Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính quãng đường ô tô di chuyển

    Một ô tô đang chạy với vận tốc 10\
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 2t +
10(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

    Gợi ý:

    Ta sử dụng quãng đường đi được trong khoảng thời gian từ t_{1} đến t_{2}S =
\int_{t_{1}}^{t_{2}}{v(t)dt}.

    Với v(t) là hàm vận tốc.

    Chú ý rằng khi xe dừng hẳn thì vận tốc bằng 0.

    Các bài toán về quãng đường - vận tốc - gia tốc

    Hướng dẫn:

    Khi xe dừng hẳn thì vận tốc bằng 0.

    Nên thời gian kể từ lúc đạp phanh đến lúc ô tô dừng hẳn là - 2t + 10 = 0 \Leftrightarrow t = 5(\
s)

    Quãng đường ô tô đi được từ lúc đạp phanh đến lúc ô tô dừng hẳn là

    S_{2} = \int_{0}^{5}{( - 2t + 10)}dt =
\left. \ \left( - t^{2} + 10t ight) ight|_{0}^{5} = 25m

    Như vậy trong 8 giây cuối thì có 3 giây ô tô ði với vận tốc 10\ m/s và 5 s ô tô chuyển động chậm dần đều.

    Quãng đường ô tô đi được trong 3 giây trước khi đạp phanh là S_{1} = 3.10 = 30\ m

    Vậy trong 8 giây cuối ô tô đi được quang đường S = S_{1} + S_{2} = 30 + 25 = 55m

  • Câu 2: Thông hiểu
    Tính tích phân I

    Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{x.\sin xdx}

    Hướng dẫn:

    Có hai cách để giải bài toán:

    Cách 1: Thử bằng máy tính

    Cách 2: Tích phân thành phần: \left\{ \begin{matrix}
\sin xdx = dv \\
x = u \\
\end{matrix} ight.

  • Câu 3: Thông hiểu
    Xác định tích phân I

    Tích phân I = \int_{- 1}^{1}\left( ax^{3}
+ \frac{b}{x + 2} \right)dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 1}^{1}\left( ax^{3}
+ \frac{b}{x + 2} ight)dx có giá trị là:

    I = \int_{- 1}^{1}\left( ax^{3} +
\frac{b}{x + 2} ight)dx = \left. \ \left( \frac{a}{4}x^{4} + b\ln|x +
2| ight) ight|_{- 1}^{1} = bln3.

    Đáp án đúng là I = bln3.

  • Câu 4: Thông hiểu
    Chọn phương án thích hợp

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left( \cos x - 1 \right)cos^{2}x}dx có giá trị là:

    Hướng dẫn:

    Ta biến đổi: I =
\int_{0}^{\frac{\pi}{2}}{\left( \cos x - 1
ight)cos^{2}x}dx

    = \int_{0}^{\frac{\pi}{2}}{\cos x\left(
1 - sin^{2}x ight)}dx -
\int_{0}^{\frac{\pi}{2}}{cos^{2}x}dx

    = \left. \ \left( t - \frac{t^{3}}{3}
ight) ight|_{0}^{1} - \frac{1}{2}\left. \ \left( x +
\frac{1}{2}sin2x ight) ight|_{0}^{\frac{\pi}{2}} = \frac{2}{3} -
\frac{\pi}{4}, với t = \sin
x.

    Đáp án đúng là I =  - \frac{\pi }{4} + \frac{2}{3}.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Hướng dẫn:

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 6: Thông hiểu
    Tìm giá trị tích phân I

    Tích phân I = \int_{-
1}^{0}{\frac{2x}{x^{2} + 1}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
1}^{0}{\frac{2x}{x^{2} + 1}dx} ta nhận thấy: \left( x^{2} + 1 ight)' = 2x.

    Ta đặt: t = x^{2} + 1 \Rightarrow dt =
2xdx.

    Đổi cận: \left\{ \begin{matrix}
x = - 1 \Rightarrow t = 2 \\
x = 0 \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I =
{\int_{2}^{1}{\frac{1}{t}dt = \left. \ \left( \ln|t| ight)
ight|}}_{2}^{1} = - ln2.

    Đáp án đúng là I = - ln2.

  • Câu 7: Thông hiểu
    Tính giá trị của biểu thức

    Giá trị của tích phân I =
\int_{0}^{1}\frac{x}{x + 1}dx = a. Biểu thức P = 2a - 1 có giá trị là:

    Hướng dẫn:

    Giá trị của tích phân I =
\int_{0}^{1}\frac{x}{x + 1}dx = a.

    Biểu thức P = 2a - 1 có giá trị là:

    Ta có:

    I = \int_{0}^{1}\frac{x}{x + 1}dx =
\int_{0}^{1}{\left( 1 - \frac{1}{x + 1} ight)dx} = \left. \ \left( x - \ln|x + 1| ight)
ight|_{0}^{1} = 1 - ln2

    \Rightarrow a = 1 - ln2 \Rightarrow P =
2a - 1 = 1 - 2ln2.

  • Câu 8: Thông hiểu
    Tính tích phân

    Tính tích phân A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \dfrac{\pi}{3}ight)}dx} bằng

    Hướng dẫn:

    Ta có:

    A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \frac{\pi}{3}ight)}dx} = \left. \ \tan\left( x - \frac{\pi}{3} ight)ight|_{0}^{\frac{\pi}{2}}

    = \tan\frac{\pi}{6} - \tan\left( -
\frac{\pi}{3} ight) = \frac{4\sqrt{3}}{3}

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Biết rằng \int_{0}^{\pi^{2}}{\left(
\sin\sqrt{x} - \cos\sqrt{x} ight)dx = A + Bx} với A;B\mathbb{\in Z}. Chọn kết luận đúng?

    Hướng dẫn:

    Đặt t = \sqrt{x} \Rightarrow t^{2} = x
\Rightarrow 2tdt = dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = \pi^{2} \Rightarrow t = \pi \\
\end{matrix} ight. khi đó ta được:

    \int_{0}^{\pi^{2}}{\left( \sin\sqrt{x} -\cos\sqrt{x} ight)dx =}\int_{0}^{\pi}{\left( \sin t - \cos tight)tdt} = I

    Đặt \left\{ \begin{matrix}
u = t \\
dv = \left( \sin t - \cos t ight)dt \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dt \\
v = - \cos t - \sin t \\
\end{matrix} ight.

    \Rightarrow I = 2\left\lbrack \left. \
t\left( - \cos t - \sin t ight) ight|_{0}^{\pi} +
\int_{0}^{\pi}{\left( \cos t + \sin t ight)dt}
ightbrack

    \Rightarrow I = 2\left\lbrack \left. \
\pi + \left( \sin t - \cos t ight) ight|_{0}^{\pi} ightbrack = 4
+ 2\pi

    \Rightarrow \left\{ \begin{matrix}
A = 4 \\
B = 2 \\
\end{matrix} ight.\  \Rightarrow A + B = 6

  • Câu 10: Vận dụng
    Xét tính đúng sai của các khẳng định

    Một xe ô tô đang chạy đều với vận tốc x(\
m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(\ m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(\
m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C.Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m.Sai||Đúng

    Đáp án là:

    Một xe ô tô đang chạy đều với vận tốc x(\
m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(\ m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(\
m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C.Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m.Sai||Đúng

    Để giải bài toán này, chúng ta cần làm rõ từng phần. Ô tô đang chuyển động chậm dần đều với vận tốc v = - 5t +
20v (m/s), trong đó t là thời gian tính từ lúc bắt đầu đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. (Đúng).

    Để tìm thời gian mà ô tô dừng lại, ta đặt v=0 nghĩa là: −5t+20=0 hay t=4 (s)

    Vậy khi t=4, vận tốc là 0 m/s, điều này cho thấy ô tô đã dừng lại.

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5 s.

    Điều này không chính xác. Từ phần (a), chúng ta đã xác định thời gian để ô tô dừng lại là 4 giây, không phải 5 giây.

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C

    Công thức tích phân này là chính xác, vì:

    \int( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C Với C là hằng số tích phân.

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400 m.

    Để tính quãng đường, chúng ta cần tích phân hàm vận tốc để tìm quãng đường đi được. Quãng đường s từ t = 0 đến t=4 giây được tính bằng:

    s = \int_{0}^{4}{( - 5t + 20)dt} =
\left. \ \left( - \frac{5}{2}t^{2} - 20t \right) \right|_{0}^{4} =
40(m)

    Do đó, quãng đường ô tô đi được là 40 m, không phải 400 m.

    Tóm lại:

    (a) Đúng.

    (b) Sai, thời gian là 4 giây.

    (c) Đúng.

    (d) Sai, quãng đường là 40 m.

  • Câu 11: Vận dụng
    Xét tính đúng sai của các khẳng định

    Một ô tô đang chạy với vận tốc 16\
m/s thì người lái xe bất ngờ phát hiện chường ngại vật trên đường cách đó 50m. Người lái xe phản ứng một giây sau đó đạp phanh khẩn cấp. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 5t + 15, trong đó là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Gọi s(t) là quãng đường ô tô đi được trong t giây kể từ lúc đạp phanh.

    Trong các mệnh đề sau mệnh đề nào đúng, mệnh đề nào sai?

    a) Công thức biểu diễn hàm số s(t)s(t)
= - \frac{5t^{2}}{2} + 15t + 16Sai||Đúng

    b) Thời gian kể từ khi ô tô đạp phanh đến khi dừng hẳn bằng 3giây.Đúng||Sai

    c) Kể từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường là 38,5\ m. Sai||Đúng

    d) Xe ô tô không va chạm với chướng ngại.Đúng||Sai

    Đáp án là:

    Một ô tô đang chạy với vận tốc 16\
m/s thì người lái xe bất ngờ phát hiện chường ngại vật trên đường cách đó 50m. Người lái xe phản ứng một giây sau đó đạp phanh khẩn cấp. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 5t + 15, trong đó là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Gọi s(t) là quãng đường ô tô đi được trong t giây kể từ lúc đạp phanh.

    Trong các mệnh đề sau mệnh đề nào đúng, mệnh đề nào sai?

    a) Công thức biểu diễn hàm số s(t)s(t)
= - \frac{5t^{2}}{2} + 15t + 16Sai||Đúng

    b) Thời gian kể từ khi ô tô đạp phanh đến khi dừng hẳn bằng 3giây.Đúng||Sai

    c) Kể từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường là 38,5\ m. Sai||Đúng

    d) Xe ô tô không va chạm với chướng ngại.Đúng||Sai

    a) Ta có s(t) = \int_{}^{}{( - 5t +
15)dt} = - \frac{5t^{2}}{2} + 15t + C

    Do s(0) = 0 nên C = 0. Vậy s(t) = - \frac{5t^{2}}{2} + 15t

    Mệnh đề sai.

    b) Ô tô dừng hẳn khi v(t) = 0 \Leftrightarrow - 5t + 15 = 0
\Leftrightarrow t = 3.

    Mệnh đề đúng.

    c) Quãng đường ô tô di chuyển được từ lúc đạp phanh đến khi dừng hẳn là:

    s(3) = \frac{- 5.9}{2} + 15.3 =
22,5(m).

    Mệnh đề sai.

    d) Do trước khi đạp phanh tài xế còn phản ứng một giây nên kể từ lúc phát hiện chướng ngại đến khi dừng hẳn ô tô đi được quãng đường là: 16 + 22,5 = 38,5(m). Do đó ô tô không va chạm với chướng ngại vật.

    Mệnh đề đúng.

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 13: Thông hiểu
    Tìm giá trị tham số a thỏa mãn điều kiện

    Cho \int_{0}^{1}{\frac{x^{2}}{x^{3} +
1}dx} = \frac{1}{3}\ln a,a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{x^{2}}{x^{3} + 1}dx} =
... = \int_{1}^{2}{\frac{1}{3t}dt} = \frac{1}{3}\left. \ \left( \ln|t|
ight) ight|_{1}^{2} = \frac{1}{3}ln2 \Rightarrow a = 2.

  • Câu 14: Thông hiểu
    Tìm tỉ số a và b

    Biết I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = a\pi\sqrt{3} +
b\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}, ab là các số hữu tỉ. Giá trị của \frac{a}{b} là:

    Hướng dẫn:

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = \left. \ \left(
\frac{1}{2}x\sin2x ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    = - \frac{\pi\sqrt{3}}{24} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    \Rightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{24} \\
b = - \dfrac{1}{2} \\
\end{matrix} ight.\  \Rightarrow \dfrac{a}{b} =
\frac{1}{12}

  • Câu 15: Thông hiểu
    Chọn khẳng định đúng

    Kết quả tích phân I = \int_{0}^{1}{(2x +
3)e^{x}dx} được viết dưới dạng I =
ae + b với a, b là các số hữu tỉ. Tìm khẳng định đúng.

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{(2x + 3).e^{x}dx} =
2\int_{0}^{1}{x.e^{x}dx} + 3\int_{0}^{1}{e^{x}dx}

    Tương tự các bài trên

    \Rightarrow \int_{0}^{1}{x.e^{x}dx} =
\left. \ x.e^{x} ight|_{0}^{1} - \int_{0}^{1}{e^{x}dx}

    \Rightarrow I = \left. \ 2x.e^{x}
ight|_{0}^{1} + \int_{0}^{1}{e^{x}dx} = 2x.e^{x} + \left. \ e^{x}ight|_{0}^{1} = 3e - 1

    a = 3;b = - 1

    Suy ra, đáp án B: a + 2b = 1

  • Câu 16: Nhận biết
    Tính tích phân

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Cách 1:I = \int_{0}^{\frac{\pi}{2}}{\sin
xdx} = \left. \ \left( - \cos x ight) ight|_{0}^{\frac{\pi}{2}} =
1.

    Cách 2: Dùng máy tính cầm tay.

    Đáp án đúng là I = 1

  • Câu 17: Vận dụng
    Tính tổng các giá trị tham số m

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 18: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 19: Thông hiểu
    Tính giá trị của biểu thức S

    Biết rằng: \int_{0}^{ln2}{\left( x +
\frac{1}{2e^{x} + 1} \right)dx} = \frac{1}{2}ln^{a}2 + bln2 +
c\ln\frac{5}{3}. Trong đó a, b, c là những số nguyên. Khi đó S = a + b - c bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{ln2}\left( x + \frac{1}{2e^{x}
+ 1} ight)dx = \int_{0}^{ln2}{xdx} + \int_{0}^{ln2}{\frac{2e^{x} + 1 -
2e^{x}}{2e^{x} + 1}dx}

    = \int_{0}^{ln2}{(x + 1)dx} -
\int_{0}^{ln2}{\frac{2e^{x}}{2e^{x} + 1}dx}

    = \left. \ \left( \frac{x^{2}}{2} + x
ight) ight|_{0}^{ln2} - \int_{0}^{ln2}\frac{d\left( 2e^{x} + 1
ight)}{2e^{x} + 1}

    = \frac{ln^{2}2}{2} + ln2 - \left. \
\ln\left| 2e^{x} + 1 ight| ight|_{0}^{ln2}

    = \frac{ln^{2}2}{2} + ln2 - ln5 + ln3 =
\frac{ln^{2}2}{2} + ln2 - \ln\frac{5}{3}

    \Rightarrow a = 2;b = 1;c = - 1
\Rightarrow a + b - c = 4

  • Câu 20: Nhận biết
    Tính tích phân I

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo