Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(1;1; - 2) đường thẳng d:\frac{x + 1}{1} = \frac{y - 3}{2} =
\frac{z - 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho \widehat{IAB} = 30^{o} là:

    Hướng dẫn:

    Đường thẳng d đi qua M( - 1;\ 3;2) và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1) .

    Gọi H là hình chiếu của I trên

    Ta có: IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18} .

    \Rightarrow R = IA =
2\sqrt{18} .

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y - 1)^{2} + (z + 2)^{2} = 72.

  • Câu 2: Vận dụng
    Tìm phương trình mặt cầu

    Cho đường thẳng d:\left\{ \begin{matrix}
x = t \\
y = - 1 + 3t \\
z = 1 \\
\end{matrix} \right.. Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của đường thẳng d và trục Ox là:

    Hướng dẫn:

    Gọi A(t; - 1 + 3t;1) \in d;B(t';0;0)
\in Ox

    \Rightarrow \overrightarrow{AB} = (t'
- t;1 - 3t; - 1), \overrightarrow{u_{d}} = (1;3;0),\
\overrightarrow{i} = (1;0;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB}.\overrightarrow{u_{d}} = 0 \\
\overrightarrow{AB}.\overrightarrow{i} = 0 \\
\end{matrix} \right.\  \Rightarrow t = t' = \frac{1}{3}R = \frac{1}{2} \Rightarrow \left( x -
\frac{1}{3} \right)^{2} + y^{2} + \left( z - \frac{1}{2} \right)^{2} =
\frac{1}{4}.

  • Câu 3: Vận dụng
    Viết phương trình mặt cầu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)

    Hướng dẫn:

     Phương trình của \left( {S'} ight):\left( S ight) + m\left( P ight) = 0,\,\,m e 0

    \left( {S'} ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 + m\left( {3x + 2y + 6z + 1} ight) = 0

    (S') qua M\left( {1, - 2,1} ight) \Rightarrow 6m + 18 = 0 \Leftrightarrow m =  - 3

    \Rightarrow \left( {S'} ight):{x^2} + {y^2} + {z^2} - 5x - 8y - 12z - 5 = 0

  • Câu 4: Vận dụng cao
    Xác định bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm S(0;0;1)A(1;1;1). Hai điểm M(m;0;0),N(0  ;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Biết rằng luôn tồn tại một mặt cầu cố định đi qua A và tiếp xúc với mặt phẳng (SMN). Bán kính của mặt cầu đó là:

    Hướng dẫn:

    Phương trình mặt phẳng (SMN)\frac{x}{m} + \frac{y}{n} + \frac{z}{1} =1

    \Leftrightarrow nx + my + mnz - mn =0.

    Gọi I(a;b;c)R là tâm và bán kính của mặt cầu cố định.

    Ta có

    R = d(I;(SMN))

    = \frac{|na + mb + mnc -mn|}{\sqrt{n^{2} + m^{2} + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{\sqrt{1 - 2mn + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{1 - mn}

    = \frac{\left| (1 - c)m^{2} + (b + c - a- 1)m + a ight|}{m^{2} - m + 1}

    R không đổi nên \frac{1 - c}{1} = \frac{b + c - a - 1}{- 1} =\frac{a}{1} = t \Rightarrow \left\{ \begin{matrix}a = t \\b = t \\c = 1 - t \\\end{matrix} ight., hay I(t;t;1- t).
    Mặt khác ta có R = IA = \sqrt{3t^{3} - 4t +2} = |t| \Rightarrow t = 1.

    Vậy R = 1.

  • Câu 5: Vận dụng
    Tìm bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 6: Vận dụng
    Tính bán kính

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Đường thẳng SA = a\sqrt 2 vuông góc với đáy (ABCD) . Gọi M là trung điểm SC, mặt phẳng (\alpha) đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm S, A, E, M, Fnhận giá trị nào sau đây?

    Hướng dẫn:

     Tính bán kính

    Mặt phẳng (\alpha) song song với BD cắt SB, SD lần lượt tại E, F nên EF||BD.

    \triangle SAC cân tại A , trung tuyến AM nên AM \bot SC  (1)

    Ta có \left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot SC

    Do đó EF \bot SC   (2)

    Từ (1) và (2), suy ra SC \bot \left( \alpha  ight) \Rightarrow SC \bot AE   (*)

    Lại có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AE  (**)

    Từ (*) và (**), suy ra AE \bot \left( {SBC} ight) \Rightarrow AE \bot SB. Tương tự ta cũng có AF \bot SD.

    Do đó \widehat {SEA} = \widehat {SMA} = \widehat {SFA} = {90^0} nên năm điểm S,{m{ }}A,{m{ }}E,{m{ }}M,{m{ }}F cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính R = \frac{{SA}}{2} = \frac{{a\sqrt 2 }}{2}.

  • Câu 7: Vận dụng cao
    Định phương trình mặt cầu

    Cho điểm A(2;\ 5;\ 1) và mặt phẳng (P):6x + 3y - 2z + 24 = 0, H là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu (S) có diện tích 784\pi và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu là:

    Hướng dẫn:

    Gọi d là đường thẳng đi qua A và vuông góc với (P).

    Suy ra d:\left\{ \begin{matrix}
x = 2 + 6t \\
y = 5 + 3t \\
z = 1 - 2t \\
\end{matrix} \right.

    H là hình chiếu vuông góc của A trên (P) nên H = d
\cap (P).

    H \in d nên H(2 + 6t;5 + 3t;1 - 2t).

    Mặt khác, H\in(P) nên ta có:

    6(2 + 6t) + 3(5 + 3t) - 2(1 - 2t) + 24 =
0 \Leftrightarrow t = - 1

    Do đó, H( - 4;\ 2;\ 3).

    Gọi I, R lần lượt là tâm và bán kính mặt cầu.

    Theo giả thiết diện tích mặt cầu bằng 784\pi, suy ra 4\pi R^{2} = 784\pi \Rightarrow R =
14.

    Vì mặt cầu tiếp xúc với mặt phẳng (P) tại H nên IH\bot(P) \Rightarrow I \in d.

    Do đó tọa độ điểm I có dạng I(2 + 6t;5 + 3t;1 - 2t), với t \neq - 1.

    Theo giả thiết, tọa độ điểm I thỏa mãn:\left\{ \begin{matrix}
d(I,(P)) = 14 \\
AI < 14 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\dfrac{\left| 6(2 + 6t) + 3(5 + 3t) - 2(1 - 2t) + 24 \right|}{\sqrt{6^{2}
+ 3^{2} + ( - 2)^{2}}} = 14 \\
\sqrt{(6t)^{2} + (3t)^{2} + ( - 2t)^{2}} < 14 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
t = 1 \\
t = - 3 \\
\end{matrix} \right.\  \\
- 2 < t < 2 \\
\end{matrix} \right.\  \Leftrightarrow t = 1

    Do đó: I(8 ; 8 ;  - 1).

    Vậy phương trình mặt cầu (S):(x - 8)^{2}
+ (y - 8)^{2} + (z + 1)^{2} = 196.

  • Câu 8: Thông hiểu
    Xác định phương trình mặt cầu

    Cho điểm I(1;0;0)và đường thẳng d:\frac{x - 1}{1} = \frac{y - 1}{2} =
\frac{z + 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 4 là:

    Hướng dẫn:

    Đường thẳng(d)đi qua M(1;\ 1; - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên (d).

    Ta có:IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 9.

    Vậy phương trình mặt cầu: (x - 1)^{2} +
y^{2} + z^{2} = 9.

  • Câu 9: Vận dụng
    Tính bán kính đường tròn

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 10: Vận dụng cao
    Tính bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C và BC=a. Mặt phẳng (SAB) vuông góc với đáy, SA = SB = a, \widehat {ASB} = {120^0}. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tính bán kính mặt cầu

    Gọi M là trung điểm AB , suy ra SM \bot ABSM \bot \left( {ABC} ight).

    Do đó SM là trục của tam giác ABC.

    Trong mặt phẳng (SMB), kẻ đường trung trực d của đoạn SB cắt SM tại I . Khi đó I là tâm mặt cầu ngoại tiếp hình chóp S.ABC , bán kính R=SI

    Ta có AB = \sqrt {S{A^2} + S{B^2} - 2SA.SB.\cos \widehat {ASB}}  = a\sqrt 3 .

    Trong tam giác vuông SMB, ta có SM = SB.\cos \widehat {MSB} = a.\cos {60^0} = \frac{a}{2}.

    Ta có \Delta SMB \backsim\Delta SPI, suy ra

    \frac{{SM}}{{SB}} = \frac{{SP}}{{SI}} \Rightarrow R = SI = \frac{{SB.SP}}{{SM}} = a

  • Câu 11: Thông hiểu
    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;2),B(3;2; - 3). Mặt cầu (S) có tâm I
\in Ox và đi qua hai điểm A;B có phương trình là:

    Hướng dẫn:

    Ta có: I \in Ox \Rightarrow
I(a;0;0)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - a;1;2) \\
\overrightarrow{IB} = (3 - a;2; - 3) \\
\end{matrix} ight.

    (S) đi qua hai điểm A;B nên

    IA = IB \Leftrightarrow \sqrt{(1 -
a)^{2} + 5} = \sqrt{(3 - a)^{2} + 13}

    \Leftrightarrow 4a = 16 \Leftrightarrow
a = 4 \Rightarrow I(4;0;0)

    \Rightarrow R = IA =
\sqrt{14}

    Vậy phương trình mặt cầu cần tìm là: (S):x^{2} + y^{2} + z^{2} - 8x + 2 =
0.

  • Câu 12: Thông hiểu
    Tìm phương trình mặt phẳng (P)

    Mặt phẳng (P) tiếp xúc với mặt cầu tâm I(1; - 3;2) tại điểm M(7; - 1;5) có phương trình là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; - 3;2)

    Vì mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm M nên mặt phẳng (P) qua M(7;
- 1;5) và có vectơ pháp tuyến \overrightarrow{n} = \overrightarrow{IM} =
(6;2;3)

    Vậy phương trình mặt phẳng (P):6x + 2y +3z - 55 = 0.

    Lưu ý : Vì mặt phẳng tiếp xúc với mặt cầu tại điểm M(7; - 1;5) nên điểm M thuộc mặt phẳng cần tìm hơn nữa khoảng cách từ tâm I(1; - 3;2) đến mặt phẳng cần tìm bằng IM cũng chính là bán kính mặt cầu. Từ các nhận xét đó để tìm ra đáp án của bài này ta có thể làm như sau:

    B1: Thay tọa độ M vào các đáp án để loại ra mặt phẳng không chứa M

    B2: Tính IM d\left( I;(P) \right) và kết luận

  • Câu 13: Vận dụng
    Chọn phương án thích hợp

    Cho mặt phẳng (P):x - 2y - 2z + 10 =0 và hai đường thẳng \Delta_{1}:\
\frac{x - 2}{1} = \frac{y}{1} = \frac{z - 1}{- 1}, \ \Delta_{2}:\frac{x - 2}{1} = \frac{y}{1} =
\frac{z + 3}{4}. Mặt cầu (S) có tâm thuộc \Delta_{1}, tiếp xúc với \Delta_{2} và mặt phẳng (P), có phương trình:

    Hướng dẫn:

    Ta có:

    \Delta_{1}:\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 1 - t \\
\end{matrix} \right.; \Delta_{2} đi qua điểm A(2;0; - 3) và có vectơ chỉ phương \overrightarrow{a_{2}} = (1;1;4).

    Giả sử I(2 + t;t;1 - t) \in
\Delta_{1} là tâm và R là bán kính của mặt cầu (S).

    Ta có: \overrightarrow{AI} = (t;t;4 -
t) \left\lbrack
\overrightarrow{AI},\overrightarrow{a_{2}} \right\rbrack = (5t - 4;4 -
5t;0)

    d\left( I;\Delta_{2} \right) =
\frac{\left| \left\lbrack \overrightarrow{AI},\overrightarrow{a_{2}}
\right\rbrack \right|}{\left| \overrightarrow{a_{2}} \right|} =
\frac{|5t - 4|}{3}

    d(I,(P)) = \frac{\left| 2 + t - 2t - 2(1
- t) + 10 \right|}{\sqrt{1 + 4 + 4}} = \frac{|t + 10|}{3}.

    (S) tiếp xúc với \Delta_{2}(P) d(I,\Delta_{2}) = d(I,(P)) |5t - 4| = |t + 10| \left\lbrack \begin{matrix}
t = \frac{7}{2} \\
t = - 1 \\
\end{matrix} \right..

    Với t = \frac{7}{2} I\left( \frac{11}{2};\frac{7}{2}; - \frac{5}{2}
\right), R = \frac{9}{2} (S):\left( x - \frac{11}{2} \right)^{2} +
\left( y - \frac{7}{2} \right)^{2} + \left( z + \frac{5}{2} \right)^{2}
= \frac{81}{4}.

    Với t = - 1 I(1; - 1;2),\ R = 3 (S):(x - 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
9.

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Tìm tập hợp các điểm M(x,y,z) thỏa mãn \frac{MA}{MB} = \frac{\sqrt{3}}{2}

    Hướng dẫn:

    Theo bài ra ta có:

    2MA = \sqrt{3}MB \Leftrightarrow 4MA^{2}
= 3MB^{2}

    \Leftrightarrow 4\left\lbrack (2 -
x)^{2} + ( - 3 - y)^{2} + ( - 1 - z)^{2} \right\rbrack

    = 3\left\lbrack ( - 4 - x)^{2} + (5 -
y)^{2} + ( - 3 - z)^{2} \right\rbrack

    Mặt cầu x^{2} + y^{2} + z^{2} - 40x - 54y
- 10z - 94 = 0

  • Câu 15: Vận dụng cao
    Chọn phương án thích hợp

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 3 + t \\
y = - 1 - t \\
x = - 2 + t
\end{matrix} \right., điểm M(1;2;
- 1)và mặt cầu (S): x^{2} + y^{2} + z^{2} - 4x + 10y + 14z + 64 =
0. Gọi (\Delta') là đường thẳng đi qua M và cắt \Delta tại A, cắt (S) tại B sao cho \frac{AM}{AB} = \frac{1}{3} và điểm B có hoành độ là số nguyên. Mặt phẳng trung trực của đoạn AB có phương trình là

    Hướng dẫn:

    Từ giả thiết: (S) có tâm I(2; - 5; - 7) và bán kính R = \sqrt{14}.

    A \in \Delta \Rightarrow A(3 + t; - 1 -
t; - 2 + t) \Rightarrow \overrightarrow{AM} = ( - 2 - t;t + 3;1 -
t).

    \frac{AM}{AB} = \frac{1}{3}
\Rightarrow \overrightarrow{AB} = \pm 3\overrightarrow{AM}.

    +) Nếu \overrightarrow{AB} =
3\overrightarrow{AM} = ( - 3t - 6;3t + 9;2 - 3t) \Rightarrow B( - 2t - 3;2t + 8; - 2t +
1).

    Do B \in (S) \Rightarrow BI =
R

    \begin{matrix}
   \Rightarrow {\left( {2t + 5} \right)^2} + {\left( { - 2t - 13} \right)^2} + {\left( {2t - 8} \right)^2} = 14 \hfill \\
   \Rightarrow 12{t^2} + 40t + 244 = 0\left( {VN} \right) \hfill \\ 
\end{matrix}

    +) Nếu \overrightarrow {AB}  = 3\overrightarrow {AM}  = \left( { - 3t - 6;3t + 9;2 - 3t} \right)\Rightarrow B\left( { - 2t - 3;2t + 8; - 2t + 1} \right).

    Do  B \in (S) \Rightarrow BI =
R 

    \Rightarrow (2t + 5)^{2} + ( - 2t -
13)^{2} + (2t - 8)^{2} = 14

    \Leftrightarrow 48t^{2} + 112t + 64 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = - \frac{4}{3} \\
t = - 1
\end{matrix} \right..

    Do B có hoành độ là số nguyên nên t = - 1 \rightarrow \overrightarrow{AB}
= (3; - 6; - 6).

    Trung điểm ABE\left( \frac{7}{2}; - 3; - 6 \right) nên phương trình mặt phẳng trung trực AB:

    3x - 6y - 6z - \frac{129}{2} =
0.

  • Câu 16: Vận dụng
    Xác định tọa độ tâm I

    Cho tứ diện ABCD có A(3,6, -
2);B(6,0,1);C( - 1,2,0);D(0,4,1). Tâm I của mặt cầu ngoại tiếp tứ diện ABCD có tọa độ:

    Hướng dẫn:

    Gọi I(x,y,z) là tâm cầu ngoại tiếp tứ diện ABCD. Tọa độ của I là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
AI^{2} = BI^{2} \\
BI^{2} = CI^{2} \\
CI^{2} = DI^{2} \\
\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}
(x - 3)^{2} + (y - 6)^{2} + (z + 2)^{2} = (x - 6)^{2} + y^{2} + (z -
1)^{2} \\
(x - 6)^{2} + y^{2} + (z - 1)^{2} = (x + 1)^{2} + (y - 2)^{2} + z^{2} \\
(x + 1)^{2} + (y - 2)^{2} + z^{2} = x^{2} + (y - 4)^{2} + (z - 1)^{2} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
6x - 12y + 6z = - 12 \\
- 14x + 4y - 2z = - 32 \\
2x + 4y + 2z = 12 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x - 2y + z = - 2 \\
7x - 2y + z = 16 \\
x + 2y + z = 6 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 2 \\
z = - 1 \\
\end{matrix} \right.\  \Rightarrow I(3,2, - 1)

  • Câu 17: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
16 và các điểm A(1;0;2),B( -
1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by
+ cz + 3 = 0. Tính T = a + b +c.

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; 2; 3) và bán kính R = 4.

    IA = \sqrt{5} < R nên điểm A nằm bên trong mặt cầu. Suy ra (P) luôn cắt mặt cầu. Gọi r là bán

    kính đường tròn giao tuyến, ta có r =
\sqrt{R^{2} - d^{2}} với d là khoảng cách từ I đến mặt phẳng (P).

    Diện tích hình tròn thiết diện nhỏ nhất khi và chỉ khi bán kính r nhỏ nhất, hay d lớn nhất.

    Gọi H là hình chiếu của I lên đường thẳng AB ta có d lớn nhất khi d = IH tức IH vuông góc với (P).

    Phương trình đường thẳng AB:\left\{
\begin{matrix}
x = 1 - t \\
y = t \\
z = 2
\end{matrix} \right.\ (t\mathbb{\in R})

    Gọi H(1 - t;t;2). \overrightarrow{IH} = ( - t;t - 2; -
1).

    IH\bot AB \Leftrightarrow t + (t - 2) = 0
\Leftrightarrow t = 1. Suy ra H(0;1;2).

    Mặt phẳng (P) nhận \overrightarrow{IH} làm vectơ pháp tuyến và đi qua điểm A nên có phương trình

    - (x - 1) - y - (z - 2) = 0 \Leftrightarrow - x - y - z + 3 = 0.

    Vậy a + b + c =- 3.

  • Câu 18: Vận dụng
    Xác định phương trình mặt cầu

    Trong không gian Oxyz, viết phương trình mặt cầu đi qua điểm A(1; -
1;4) và tiếp xúc với các mặt phẳng tọa độ?

    Hướng dẫn:

    Gọi I(a;b;c) là tâm mặt cầu (S). Mặt cầu (S) tiếp xúc với các mặt phẳng tọa độ nên:

    d\left( I;(Oxy) ight) = d\left(
I;(Oyz) ight) = d\left( I;(Ozx) ight)

    \Leftrightarrow |a| = |b| = |c| =
R(*)

    Mặt cầu đi qua điểm A(1; -
1;4)

    \Rightarrow \left\{ \begin{matrix}
IA = R \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
IA^{2} = R^{2} \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + (b + 1)^{2} + (c - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + ( - a + 1)^{2} + (a - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a^{2} - 12a + 18 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a + 9 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = c = 3 \\
b = - 3 \\
R = 3 \\
\end{matrix} ight.\  \Rightarrow (S):(x - 3)^{2} + (y + 3)^{2} + (z -
3)^{2} = 9

  • Câu 19: Vận dụng cao
    Xác định số điểm A thỏa mãn yêu cầu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + \left( z + \sqrt{2}
\right)^{2} = 3. Có tất cả bao nhiêu điểm A(a;b;c) (a;b;c là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau?

    Hướng dẫn:

    Do A(a;b;c) thuộc mặt phẳng (Oxy) nên A(a;b;0).

    Nhận xét: Nếu từ A kẻ được ít nhất 2 tiếp tuyến vuông góc đến mặt cầu khi và chỉ khi R \leq IA \leq
R\sqrt{2}

    \Leftrightarrow 3 \leq a^{2} + b^{2} + 2
\leq 6 \Leftrightarrow 1 \leq a^{2} + b^{2} \leq 4

    Tập các điểm thỏa đề là các điểm nguyên nằm trong hình vành khăn (kể cả biên), nằm trong mặt phẳng (Oxy), tạo bởi 2 đường tròn đồng tâm O(0;0;0) bán kính lần lượt là 1 và 2.

    Nhìn hình vẽ ta có 12 điểm thỏa mãn yêu cầu bài toán.

  • Câu 20: Vận dụng
    Tính tọa độ tâm I và bán kính R

    Cho mặt (S) tâm I ở trên z’Oz tiếp xúc với hai mặt phẳng (P):2x - 2y + z - 3 = 0(Q):\ \ x + 2y - 2z + 9 = 0. Tính tọa độ tâm I và bán kính R? (Có thể chọn nhiều đáp án).

    Hướng dẫn:

    Ta có:

    I(0,0,z) \Rightarrow d(I,P) =
d(I,Q)

    \Leftrightarrow \frac{|z - 3|}{3} =
\frac{| - 2z + 9|}{3}

    \Leftrightarrow \left\lbrack
\begin{matrix}
z_{1} = 4 \\
z_{2} = 6 \\
\end{matrix} \right.\  \Rightarrow \left\lbrack \begin{matrix}
R_{1} = \dfrac{1}{3} \\
R_{2} = 1 \\
\end{matrix} \right.

    Vậy: \left\lbrack \begin{matrix}
I_{1}(0,0,4);R_{1} = \dfrac{1}{3} \\
I_{2}(0,0,6);R_{2} = 1 \\
\end{matrix} \right.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo