matrix} ight.\ \ \ \ (a)

    +)x = 0 là hoành độ điểm A, hoành độ điểm B, C là hai nghiệm x_{1}, x_{2} của phương trình g(x) = 0

    +) BC^{2} = \left( x_{2} - x_{1}
ight)^{2} + \left\lbrack \left( x_{2} + 4 ight) - \left( x_{1} + 4
ight) ightbrack^{2}

    = 2\left( x_{2} - x_{1}
ight)^{2} (do B, C thuộc đường thẳng (d)

    = 2\left\lbrack \left( x_{2} + x_{1}
ight)^{2} - 4x_{1}x_{2} ightbrack = 8\left( m^{2} - m - 2
ight)

    +) Viết phương trình đường thẳng (d) dưới dạng x - y + 4 = 0, ta có

    d\left( I,(d) ight) = \frac{|1 - 3 +
4|}{\sqrt{2}} = \sqrt{2}.

    +) S_{IBC} = 8\sqrt{2} \Leftrightarrow
\frac{1}{2}BC.d\left( I,(d) ight) = 8\sqrt{2}

    \Leftrightarrow
\frac{1}{4}BC^{2}.\left\lbrack d\left( I,(d) ight) ightbrack^{2} =
128

    \Leftrightarrow \frac{1}{4}8\left( m^{2}
- m - 2 ight).2 = 128

    \Leftrightarrow m^{2} - m - 34 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{1 + \sqrt{137}}{2} \\
m = \frac{1 - \sqrt{137}}{2} \\
\end{matrix} ight. (thỏa điều kiện (a))

    +) Vậy tổng tất cả các giá trị m1.

  • Câu 9: Vận dụng
    Tìm các giá trị thực tham số m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số mđể đường thẳng y = mx - m + 1cắt đồ thị hàm số y = x^{3} - 3x^{2} + x + 2 tại ba điểm A,B,C phân biệt sao AB = BC

    Hướng dẫn:

    Ta có phương trình hoành độ giao điểm là: x^{3} - 3x^{2} + x + 2 = mx - m + 1
\Leftrightarrow x^{3} - 3x^{2} + x - mx + m + 1 = 0\ \ \ \
(1)

    \Leftrightarrow (x - 1)\left( x^{2} - 2x
- m - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} - 2x - m - 1 = 0 \\
\end{matrix} ight..

    Để đường thẳng cắt đồ thị hàm số tại ba điểm phân biệt thì phương trình x^{2} - 2x - m - 1 = 0có hai nghiệm phân biệt khác 1 \Leftrightarrow \left\{ \begin{matrix}
1 + m + 1 > 0 \\
1 - 2 - m - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m eq - 2 \\
\end{matrix} ight.\  \Leftrightarrow m > - 2.

    Với m > - 2 thì phương trình (1) có ba nghiệm phân biệt là 1,x_{1},x_{2} (x_{1},x_{2} là nghiệm của x^{2} - 2x - m - 1 = 0).

    \frac{x_{1} + x_{2}}{2} = 1 suy ra điểm có hoành độ x = 1luôn là trung điểm của hai điểm còn lại nên luôn có 3 điểm A,B,C thoả mãn AB = BC

    Vậy m > - 2

  • Câu 10: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Vận dụng cao
    Tìm số giá trị nguyên của tham số m

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f^{2}\left( \cos x \right) +
(m - 2022)f\left( \cos x \right) + m - 2023 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn \lbrack
0;2\pi\rbrack

    Hướng dẫn:

    Ta có f^{2}\left( \cos x ight) + (m -
2022)f\left( \cos x ight) + m - 2023 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f\left( \cos x ight) = - 1 \\
f\left( \cos x ight) = 2023 - m \\
\end{matrix} ight. (1)

    * Với f\left( \cos x ight) = -
1

    Dựa vào đồ thị ta có f\left( \cos x
ight) = - 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos x = 0 \\
\cos x = x_{1};\left( x_{1} > 1 ight)(VN) \\
\end{matrix} ight.

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{\pi}{2};\frac{3\pi}{2}
ight\}

    * Với f\left( \cos x ight) = 2023 -
m

    Đặt t = \cos x\ \ \left( t \in \lbrack -
1;1brack ight)

    Với t \in ( - 1;1brack thì phương trình t = \cos x có hai nghiệm phân biệt thuộc \lbrack
0;2\pibrack.

    Với t = - 1 thì phương trình t = \cos x có một nghiệm thuộc \lbrack 0;2\pibrack

    Phương trình trở thành f(t) = 2023 -
m

    Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình f\left( \cos x ight) = 2023 - m có 4 nghiệm phân biệt, hay phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack

    Dựa vào đồ thị ta có để phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack thì - 1 < 2023 - m
\leq 1 \Leftrightarrow 2022 \leq m < 2024

    m nguyên nên m \in \left\{ 2022;2023 ight\}

    Vậy có 2 giá trị nguyên của m thỏa mãn.

  • Câu 12: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số f(x), hàm số f'(x) liên tục trên \mathbb{R} và có đồ thị như sau:

    Bất phương trình f(x) < x + m (với m là một số thực) nghiệm đúng với mọi x \in ( - 1;0) khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    f(x) < x + m \Leftrightarrow f(x) - x< m

    Xét hàm số g(x) = f(x) - x ta có:

    g'(x) = f'(x) - 1. Với \forall x \in ( - 1;0) thì - 1 < f'(x) < 1

    Từ đó g'(x) = f'(x) - 1 <0 nên hàm số nghịch biến trên ( -1;0)

    Suy ra g(x) = f(x) - x < f( - 1) +1. Yêu cầu bài toán tương đương với m \geq f( - 1) + 1.

  • Câu 13: Vận dụng
    Tìm giá trị của tham số a

    Có bao nhiêu giá trị nguyên âm của a để đồ thị hàm số y = x^{3} + (x + 10)x^{2} - x + 1 cắt trục hoành tại đúng một điểm?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} + (a + 10)x^{2} - x + 1 =
0(*)

    \Leftrightarrow x^{3} + 10x^{2} - x + 1
= - ax^{2}

    Ta thấy x = 0 không là nghiệm của phương trình nên (*) \Leftrightarrow -
\frac{x^{3} + 10x^{2} - x + 1}{x^{2}} = a

    Xét hàm số f(x) = - \frac{x^{3} + 10x^{2}
- x + 1}{x^{2}};\left( \forall x\mathbb{\in R}\backslash\left\{ 0
ight\} ight)

    Ta có: f'(x) = - \frac{x^{3} + x -
2}{x^{3}} = - \frac{(x - 1)\left( x^{2} + x + 2
ight)}{x^{3}}

    f'(x) = 0 \Leftrightarrow x =
1

    Bảng biến thiên của hàm số f(x) như sau:

    Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm \Leftrightarrow a > - 11

    a nguyên âm nên a \in \left\{ - 10; - 9; - 8;...; - 1
ight\}

    Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.

  • Câu 14: Vận dụng
    Ghi đáp án vào ô trống

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng cao
    Tìm m để phương trình có 6 nghiệm phân biệt

    Tìm tất cả các giá trị thực của m để phương trình \left| x^{4} - 2x^{2} - 3 \right| = 2m -
1 có đúng 6 nghiệm thực phân biệt.

    Hướng dẫn:

    Xét g(x) = x^{4} - 2x^{2} - 3 có tập xác định:D\mathbb{= R}

    g'(x) = 4x^{3} - 4x

    g'(x) = 0 \Leftrightarrow 4x^{3} - 4x
= 0. \Leftrightarrow 4x\left( x^{2}
- 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Đồ thị hàm số f(x) = \left| x^{4} -
2x^{2} - 3 ight| là:

    Để phương trình \left| x^{4} - 2x^{2} - 3
ight| = 2m - 1 có đúng 6 nghiệm thực phân biệt.

    \Leftrightarrow 3 < 2m - 1 <
4 \Leftrightarrow 4 < 2m < 5
\Leftrightarrow 2 < m < \frac{5}{2}

  • Câu 16: Vận dụng
    Chọn phát biểu đúng

    Cho hàm số y = x^{3} + 3mx^{2} -
m^{3} có đồ thị \left( C_{m}
\right) và đường thẳng d:y = m^{2}x
+ 2m^{3}. Biết rằng m_{1},\ m_{2}\
\left( m_{1} > m_{2} \right) là hai giá trị thực của m để đường thẳng d cắt đồ thị \left( C_{m} \right) tại 3 điểm phân biệt có hoành độ x_{1},\ \ x_{2},\ \ x_{3} thỏa mãn {x_{1}}^{4} + {x_{2}}^{4} + \ {x_{3}}^{4} =
83. Phát biểu nào sau đây là đúng về quan hệ giữa hai giá trị m_{1},\ \
m_{2}?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của d\left(
C_{m} ight)

    x^{3} + 3mx^{2} - m^{3} = m^{2}x +
2m^{3}

    \Leftrightarrow x^{3} + 3mx^{2} - m^{2}x
- 3m^{3} = 0

    \Leftrightarrow \left( x^{3} - m^{2}x
ight) + \left( 3mx^{2} - 3m^{3} ight) = 0

    \begin{matrix}
\Leftrightarrow x\left( x^{2} - m^{2} ight) + 3m\left( x^{2} - m^{2}
ight) = 0 \\
\Leftrightarrow (x + 3m)\left( x^{2} - m^{2} ight) = 0 \\
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 3m \\
x = m \\
x = - m \\
\end{matrix} ight.\  \\
\end{matrix}

    Để đường thẳng d cắt đồ thị \left( C_{m} ight) tại 3 điểm phân biệt có hoành độ x_{1},\ x_{2},\ x_{3} \Leftrightarrow m eq 0.

    Khi đó, {x_{1}}^{4} + {x_{2}}^{4} + \
{x_{3}}^{4} = 83 \Leftrightarrow m^{4} + ( - m)^{4} + ( - 3m)^{4} =
83

    \Leftrightarrow 83m^{4} = 83
\Leftrightarrow m = \pm 1

    Vậy m_{1} = 1,\ m_{2} = - 1 hay m_{1} + m_{2} = 0.

  • Câu 17: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hàm số không có giá trị lớn nhất vì \lim_{x ightarrow - 1^{-}}y = + \infty nên khẳng định “Giá trị lớn nhất của hàm số là 2” sai.

    Phương trình f(x) = m có 3 nghiệm thực phân biệt khi và chỉ khi 1 <
m < 2 nên khẳng định “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2)” đúng.

    Hàm số đồng biến trên các khoảng ( -
\infty;1)( - 1;1) nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là ( - \infty;1)” sai.

    Đồ thị hàm số có hai đường tiệm cận là x
= - 1;y = 1\lim_{x ightarrow
\pm \infty}y = 1;\lim_{x ightarrow - 1^{- 1}}y = + \infty nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.

    Vậy khẳng định đúng cần tìm là “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2).”

  • Câu 18: Vận dụng cao
    Tìm điều kiện cần và đủ của tham số m theo yêu cầu

    Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất phương trình 3f(x) \geq x^{3} - 3x +
m (m là tham số thực). Điều kiện cần và đủ để bất phương trình 3f(x) \geq x^{3} - 3x + m đúng với mọi x \in \left\lbrack - \sqrt{3};\sqrt{3}
\right\rbrack

    Hướng dẫn:

    Ta có 3f(x) \geq x^{3} - 3x + m
\Leftrightarrow 3f(x) - x^{3} + 3x \geq m

    Đặt g(x) = 3f(x) - x^{3} + 3x. Tính g'(x) = 3f'(x) - 3x^{2} +
3

    g'(x) = 0 \Leftrightarrow
f'(x) = x^{2} - 1

    Nghiệm của phương trình g'(x) =
0 là hoành độ giao điểm của đồ thị hàm số y = f'(x) và parabol y = x^{2} - 1

    Dựa vào đồ thị hàm số ta có: f'(x) =
x^{2} - 1 \Leftrightarrow \left\lbrack \begin{matrix}
x = - \sqrt{3} \\
x = 0 \\
x = \sqrt{3} \\
\end{matrix} ight.

    BBT

    Để bất phương trình nghiệm đúng với mọi x
\in \left\lbrack - \sqrt{3};\sqrt{3} ightbrack thì m \leq \min_{\left\lbrack - \sqrt{3};\sqrt{3}
ightbrack}g(x) = g\left( \sqrt{3} ight) = 3f\left( \sqrt{3}
ight).

  • Câu 19: Vận dụng
    Giá trị của biểu thức

    Cho hình vẽ là đồ thị hàm số có dạng y = a{x^4} + b{x^2} + c

    Giá trị của biểu thức

    Giá trị của biểu thức B = {a^2} + {b^2} + {c^2} có thể nhận giá trị nào trong các giá trị sau?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm \left( {0; - 1} ight) => c =  - 1

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( {\sqrt {\dfrac{{ - b}}{{2a}}} } ight) = \dfrac{{ - {b^2}}}{{4a}} + c = 3} \\   {y\left( 1 ight) = a + b + c = 2} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16a} \\   {a + b = 3} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16\left( {3 - b} ight)} \\   {a = 3 - b} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 12;a = 9} \\   {b = 4;a =  - 1} \end{array}} ight. \hfill \\   \Rightarrow B = {a^2} + {b^2} + {c^2} = 18 \hfill \\ \end{matrix}

  • Câu 20: Vận dụng cao
    Tính giá trị biểu thức

    Trong số các cặp số thực (a;b) để bất phương trình (x - 1)(x - a)\left(
x^{2} + x + b \right) \geq 0 nghiệm đúng với mọi x\mathbb{\in R}, tích ab nhỏ nhất bằng

    Hướng dẫn:

    Đặt f(x) = (x - 1)(x - a)\left( x^{2} + x
+ b ight)g(x) = (x - a)\left(
x^{2} + x + b ight)

    Giả sử x = 1 không phải là nghiệm của phương trình g(x) = (x - a)\left(
x^{2} + x + b ight) = 0 thì hàm số f(x) = (x - 1)(x - a)\left( x^{2} + x + b
ight) sẽ đổi dấu khi qua điểm x =
1, nghĩa là(x - 1)(x - a)\left(
x^{2} + x + b ight) \geq 0 không nghiệm đúng với mọi x\mathbb{\in R}.

    Do đó yêu cầu bài toán được thỏa mãn thì một điều kiện cần làg(x) = (x - a)\left( x^{2} + x + b ight) =
0 có nghiệm x = 1 suy ra hoặc \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\ \forall x\mathbb{\in R} \\
\end{matrix} ight. hoặc là phương trình x^{2} + x + b = 0 có hai nghiệm x = 1x =
a

    Trường hợp 1: \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\forall x \in R \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
1 > 0 \\
\Delta = 1 - 4b \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.

    Trường hợp 2: phương trình x^{2} + x + b
= 0 có hai nghiệm x = 1x = a

    Ta thay x = 1vào phương trình x^{2} + x + b = 01^{2} + 1 + b = 0 \Rightarrow b = - 2.

    Với b = - 2 có phương trình x^{2} + x + b = 0 \Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    x = a cũng là nghiệm của phương trình nên a = - 2.

    Trong trường hợp 1: \left\{
\begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.\  \Rightarrow ab \geq \frac{1}{4} suy ra tích ab nhỏ nhất khi ab = \frac{1}{4}

    Và với a = 1,b = \frac{1}{4}, tích ab = \frac{1}{4} thì bất phương trình đã cho tương đương với (x -
1)(x - 1)\left( x^{2} + x + \frac{1}{4} ight) \geq 0 \Leftrightarrow (x - 1)^{2}\left( x + \frac{1}{2}
ight)^{2} \geq 0 thỏa mãn với mọi x\mathbb{\in R} (nhận)

    Trong trường hợp 2: Tích ab = 4 >
\frac{1}{4}

    Vậy tích ab nhỏ nhất khi ab = \frac{1}{4}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo