Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho điểm A(0; 1; 2), mặt phẳng (α): x−y +z −4 = 0 và mặt cầu (S):(x - 3)^{2} + (y - 1)^{2} + (z - 2)^{2} =
16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox

    Hướng dẫn:

    Gọi (C) là giao tuyến của mặt phẳng (P) và mặt cầu (S) và (C) có tâm H, bán kính r.

    Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi d(I,(P)) lớn nhất.

    M ∈ x'Ox nên gọi M(m; 0; 0).

    Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).

    Khi đó \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{MA};\overrightarrow{n_{(\alpha)}}
ightbrack = (3;2 + m;m - 1)

    Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:

    3(x − 0) + (2 + m)(y − 2) + (m − 1)(z − 2) = 0 hay 3x + (2 + m)y + (m − 1)z −3m=0

    Ta có:

    d\left( I;(P) ight) =
\frac{9}{\sqrt{2m^{2} + 2m + 14}} lớn nhất khi và chỉ khi 2m^{2} + 2m + 14 đạt giá trị nhỏ nhất

    2m^{2} + 2m + 14 = 2\left( m +
\frac{1}{2} ight)^{2} + \frac{27}{2} \geq \frac{27}{2}

    Do đó 2m^{2} + 2m + 14 nhỏ nhất khi và chỉ khi m = -
\frac{1}{2}

    Vậy M\left( - \frac{1}{2};0;0
ight).

  • Câu 2: Vận dụng
    Tìm tập hợp các điểm M thỏa mãn biểu thức

    Cho tứ diện ABCD có A(1,2,3);\ \ \
B(0,0,3);\ \ \ C(0,2,0);\ \ \ D(1,0,0).Tìm tập hợp các điểm M thỏa mãn \left| \overrightarrow{AM} +
\overrightarrow{BM} + \overrightarrow{CM} + \overrightarrow{DM} \right|
= 8

    Hướng dẫn:

    Ta có:

    \left| \overrightarrow{AM} +
\overrightarrow{BM} + \overrightarrow{CM} + \overrightarrow{DM} \right|= \left| 4\left( x - \frac{1}{2} \right);4(y - 1);4\left( z -
\frac{3}{2} \right) \right| = 8

    \Rightarrow 16\left( x - \frac{1}{2}
\right)^{2} + 16(y - 1)^{2} + 16\left( z - \frac{3}{2} \right)^{2} =
64

    Mặt cầu (S):\left( x - \frac{1}{2}
\right)^{2} + (y - 1)^{2} + \left( z - \frac{3}{2} \right)^{2} =
4

  • Câu 3: Vận dụng
    Tính bán kính r của đường tròn (C)

    Trong không gian cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.

    Bán kính r của đường tròn (C) bằng:

    Hướng dẫn:

    Cùng đề trên nên có bán kính mặt cầu là R
= \sqrt{5} .

    Khoảng cách từ I đến thiết diện là h =
\frac{\left| 2 - 2( - 3) + 2( - 3) + 1 \right|}{\sqrt{1^{2} + ( - 2)^{2}
+ 2^{2}}} = 1 .

    \Rightarrow Bán kính của (C) là: r =
\sqrt{R^{2} - r^{2}} = 2.

  • Câu 4: Vận dụng cao
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu

    (S):x^{2} + y^{2} + z^{2} + ax + by + cz
+ d = 0 có bán kính R = \sqrt{19} đường thẳng d:\left\{\begin{matrix}x = 5 + t \\y = - 2 - 4t \\z = - 1- 4t\end{matrix} \right. và mặt phẳng (P):3x - y - 3z - 1 = 0 Trong các số \left\{ a;b;c;d \right\} theo thứ tự dưới đây, số nào thỏa mãn a + b + c + d =
43 đồng thời tâm I của (S) thuộc đường thẳng d(S) tiếp xúc mặt phẳng (P)?

    Hướng dẫn:

    Ta có I \in d \Rightarrow I(5 + t;2 - 4t;
- 1 - 4t)

    Do (S) tiếp xúc với (P) nên d\left( I;(P) \right) = R = \sqrt{19}

    \Leftrightarrow |19 + 19t| = 19
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = - 2
\end{matrix} \right.

    Mặt khác (S) có tâm I\left( \frac{- a}{2};\frac{- b}{2};\frac{- c}{2}
\right); bán kính R =
\sqrt{\frac{a^{2} + b^{2} + c^{2}}{4} - d} = \sqrt{19}

    Xét khi t = 0 \Rightarrow I(5; - 2; - 1)
\Rightarrow \left\{ a;b;c;d \right\} = \left\{ - 10;4;2;47
\right\}

    Do \frac{{{a^2} + {b^2} + {c^2}}}{4} - d \ne 19 nên ta loại trường hợp này

    Xét khi t = 2 \Rightarrow \left\{ {a;b;c;d} \right\} = \left\{ { - 6; - 12; - 14;75} \right\}

    Do \frac{a^{2} + b^{2} + c^{2}}{4} - d
\neq 19 nên thỏa mãn.

  • Câu 5: Thông hiểu
    Xác định số giao điểm của đường thẳng và mặt cầu

    Cho đường thẳng \Delta:\frac{x + 2}{- 1}
= \frac{y}{1} = \frac{z - 3}{- 1} và và mặt cầu (S): x^{2} + y^{2} + z^{2} + 4x - 2y - 21 =
0. Số giao điểm của (\Delta)(S) là:

    Hướng dẫn:

    Đường thẳng(\Delta)đi qua M = ( - 2;\ 0;\ 3)và có VTCP \overrightarrow{u} = ( - 1;\ 1;\  -
1)

    Mặt cầu (S)có tâm I = (1;\ 2;\  - 3)và bán kính R=9

    Ta có \overrightarrow{MI} = (3;2; -
6)\left\lbrack
\overrightarrow{u},\overrightarrow{MI} \right\rbrack = ( - 4; - 9; -
5)

    \Rightarrow d(I;\Delta) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} =
\frac{\sqrt{366}}{3}

    d(I,\ \Delta) < R nên (\Delta) cắt mặt cầu (S) tại hai điểm phân biệt.

  • Câu 6: Vận dụng
    Tính bán kính đường tròn

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 7: Vận dụng
    Xác định phương trình mặt cầu

    Trong không gian Oxyz, viết phương trình mặt cầu đi qua điểm A(1; -
1;4) và tiếp xúc với các mặt phẳng tọa độ?

    Hướng dẫn:

    Gọi I(a;b;c) là tâm mặt cầu (S). Mặt cầu (S) tiếp xúc với các mặt phẳng tọa độ nên:

    d\left( I;(Oxy) ight) = d\left(
I;(Oyz) ight) = d\left( I;(Ozx) ight)

    \Leftrightarrow |a| = |b| = |c| =
R(*)

    Mặt cầu đi qua điểm A(1; -
1;4)

    \Rightarrow \left\{ \begin{matrix}
IA = R \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
IA^{2} = R^{2} \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + (b + 1)^{2} + (c - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + ( - a + 1)^{2} + (a - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a^{2} - 12a + 18 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a + 9 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = c = 3 \\
b = - 3 \\
R = 3 \\
\end{matrix} ight.\  \Rightarrow (S):(x - 3)^{2} + (y + 3)^{2} + (z -
3)^{2} = 9

  • Câu 8: Thông hiểu
    Tính diện tích đường tròn

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 9: Thông hiểu
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Với điều kiện nào của m thì mặt phẳng cong sau là mặt cầu? (S):x^{2} + y^{2} + z^{2} + 2(3 - m)x- 3(m + 1)y
- 2mz + 2m^{2} + 7 = 0

    Hướng dẫn:

    Ta có: a = m - 3;\ \ b = m + 1;\ \ c =
m;\ \ d = 2m^{2} + 7

    (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d >
0

    \Leftrightarrow (m - 3)^{2} + (m + 1)^{2}
+ m^{2} - 2m^{2} - 7 > 0\Leftrightarrow m^{2} - 4m + 3 >
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < 1 \\
m > 3 \\
\end{matrix} \right.

  • Câu 10: Vận dụng cao
    Tính chu vi của đường tròn

    Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P):x - y - z + 3 = 0 và hai điểm M( - 1;1; - 1),N(3; - 3;3). Mặt cầu (S) đi qua hai điểm M,N và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tính chu vi của đường tròn đó.

    Hướng dẫn:

    Ta có MN đi qua M( - 1;1; - 1), nhận \frac{1}{4}\overrightarrow{MN} = \frac{1}{4}(4; -
4;4) = (1; - 1;1) là một vecto chỉ phương nên MN:\left\{ \begin{matrix}
x = - 1 + t \\
y = 1 - t \\
z = - 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Thay \left\{ \begin{matrix}
x = - 1 + t \\
y = 1 - t \\
z = - 1 + t
\end{matrix} \right.vào (P) ta được -
1 + t + 1 + t + 1 - t + 3 = 0 \Leftrightarrow t = 4

    Tọa độ điểm D(3;3;3) là giao điểm của của MN(P). Do đó theo tính chất của phương tích ta được DM.DN = DI^{2} - R^{2}.

    Mặt khác vì DC là tiếp tuyến của mặt cầu (S) cho nên DC^{2} = DI^{2} - R^{2}.

    Do vậy DC^{2} = DM.DN = 36 \Rightarrow DC = 6 (là một giá trị không đổi).

    Vậy C luôn thuộc một đường tròn cố định tâm D với bán kính R = 6 suy ra chu vi của đường tròn là 12\pi.

  • Câu 11: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 12: Vận dụng
    Viết phương trình mặt cầu

    Cho hai mặt phẳng (P), (Q) có phương trình (P):x - 2y + z - 1 = 0(Q):2x + y - z + 3 = 0. Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng (Oxy) và có hoành độ x_{M} = 1, có phương trình là:

    Hướng dẫn:

    M \in (Oxy) và có hoành độ bằng 1 nên M(1;y;0).

    Lại có, mặt cầu tiếp xúc với mặt phẳng (Q) nên M \in
(Q) \Rightarrow M(1; -
5;0).

    Gọi I(a;b;c) là tâm của mặt cầu (S) cần tìm.

    Ta có (S) tiếp xúc với mp (Q) tại M nên IM\bot(Q).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n} = (2;1; -
1).

    Ta có: IM\bot(Q)\Leftrightarrow
\overrightarrow{MI} = t\overrightarrow{n},\ \left( t\mathbb{\in R}
\right) \Leftrightarrow \left\{ \begin{matrix}
a = 1 + 2t \\
b = -5 + t \\
c = - t \\
\end{matrix} \right.

    I \in (P) \Leftrightarrow 1 + 2t - 2( - 5
+ t) - t - 1 = 0 \Leftrightarrow t = 10 \Rightarrow I(21;5; -
10).

    Bán kính mặt cầu R = d\left( I;(Q)
\right) = 10\sqrt{6}.

    Vậy phương trình mặt cầu (S):(x - 21)^{2}+ (y - 5)^{2} + (z + 10)^{2} = 600.

  • Câu 13: Vận dụng cao
    Xác định số mặt phẳng

    Trong không gian Oxyz, cho 3 điểm A(3;7;1),B(8;3;8)C(3;3;0). Gọi \left( S_{1} \right) là mặt cầu tâm A bán kính bằng 3 và \left( S_{2} \right) là mặt cầu tâm B bán kính bằng 6. Hỏi có tất cả bao nhiêu mặt phẳng đi qua C và tiếp xúc đồng thời với cả hai mặt cầu \left( S_{1} \right),\left( S_{2}
\right)?

    Hướng dẫn:

    Phương trình mặt phẳng qua C có dạng (P):m(x - 3) + n(y - 3) + pz = 0,m^{2} + n^{2} +
p^{2} > 0.

    Mặt phẳng (P) tiếp xúc \left( S_{1} \right) ta có |4n + p| = 3\sqrt{m^{2} + n^{2} + p^{2}} (1)

    Mặt phẳng (P) tiếp xúc \left( S_{2} \right) ta có |5m + 8p| = 6\sqrt{m^{2} + n^{2} + p^{2}} (2)

    Từ đây ta có phương trình |5m + 8p| =
2|4n + p| \Leftrightarrow \left\lbrack \begin{matrix}
5m = 8n - 6p\ \ \ (3) \\
5m = - 8n - 10p\ \ \ (4)
\end{matrix} \right.

    Từ (1), (3) ta có:

    (4n + p)^{2} = 9\left\lbrack \left(
\frac{8n - 6p}{5} \right)^{2} + n^{2} + p^{2} \right\rbrack

    \Leftrightarrow 401n^{2} - 1064np +
524p^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 2p \\
n = \frac{262}{401}p
\end{matrix} \right.

    Trường hợp này ta tìm được hai mặt phẳng:

    \left( P_{1} \right):2x + 2y + z - 12 =
0

    \left( P_{2} \right):62x - 262y - 101z +
600 = 0

    Từ (1); (4) ta có:

    (4n + p)^{2} = 9\left\lbrack \left(
\frac{8n + 10p}{5} \right)^{2} + n^{2} + p^{2}
\right\rbrack

    \Leftrightarrow 401n^{2} + 1240np +
1100p^{2} = 0 \Leftrightarrow n = p = 0

    Trường hợp này không có mặt phẳng nào.

  • Câu 14: Vận dụng
    Tìm tập hợp điểm I theo yêu cầu

    Tìm tập hợp các tâm I của mặt cầu (S):\
x^{2} + y^{2} + z^{2} + 2(3 - 4cost)x - 2(4sint + 1)y - 4z - 5 -
2sin^{2}t = 0,\ \ t\mathbb{\in R}.

    Hướng dẫn:

    Ta có:

    a = 4cost - 3;b = 4sint + 1;c = 2;d = -
5 - 2sin^{2}t

    \Rightarrow (4cost - 3)^{2} + (4sint +
1)^{2} + 9 + 2sin^{2}t > 0,\forall t\mathbb{\in R}

    Tâm I:x = 4cost - 3;y = 4sint + 1;z =
2

    \Rightarrow x + 3 = 4cost;y - 1 = 4sint
\Rightarrow (x + 3)^{2} + (y - 1)^{2} = 16

    Vậy tập hợp các tâm I là đường tròn (x +
3)^{2} + (y - 1)^{2} = 16;z - 2 = 0

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Hướng dẫn:

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 16: Vận dụng cao
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu (S_1): (x+3)^2+(y−2)^2+(z−4)^2 = 1, (S_2): x ^2 + (y − 2)^2 + (z − 4)^2 = 4, (S_3): x ^2 + y ^2 + z ^2 + 4x − 4y − 1 = 0. Có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu (S_1), (S_2), (S_3)?

    Hướng dẫn:

    Ta có \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight) có tâm lần lượt là I_{1}( - 3;2;4),I_{2}(0;2;4),I_{3}( -2;2;0) và bán kính lần lượt là R_{1} = 1,R_{2} = 2,R_{3} = 3.

    Gọi (P):ax + by + cz + d = 0\left( a^{2} +b^{2} + c^{2} eq 0 ight) là mặt phẳng tiếp xúc với cả ba mặt cầu nói trên. Khi đó:

    \left\{ \begin{matrix}d\left( I_{1};(P) ight) = R_{1} \\d\left( I_{2};(P) ight) = R_{2} \\d\left( I_{3};(P) ight) = R_{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}| - 3a + 2b + 4c + d| = \sqrt{a^{2} + b^{2} + c^{2}} \\|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\| - 2a + 2b + d| = 3\sqrt{a^{2} + b^{2} + c^{2}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\2| - 3a + 2b + 4c + d| = |2b + 4c + d| \\3|2b + 4c + d| = 2| - 2a + 2b + d| \\\end{matrix} ight.

    Xét phương trình

    3|2b + 4c + d| = 2| - 2a + 2b +d|

    \Leftrightarrow \left\lbrack\begin{matrix}3(2b + 4c + d) = 2( - 2a + 2b + d) \\3(2b + 4c + d) = - 2( - 2a + 2b + d) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}d = - 4a - 2b - 12c \\5d = 4a - 10b - 12c \\\end{matrix} ight.

    (1) Với d = - 4a - 2b - 12c. Thay vào 2| - 3a + 2b + 4c + d| = |2b + 4c +d|, ta được

    2| - 7a - 8c| = | - 4a -8c|

    \Leftrightarrow \left\lbrack\begin{matrix}7a + 8c = 2a + 4c \\7a + 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = - \dfrac{6c}{5} \\a = - \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = - \frac{6c}{5} \Rightarrow d = -\frac{36c}{5} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{18c}{5} + 2b + 4c -\frac{36c}{5} - 2b ight| = \sqrt{\left( - \frac{6c}{5} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{2c}{5}ight| = \frac{1}{5} \cdot \sqrt{25b^{2} + 61c^{2}} \Leftrightarrow4c^{2} = 25b^{2} + 61c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    Với a = - \frac{4c}{3} \Rightarrow d = -\frac{20c}{3} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{12c}{5} + 2b + 4c -\frac{20c}{5} - 2b ight| = \sqrt{\left( - \frac{4c}{3} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{4c}{3}ight| = \frac{1}{3} \cdot \sqrt{9b^{2} + 25c^{2}}

    \Leftrightarrow 16c^{2} = 9b^{2} +25c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    (2) Với 5d = 4a - 10b - 12c.

    Thay vào 2| - 3a + 2b + 4c + d| = |2b +4c + d|, ta được

    2| - 11a + 8c| = |4a + 8c

    \Leftrightarrow \left\lbrack\begin{matrix}11a - 8c = 2a + 4c \\11a - 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{4c}{13} \\a = \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = \frac{4c}{13} \Rightarrow 5d = -\frac{140c}{13} - 10b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được

    \left| \frac{60c}{13} ight| =\frac{5}{13} \cdot \sqrt{169b^{2} + 185c^{2}}

    \Leftrightarrow 11c^{2} = 169b^{2}\Leftrightarrow c = \pm \frac{13b}{\sqrt{11}}

    Với c = \frac{13b}{\sqrt{11}} : chọn b = \sqrt{11} \Rightarrow c = 13\Rightarrow Tồn tại một mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight).

    Với a = \frac{4c}{3} \Rightarrow 5d = -\frac{20c}{3} - 10b

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}} ta được:

    \left| \frac{20c}{3} ight| =\frac{5}{3}.\sqrt{9b^{2} + 25c^{2}} \Leftrightarrow 9b^{2} + 9c^{2} = 0\Leftrightarrow b = c = 0

    Với b = c = 0 ⇒ a = 0, d = 0 (vô lí).

    Vậy tồn tại 2 mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2} ight),\left(S_{3} ight).

  • Câu 17: Vận dụng cao
    Xác định bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm S(0;0;1)A(1;1;1). Hai điểm M(m;0;0),N(0  ;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Biết rằng luôn tồn tại một mặt cầu cố định đi qua A và tiếp xúc với mặt phẳng (SMN). Bán kính của mặt cầu đó là:

    Hướng dẫn:

    Phương trình mặt phẳng (SMN)\frac{x}{m} + \frac{y}{n} + \frac{z}{1} =1

    \Leftrightarrow nx + my + mnz - mn =0.

    Gọi I(a;b;c)R là tâm và bán kính của mặt cầu cố định.

    Ta có

    R = d(I;(SMN))

    = \frac{|na + mb + mnc -mn|}{\sqrt{n^{2} + m^{2} + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{\sqrt{1 - 2mn + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{1 - mn}

    = \frac{\left| (1 - c)m^{2} + (b + c - a- 1)m + a ight|}{m^{2} - m + 1}

    R không đổi nên \frac{1 - c}{1} = \frac{b + c - a - 1}{- 1} =\frac{a}{1} = t \Rightarrow \left\{ \begin{matrix}a = t \\b = t \\c = 1 - t \\\end{matrix} ight., hay I(t;t;1- t).
    Mặt khác ta có R = IA = \sqrt{3t^{3} - 4t +2} = |t| \Rightarrow t = 1.

    Vậy R = 1.

  • Câu 18: Vận dụng
    Tính bán kính

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

    Hướng dẫn:

    Tính bán kính

    Gọi M là trung điểm AC, suy ra SM \bot \left( {ABC} ight) \Rightarrow SM \bot AC.

    Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.

    Ta có AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2, suy ra tam giác SAC đều.

    Gọi G là trọng tâm \triangle SAC , suy ra GS = GA = GC.    (1)

    Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

    Lại có SM \bot \left( {ABC} ight) nên SM là trục của tam giác ABC.

    Mà G thuộc SM nên suy ra GA = GB = GC.

    Từ (1) và (2), suy ra GS = GA = GB = GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC.

    Bán kính mặt cầu R = GS = \frac{2}{3}SM = \frac{{a\sqrt 6 }}{3}.

  • Câu 19: Vận dụng cao
    Tính giá trị của biểu thức T

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(3; - 2;6),B(0;1;0) và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25. Mặt phẳng (P):ax + by + cz - 2
= 0 đi qua A,B và cắt (S) theo giao tuyến là hình tròn có bán kinh nhỏ nhất. Tính T = a + b +
c?

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1;2;3) bán kính R = 5.

    Mặt phẳng (P) có vtpt \overrightarrow{n_{p}} = (a;b;c);\left( a^{2} +
b^{2} + c^{2} \neq 0 \right).

    Do B(0;1;0) \in (P):b - 2 = 0
\Leftrightarrow b = 2.

    Ta có: \overrightarrow{AB} = ( - 3;3; -
6) = - 3(1; - 1;2), phương trình đường thẳng AB:\left\{ \begin{matrix}
x = t \\
y = 1 - t \\
z = 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Gọi r là bán kính của đường tròn giao tuyến, K là hình chiếu của I trên AB, H là hình chiếu vuông góc của I lên mặt phẳng (P).

    Ta có: K \in AB \Rightarrow K(t;1 -
t;2t)

    \Rightarrow \overrightarrow{IK} = (t -
1; - t - 1;2t - 3)

    IK\bot AB \Rightarrow
\overrightarrow{AB}.\overrightarrow{IK} = 0 \Rightarrow t = 1 \Rightarrow \overrightarrow{IK}
= (0; - 2; - 1)

    r = \sqrt{R^{2} - d^{2}\left( I;(P)
\right)} = \sqrt{25 - d^{2}\left(
I;(P) \right)} = \sqrt{25 - IH^{2}}

    Ta có: r đạt min thì IH đạt max.

    IH \leq IK \Rightarrow IH_{\min}
\Leftrightarrow H \equiv K \Rightarrow (P)\bot IK \Rightarrow\overrightarrow{n_{P}},\overrightarrow{IK} cùng phương

    \Rightarrow \overrightarrow{n_{P}} =
k.\overrightarrow{IK} \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = - 2k = 2 \\
c = - k
\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}
a = 0 \\
k = - 1 \\
b = 2 \\
c = 1
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = 2 \\
c = 1
\end{matrix} \right.

  • Câu 20: Thông hiểu
    Viết phương trình mặt phẳng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -2x - 4y - 6z - 2 = 0 và mặt phẳng (\alpha):4x + 3y - 12z + 10 = 0 . Mặt phẳng tiếp xúc với (S) và song song với (\alpha) có phương trình là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R = \sqrt{1^{2} + 2^{2} + 3^{2} + 2} =
4

    Gọi (\beta) là mặt phẳng tiếp xúc với (S) và song song với (\alpha).

    (\beta)//(\alpha) \Rightarrow
(\beta):4x + 3y - 12z + D = 0\ \ (D \neq 10)

    Mặt phẳng (\beta) tiếp xúc với mặt cầu (S) \Leftrightarrow d\left( I,(\beta) \right) =
R

    \Leftrightarrow \frac{|4.1 + 3.2 - 12.3 +
D|}{\sqrt{4^{2} + 3^{2} + ( - 12)^{2}}} = 4

    \Leftrightarrow |D - 26| = 52
\Leftrightarrow \left\lbrack \begin{matrix}
D = 78 \\
D = - 26 \\
\end{matrix} \right. (thỏa điều kiện)

    Vậy phương trình mặt phẳng (\beta):4x +
3y - 12z + 78 = 0 hoặc (\beta):4x +
3y - 12z - 26 = 0 .

    Lưu ý: Nếu hình dung phác họa hình học bài toán được thì ta có thể dự đoán được có 2 mặt phẳng thỏa mãn yêu cầu đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo