Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị biểu thức

    Cho I =\int_{0}^{\frac{\pi}{4}}{\frac{\ln\left( \sin x + 2\cos xight)}{\cos^{2}x}dx} = a\ln3 + b\ln2 + c\pi với a;b;c là các số hữu tỉ. Giá trị của biểu thức S = a.b.c bằng

    Hướng dẫn:

    Đặt \left\{ \begin{matrix}u = \ln\left( \sin x + 2\cos x ight) \\dv = \dfrac{dx}{\cos x} \\\end{matrix} ight.\Rightarrow \left\{ \begin{matrix}du = \dfrac{\cos x - 2\sin x}{\sin x + 2\cos x} \\v = \tan x + 2 = \dfrac{\sin x + 2\cos x}{\cos x} \\\end{matrix} ight. khi đó:

    I = \left. \ \left( \tan x + 2ight)\ln\left( \sin x + 2\cos x ight) ight|_{0}^{\frac{\pi}{4}} -\int_{0}^{\frac{\pi}{4}}{\left( 1 - 2\frac{\sin x}{\cos x}ight)dx}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\left. \ \left\lbrack x + 2\ln\left( \cos x ight) ightbrackight|_{0}^{\frac{\pi}{4}}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\frac{\pi}{4} - 2\ln\frac{\sqrt{2}}{2}

    I = 3\ln3 - \dfrac{5}{2}\ln2 -\dfrac{1}{4}\pi \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - \frac{5}{2} \\c = - \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{15}{8}

  • Câu 2: Vận dụng
    Chọn đáp án đúng

    Cho hai hàm số f(x)f( - x) liên tục trên tập số thực và thỏa mãn 2f(x) + 3f( - x) = \frac{1}{4 +
x^{2}}. Tính tích phân I = \int_{-
2}^{2}{f(x)dx}?

    Hướng dẫn:

    Đặt t = - x \Rightarrow dt = -
dx

    Đổi cận \left\{ \begin{matrix}
x = - 2 \Rightarrow t = 2 \\
x = 2 \Rightarrow t = - 2 \\
\end{matrix} ight.\  \Rightarrow I = - \int_{2}^{- 2}{f( - t)dt} =
\int_{- 2}^{2}{f( - x)dx}

    Theo bài ra ta có:

    2f(x) + 3f( - x) = \frac{1}{4 +
x^{2}}

    \Leftrightarrow 2\int_{- 2}^{2}{f(x)dx}
+ 3\int_{- 2}^{2}{f( - x)dx} = \int_{- 2}^{2}\frac{1}{4 +
x^{2}}dx

    \Leftrightarrow 2I + 3I = \int_{-
2}^{2}\frac{1}{4 + x^{2}}dx

    \Leftrightarrow I = \frac{1}{5}\int_{-
2}^{2}\frac{1}{4 + x^{2}}dx

    Đặt x = 2\tan u \Rightarrow dx =2.\frac{1}{\cos^{2}u}du = 2\left( 1 + \tan^{2}u ight)du

    Đổi cận \left\{ \begin{matrix}x = - 2 \Rightarrow u = - \dfrac{\pi}{4} \\x = 2 \Rightarrow u = \dfrac{\pi}{4} \\\end{matrix} ight.\Rightarrow I = \dfrac{1}{5}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}{\frac{2\left( 1 + u^{2} ight)}{4 +4\tan^{2}u}du} = \frac{1}{10}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}{du}

    = \left. \ \frac{1}{10}u ight|_{-
\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{1}{10}\left( \frac{\pi}{4} +
\frac{\pi}{4} ight) = \frac{\pi}{20}

  • Câu 3: Nhận biết
    Tính tích phân I

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Hướng dẫn:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 4: Thông hiểu
    Tìm giá trị của tích phân I

    Tích phân I = \int_{1}^{2}{\left( x^{2} +
\frac{x}{x + 1} \right)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{2}{\left( x^{2} +
\frac{x}{x + 1} ight)dx} có giá trị là:

    Ta có: I = \int_{1}^{2}{\left( x^{2} +
\frac{x}{x + 1} ight)dx} = \int_{1}^{2}{\left( x^{2} + 1 - \frac{1}{x
+ 1} ight)dx}

    = \left. \ \left( \frac{x^{3}}{3} + x -
\ln|x + 1| ight) ight|_{1}^{2}

    = \frac{8}{3} + 2 - ln3 - \left(
\frac{1}{3} + 1 - ln2 ight)

    = \frac{10}{3} + ln2 - ln3

    Nhận xét: Không thể dùng máy tính để tính ra kết quả như trên mà ta chỉ có thể dùng để kiểm tra mà thôi.

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Tích phân I = \int_{1}^{e}{\left(
\frac{1}{x} + x \right)\ln xdx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{e}{\left(
\frac{1}{x} + x ight)\ln xdx} có giá trị là:

    I = \int_{1}^{e}{\left( \frac{1}{x} + x
ight)\ln xdx} = \int_{1}^{e}{\frac{1}{x}\ln xdx} + \int_{1}^{e}{x\ln
xdx}

    = \int_{0}^{1}{d\left( \ln x ight)} +
\left. \ \left( \frac{x^{2}}{2}\ln x ight) ight|_{1}^{e} -
\frac{1}{2}\int_{1}^{e}{xdx}

    = 1 + \frac{e^{2}}{2} - \left. \ \left(
\frac{1}{4}x^{2} ight) ight|_{1}^{e} = \frac{e^{2} +
5}{4}

    Đáp án đúng là I = \frac{e^{2} +
5}{4}.

  • Câu 6: Nhận biết
    Tính tích phân

    Cho \int_{0}^{1}{f(x)dx = 2}\int_{0}^{1}{g(x)dx = 5}, khi đó \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
\right\rbrack dx} bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
ightbrack dx}

    = \int_{0}^{1}{f(x)dx} -
2\int_{0}^{1}{g(x)dx}

    = 2 - 2.5 = - 8.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Cho biết \int_{0}^{f(x)}{t^{2}dt} =
x\cos(\pi x). Tính f(4).

    Hướng dẫn:

    Ta có:

    \int_{0}^{f(x)}{t^{2}dt} = \left. \
\frac{t^{3}}{3} ight|_{0}^{f(x)} = \frac{f^{3}(x)}{3} \Rightarrow
\frac{f^{3}(x)}{3} = x.cos(\pi x)

    Thay x = 4 \Rightarrow \frac{f^{3}(4)}{3}
= 4.cos(4\pi)

    \Rightarrow f^{3}(4) = 12 \Rightarrow
f(4) = \sqrt[3]{12}.

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Cho \int_{0}^{\frac{\pi}{2}}{f(x)}dx =
5. Tính I =
\int_{0}^{\frac{\pi}{2}}\left\lbrack f(x) + 2sinx \right\rbrack
dx.

    Hướng dẫn:

    Ta có

    I = \int_{0}^{\frac{\pi}{2}}\left\lbrack
f(x) + 2sinx ightbrack dx = \int_{0}^{\frac{\pi}{2}}{f(x)}dx +
2\int_{0}^{\frac{\pi}{2}}{\sin x}dx

    = \left. \ 5 - 2cosxight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 9: Thông hiểu
    Tìm tỉ số a và b

    Biết I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = a\pi\sqrt{3} +
b\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}, ab là các số hữu tỉ. Giá trị của \frac{a}{b} là:

    Hướng dẫn:

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{x\cos2xdx} = \left. \ \left(
\frac{1}{2}x\sin2x ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    = - \frac{\pi\sqrt{3}}{24} -
\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sin2xdx}

    \Rightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{24} \\
b = - \dfrac{1}{2} \\
\end{matrix} ight.\  \Rightarrow \dfrac{a}{b} =
\frac{1}{12}

  • Câu 10: Thông hiểu
    Chọn đáp án chính xác

    Biết \int_{- 1}^{0}{\frac{3x^{2} + 5x -
1}{x - 2}dx} = a\ln\frac{2}{3} + b. Khi đó P = a + 2b có giá trị bằng:

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{0}{\frac{3x^{2} + 5x -
1}{x - 2}dx} = \int_{- 1}^{0}{(3x + 11)dx} + \int_{- 1}^{0}{\frac{21}{x
- 2}dx}

    = \left. \ \left( 3.\frac{x^{2}}{2} +11x ight) ight|_{- 1}^{0} + \left. \ \left( 21\ln|x - 2| ight)ight|_{- 1}^{0}= \frac{19}{2} + 21\ln\frac{2}{3}\Rightarrow \left\{ \begin{matrix}a = 21 \\b = \dfrac{19}{2} \\\end{matrix} ight.\  \Rightarrow P = a + 2b = 40

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t)
= \frac{1}{225}t^{2} + \frac{2}{25}t\ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\ \left( m/s^{2} \right) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A.

    a) Vận tốc V_{B}(t) của chất điểm B đi được trong thời gian t (giây) là một nguyên hàm của gia tốc a\ \left( m/s^{2}
\right).Đúng||Sai

    b) V_{B}(t) = at.Đúng||Sai

    c) Quãng đường chất điểm A đi được trong 25 giây là 44,44(m),kết quả làm tròn đến hàng phần trăm. Sai||Đúng

    d) Vận tốc của chất điểm Btại thời điểm đuổi kịp A6,42(m/s), kết quả làm tròn đến hàng phần trăm.Đúng||Sai

    Đáp án là:

    Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t)
= \frac{1}{225}t^{2} + \frac{2}{25}t\ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\ \left( m/s^{2} \right) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A.

    a) Vận tốc V_{B}(t) của chất điểm B đi được trong thời gian t (giây) là một nguyên hàm của gia tốc a\ \left( m/s^{2}
\right).Đúng||Sai

    b) V_{B}(t) = at.Đúng||Sai

    c) Quãng đường chất điểm A đi được trong 25 giây là 44,44(m),kết quả làm tròn đến hàng phần trăm. Sai||Đúng

    d) Vận tốc của chất điểm Btại thời điểm đuổi kịp A6,42(m/s), kết quả làm tròn đến hàng phần trăm.Đúng||Sai

    a) Ta có v_{B}(t) = \int_{}^{}{a.dt} = at
+ C.

    b)v_{B}(0) = 0 \Rightarrow C = 0 \Rightarrow v_{B}(t) = at

    c)Quãng đường chất điểm A đi được trong 25 giây là

    S_{A} = \int_{0}^{25}{\ \left(
\frac{1}{225}t^{2} + \frac{2}{25}t\  \right)dt} = \left( \frac{1}{675}t^{3} + \frac{1}{25}t^{2}
\right)\ \left| \ _{\begin{matrix}
\\
0
\end{matrix}}^{\begin{matrix}
25 \\

\end{matrix}} \right.\  = 48,15(m).

    d)Quãng đường chất điểm B đi được trong 15 giây là

    S_{B} = \int_{0}^{15}{at.dt} = \frac{at^{2}}{2}|_{0}^{15} =
\frac{225a}{2}.

    Ta có 48,15 = \frac{225a}{2}
\Leftrightarrow a = 0,428.

    Vận tốc của B tại thời điểm đuổi kịp Av_{B}(15) = 0,428.15 = 6,42(m/s).

  • Câu 12: Nhận biết
    Tính giá trị của c

    Giả sử \int_{1}^{5}\frac{dx}{2x - 1} =
\ln c. Giá trị của c

    Hướng dẫn:

    Ta có: \int_{1}^{5}\frac{dx}{2x - 1} =
ln3

  • Câu 13: Thông hiểu
    Tìm điều kiện của a

    Đẳng thức \int_{0}^{a}{\cos\left( x +
a^{2} \right)dx} = \sin a xảy ra nếu

    Hướng dẫn:

    Ta có:

    \int_{0}^{a}{\cos\left( x + a^{2}ight)dx} = \sin a

    \Leftrightarrow \sin\left( a + a^{2}
ight) - \sin a^{2} = \sin a

    Trong 4 phương án, chỉ có phương án a =
\sqrt{2\pi} thỏa mãn.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Tích phân I = \int_{0}^{1}{\frac{1}{x^{2}
+ 1}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{1}{\frac{1}{x^{2}
+ 1}dx} có giá trị là:

    I = \int_{0}^{1}{\frac{1}{x^{2} +
1}dx}. Ta dùng đổi biến số.

    Đặt x = \tan t,t \in \left( -
\frac{\pi}{2};\frac{\pi}{2} ight) \Rightarrow dx =
\frac{1}{cos^{2}t}dt.

    Đổi cận\left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = 1 \Rightarrow t = \frac{\pi}{4} \\
\end{matrix} ight..

    \Rightarrow I =
\int_{0}^{\frac{\pi}{4}}{dt} = \left. \ t ight|_{0}^{\frac{\pi}{4}} =
\frac{\pi}{4}.

    Đáp án đúng là I =
\frac{\pi}{4}.

  • Câu 15: Thông hiểu
    Tính tích phân

    Tính tích phân \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\frac{1 -
sin^{3}x}{sin^{2}x}dx}

    Hướng dẫn:

    Ta có:

    \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}{\left(
\frac{1}{sin^{2}x} - \sin x ight)dx} = - \left. \ \cot x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}} + \left. \ \cos x
ight|_{\frac{\pi}{6}}^{\frac{\pi}{4}}

    = \frac{- 2 + \sqrt{2}}{2} +
\frac{\sqrt{3}}{2} = \frac{\sqrt{3} + \sqrt{2} - 2}{2}.

  • Câu 16: Vận dụng
    Xét tính đúng sai của các khẳng định

    Một xe ô tô đang chạy đều với vận tốc x(\
m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(\ m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(\
m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C.Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m.Sai||Đúng

    Đáp án là:

    Một xe ô tô đang chạy đều với vận tốc x(\
m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(\ m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(\
m/s).Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s.Sai||Đúng

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C.Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m.Sai||Đúng

    Để giải bài toán này, chúng ta cần làm rõ từng phần. Ô tô đang chuyển động chậm dần đều với vận tốc v = - 5t +
20v (m/s), trong đó t là thời gian tính từ lúc bắt đầu đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. (Đúng).

    Để tìm thời gian mà ô tô dừng lại, ta đặt v=0 nghĩa là: −5t+20=0 hay t=4 (s)

    Vậy khi t=4, vận tốc là 0 m/s, điều này cho thấy ô tô đã dừng lại.

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5 s.

    Điều này không chính xác. Từ phần (a), chúng ta đã xác định thời gian để ô tô dừng lại là 4 giây, không phải 5 giây.

    c) \int( - 5t + 20)dt = \frac{-
5t^{2}}{2} + 20t + C

    Công thức tích phân này là chính xác, vì:

    \int( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C Với C là hằng số tích phân.

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400 m.

    Để tính quãng đường, chúng ta cần tích phân hàm vận tốc để tìm quãng đường đi được. Quãng đường s từ t = 0 đến t=4 giây được tính bằng:

    s = \int_{0}^{4}{( - 5t + 20)dt} =
\left. \ \left( - \frac{5}{2}t^{2} - 20t \right) \right|_{0}^{4} =
40(m)

    Do đó, quãng đường ô tô đi được là 40 m, không phải 400 m.

    Tóm lại:

    (a) Đúng.

    (b) Sai, thời gian là 4 giây.

    (c) Đúng.

    (d) Sai, quãng đường là 40 m.

  • Câu 17: Thông hiểu
    Tính quãng đường S của ô tô

    Một ô tô đang chuyển động đều với vận tốc 12m/s thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = 12 - 2t(m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?

    Hướng dẫn:

    Khi dừng hẳn v(t) = 12 - 2t = 0
\Rightarrow t = 6(s)

    Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):

    S = 2.12 + \int_{0}^{6}{v(t)dt} = 24 +
\int_{0}^{6}{(12 - 2t)dt}

    = 24 + \left. \ \left( 12t - t^{2}
ight) ight|_{0}^{6} = 24 + 36 = 60(m)

  • Câu 18: Vận dụng
    Tính tích phân

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Hướng dẫn:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 19: Thông hiểu
    Tìm tham số a thỏa mãn điều kiện

    Giá trị dương a sao cho \int_{0}^{a}{\frac{x^{2} + 2x + 2}{x +
1}dx} = \frac{a^{2}}{2} + a + ln3

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{a}{\frac{x^{2} + 2x + 2}{x
+ 1}dx} = \int_{0}^{a}{\frac{(x + 1)^{2} + 1}{x + 1}dx}

    = \int_{0}^{a}{x + 1 + \frac{1}{x + 1}d(x
+ 1)}

    = \left. \ \frac{(x + 1)^{2}}{2}
ight|_{0}^{a} + \left. \ \ln|x + 1| ight|_{0}^{a} = \frac{(a +
1)^{2}}{2} - \frac{1}{2} + \ln|a + 1|

    = \frac{a^{2}}{2} + a + \ln|a +
1|

    \Rightarrow a + 1 = 3 \Rightarrow a =
2.

  • Câu 20: Nhận biết
    Xác định quãng đường vật chuyển động

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo