Cho mặt cầu (S): và điểm
. Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua. Tìm tập hợp các điểm M. (Chọn các đáp án đúng)
có tâm
đường tròn
Hay
Cho mặt cầu (S): và điểm
. Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua. Tìm tập hợp các điểm M. (Chọn các đáp án đúng)
có tâm
đường tròn
Hay
Trong không gian với hệ tọa độ , cho hai điểm
và mặt cầu
. Mặt phẳng
(với
là các số nguyên dương và
nguyên tố cùng nhau) đi qua
và cắt
theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính tổng
.
Hình vẽ minh họa
Ta có cùng phương với
suy ra phương trình đường thẳng
.
Xét mặt cầu ⇒ I(1; 2; 3), R = 5.
Gọi là điểm trên AB sao cho AB ⊥ IH
Vì ,
Gọi r là bán kính đường tròn giao tuyến giữa (P) và (S), K là hình chiếu vuông góc của I lên (P) .
Ta có
Dấu bằng chỉ xảy ra khi K ≡ H.
Khi đó phương trình mặt phẳng (P) nhận là vectơ pháp tuyến và đi qua điểm
là
Trong không gian với hệ tọa độ , cho hai điểm
. Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác
và tiếp xúc với mặt phẳng
?
Gọi I là tâm đường tròn nội tiếp tam giác
Ta áp dụng tính chất sau: “Cho tam giác với I là tâm đường tròn nội tiếp, khi đó ta có:
với
”
Ta có:
Khi đó:
Mặt phẳng có phương trình
Mặt cầu tiếp xúc với mặt phẳng nên mặt cầu có bán kính
Vậy phương trình mặt cầu cần tìm là: .
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là:
Áp dụng CT, ta có (P) cắt (S)
Cho hai điểm ,
và mặt cầu
Mặt phẳng
qua M, N và tiếp xúc với mặt cầu
có phương trình:
Ta có mặt cầu (S) có tâm và bán kính
,
Gọi với
là một vectơ pháp tuyến của mặt phẳng
.
Vì qua M, N nên
Mặt phẳng qua
và nhận
là vectơ pháp tuyến nên có phương trình
.
Mặt phẳng tiếp xúc với
Từ (1) và (2) (*)
Trong (*), nếu thì
, và từ
suy ra
(vô lí). Do vậy
.
Chọn
Với , ta có
. Khi đó
.
Với , ta có
. Khi đó
.
Vậy phương trình mặt phẳng hoặc
.
Trong không gian với hệ tọa độ , cho ba điểm
với
. Biết rằng mặt phẳng
đi qua điểm
và tiếp xúc với mặt cầu
. Tính
.
Mặt phẳng đi qua ba điểm
nên có phương trình là:
Ta có nên
.
Mặt cầu (S) có tâm và bán kính
.
tiếp xúc với (S)
Cho hai mặt phẳng ,
có phương trình
và
Mặt cầu có tâm nằm trên mặt phẳng
và tiếp xúc với mặt phẳng
tại điểm
, biết rằng
thuộc mặt phẳng
và có hoành độ
, có phương trình là:
Vì và có hoành độ bằng 1 nên
.
Lại có, mặt cầu tiếp xúc với mặt phẳng nên
.
Gọi là tâm của mặt cầu
cần tìm.
Ta có tiếp xúc với mp
tại M nên
.
Mặt phẳng có vectơ pháp tuyến
.
Ta có:
Bán kính mặt cầu
Vậy phương trình mặt cầu .
Trong không gian hệ trục tọa độ , cho hai điểm
và mặt cầu
. Mặt phẳng
đi qua
và cắt
theo giao tuyến là hình tròn có bán kinh nhỏ nhất. Tính
?
Hình vẽ minh họa

Mặt cầu có tâm
bán kính
.
Mặt phẳng có vtpt
.
Do .
Ta có: , phương trình đường thẳng
Gọi là bán kính của đường tròn giao tuyến, K là hình chiếu của I trên AB, H là hình chiếu vuông góc của I lên mặt phẳng (P).
Ta có:
Ta có: r đạt min thì IH đạt max.
Mà
cùng phương
Trong không gian với hệ toạ độ , cho điểm
, Hai điểm
thay đổi sao cho
và
. Mặt phẳng
luôn tiếp xúc với một mặt cầu cố định đi qua
có bán kính là
Phương trình . Gọi
và
là tâm và bán kính mặt cầu cố định trong đề bài, phương trình mặt cầu là
.
Ta có khoảng cách từ đên
là
Vì
Nếu
Đẳng thức đúng với mọi nên
hay
, thay vào phương trình mặt cầu ta có R = 1.
Nếu
Đẳng thức đúng với mọi m ∈ (0; 1) nên hay
thay vào phương trình mặt cầu ta có
không thỏa mãn.
Vậy .
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a, . Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số
nhận giá trị nào sau đây?

Ta có hay
Gọi E là trung điểm AD.
Ta có nên ABCE là hình thoi.
Suy ra .
Do đó tam giác ACD vuông tại C. Ta có:
hay
Tương tự, ta cũng có hay
Ta có nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính
.
Suy ra .
Trong hệ tọa độ , cho mặt cầu
và các điểm
. Gọi
là mặt phẳng đi qua hai điểm
sao cho thiết diện của mặt phẳng
với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình
dưới dạng
. Tính
.
Ta có:
(S) có tâm , bán kính
.
Nhận thấy: ⇒ A; B nằm bên trong mặt cầu.
Gọi K là trung đểm của AB
Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.
Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất
Khi đó mặt phẳng (P): Đi qua A và có VTPT là
⇒ Phương trình mặt phẳng
Trong không gian với hệ trục tọa độ , cho điểm
, trong đó
và
. Biết mặt phẳng
tiếp xúc với mặt cầu
. Thể tích của khối tứ diện
là.
Cách 1:
Ta có : .
Theo bài ra có: .
Mặt phẳng tiếp xúc với mặt cầu
.
Ta có
.
Dấu bằng xảy ra .
Vậy.
Cách 2:
Ta có và
suy ra
.
Lại có nên
tiếp xúc với
tại M.
Suy ra nên
.
Cho mặt cầu :
. Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):
Mặt cầu tâm
, bán kính
.
Do mặt cầu đối xứng với
qua mặt phẳng (Oxy) nên tâm I' của
đối xứng với I qua (Oxy), bán kính
.
Ta có: .
Vậy
Lưu ý: Để ý thấy rằng trung điểm thuộc mặt phẳng
và
. Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ
nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.
Cho hai đường thẳng và
. Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của đường thẳng d và d’ là:
Gọi
Ta có:
và
Cho điểm và mặt phẳng
, H là hình chiếu vuông góc của
trên mặt phẳng
. Phương trình mặt cầu
có diện tích
và tiếp xúc với mặt phẳng
tại H, sao cho điểm A nằm trong mặt cầu là:
Gọi là đường thẳng đi qua
và vuông góc với
.
Suy ra
Vì H là hình chiếu vuông góc của trên
nên
.
Vì nên
.
Mặt khác, nên ta có:
Do đó, .
Gọi lần lượt là tâm và bán kính mặt cầu.
Theo giả thiết diện tích mặt cầu bằng , suy ra
.
Vì mặt cầu tiếp xúc với mặt phẳng tại H nên
.
Do đó tọa độ điểm có dạng
, với
.
Theo giả thiết, tọa độ điểm thỏa mãn:
Do đó: .
Vậy phương trình mặt cầu .
Trong không gian với hệ tọa độ , cho điểm
, điểm
và mặt cầu
. Gọi
là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến
là lớn nhất. Biết
là một vectơ pháp tuyến của
. Tính
.
Mặt cầu (S) có tâm I(5; −3; 7); bán kính .
Phương trình mặt phẳng
Vì (P) và (S) tiếp xúc nhau nên:
Ta có:
Ta có:
Áp dụng BĐT Bunhiacopxki ta có
Từ (*); (**); (***) ta có:
Dấu “=” xảy ra khi và chỉ khi:
.
Trong không gian cho đường tròn
Bán kính r của đường tròn (C) bằng:
Mặt cầu chứa
có tâm
và
.
Khoảng cách từ I đến mặt phẳng thiết diện là:
Mặt cầu tâm tiếp xúc với trục Oz có phương trình:
Mặt cầu tâm , bán kính R và tiếp xúc trục Ox
.
Vậy
Lưu ý : Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.
Trong không gian , có tất cả bao nhiêu giá trị nguyên của tham số
để
là một phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Theo bài ra
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Trong không gian , cho
và mặt phẳng
. Viết phương trình mặt cầu đi qua
và tiếp xúc mặt phẳng
.
Gọi là tâm mặt cầu cần tìm.
Theo bài ra ta có:
Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: