Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Bất phương trình chưa tham số m nghiệm đúng

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Hướng dẫn:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 2: Vận dụng cao
    Tính giá trị của biểu thức

    Cho hàm số y = x^{4} + 2mx^{2} +
m (với mlà tham số thực). Tập tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt đường thẳng y = - 3 tại bốn điểm phân biệt, trong đó có một điểm có hoành độ lớn hơn 2 còn ba điểm kia có hoành độ nhỏ hơn 1, là khoảng (a;b) (với a,b\mathbb{\in Q}, a,b là phân số tối giản). Khi đó, 15ab nhận giá trị nào sau đây?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm x^{4}
+ 2mx^{2} + m = - 3.

    Đặt x^{2} = t, t \geq 0. Khi đó phương trình trở thành t^{2} + 2mt + m + 3 = 0 (1)

    và đặt f(t) = t^{2} + 2mt + m +
3.

    Để đồ thị hàm số cắt đường thẳng y = -
3 tại 4 điểm phân biệt thì phương trình (1) có hai nghiệm thỏa mãn 0 < t_{1} < t_{2} và khi đó hoành độ bốn giao điểm là - \sqrt{t_{2}}
< - \sqrt{t_{1}} < \sqrt{t_{1}} < \sqrt{t_{2}}.

    Do đó, từ điều kiện của bài toán suy ra \left\{ \begin{matrix}
\sqrt{t_{2}} > 2 \\
\sqrt{t_{1}} < 1 \\
\end{matrix} ight. hay 0 <
t_{1} < 1 < 4 < t_{2}.

    Điều này xảy ra khi và chỉ khi \left\{
\begin{matrix}
f(0) > 0 \\
f(1) < 0 \\
f(4) < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m + 3 > 0 \\
3m + 4 < 0 \\
9m + 19 < 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m < -
\frac{19}{9}.

    Vậy a = - 3, b = - \frac{19}{9} nên 15ab = 95.

  • Câu 3: Vận dụng
    Tính giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = \frac{x + 3}{x +
1} có đồ thị (C) và đường thẳng d:y = x - m, với m là tham số thực. Biết rằng đường thẳng d cắt (C) tại hai điểm phân biệt AB sao cho điểm G(2; - 2) là trọng tâm của tam giác OAB (O là gốc toạ độ). Giá trị của m bằng

    Hướng dẫn:

    Hàm số y = \frac{x + 3}{x + 1}y' = \frac{- 2}{(x + 1)^{2}} <
0, \forall x \in D và đường thẳng d:y = x - m có hệ số a = 1 > 0 nên d luôn cắt (C) tại hai điểm phân biệt A\left( x_{A};\ y_{A} ight)B\left( x_{B};\ y_{B} ight) với mọi giá trị của tham số m.

    Phương trình hoành độ giao điểm của d(C) là: \frac{x + 3}{x + 1} = x - m

    \Leftrightarrow x^{2} - mx - m - 3 = 0\ \
\ \ (x eq - 1).

    Suy ra x_{A}, x_{B} là 2 nghiệm của phương trình x^{2} - mx - m - 3 = 0.

    Theo định lí Viet, ta có x_{A} + x_{B} =
m.

    Mặt khác, G(2; - 2) là trọng tâm của tam giác OAB nên x_{A} + x_{B} + x_{O} = 3x_{G}

    \Leftrightarrow x_{A} + x_{B} =
6 \Leftrightarrow m =
6.

    Vậy m = 6 thoả mãn yêu cầu đề bài.

  • Câu 4: Vận dụng cao
    Chọn đáp án đúng:

    Cho hàm số y = x^{4} -2(2m+1)x^{2} +4m^{2}  (C). Các giá trị của tham số thực m để đồ thị (C) cắt trục hoành tại 4 điểm phân biệt có hoành độ x1, x2, x3, x4 thoả mãn x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2}=6 là:

  • Câu 5: Vận dụng
    Số nghiệm thực phân biệt của phương trình

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 6: Vận dụng cao
    Bất phương trình chưa tham số m nghiệm đúng khi

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Hướng dẫn:

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 7: Vận dụng
    Tìm các số thực dương m theo yêu cầu bài toán

    Cho hàm số y = x^{4} - 3x^{2} -
2. Tìm số thực dương m để đường thẳng y = m cắt đồ thị hàm số tại 2 điểm phân biệt A, B sao cho tam giác OAB vuông tại O, trong đó O là gốc tọa độ.

    Hướng dẫn:

    Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:

    x^{4} - 3x^{2} - 2 = m \Leftrightarrow
x^{4} - 3x^{2} - 2 - m = 0\ \ \ \ \ \ \ \ \ (1).

    m > 0 \Leftrightarrow - 2 - m <
0 hay phương trình (1) luôn có hai nghiệm phân biệt thỏa mãn:

    x^{2} = \frac{3 + \sqrt{4m + 17}}{2}
\Rightarrow x_{1} = \sqrt{\frac{3 + \sqrt{4m + 17}}{2}}x_{2} = - \sqrt{\frac{3 + \sqrt{4m +
17}}{2}}.

    Khi đó: A\left( x_{1};m ight), B\left( x_{2};m ight).

    Ta có tam giác OAB vuông tại O, trong đó O là gốc tọa độ \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = 0 \Leftrightarrow x_{1}.x_{2}
+ m^{2} = 0.

    \Leftrightarrow \frac{3 + \sqrt{4m +
17}}{2} = m^{2}

    \Leftrightarrow \left\{ \begin{matrix}
2m^{2} - 3 \geq 0 \\
4m^{4} - 12m^{2} - 4m - 8 = 0 \\
\end{matrix} ight.\ \overset{m > 0}{\leftrightarrow}m =
2.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 8: Vận dụng cao
    Tìm số giá trị nguyên của tham số m

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f^{2}\left( \cos x \right) +
(m - 2022)f\left( \cos x \right) + m - 2023 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn \lbrack
0;2\pi\rbrack

    Hướng dẫn:

    Ta có f^{2}\left( \cos x ight) + (m -
2022)f\left( \cos x ight) + m - 2023 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f\left( \cos x ight) = - 1 \\
f\left( \cos x ight) = 2023 - m \\
\end{matrix} ight. (1)

    * Với f\left( \cos x ight) = -
1

    Dựa vào đồ thị ta có f\left( \cos x
ight) = - 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos x = 0 \\
\cos x = x_{1};\left( x_{1} > 1 ight)(VN) \\
\end{matrix} ight.

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{\pi}{2};\frac{3\pi}{2}
ight\}

    * Với f\left( \cos x ight) = 2023 -
m

    Đặt t = \cos x\ \ \left( t \in \lbrack -
1;1brack ight)

    Với t \in ( - 1;1brack thì phương trình t = \cos x có hai nghiệm phân biệt thuộc \lbrack
0;2\pibrack.

    Với t = - 1 thì phương trình t = \cos x có một nghiệm thuộc \lbrack 0;2\pibrack

    Phương trình trở thành f(t) = 2023 -
m

    Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình f\left( \cos x ight) = 2023 - m có 4 nghiệm phân biệt, hay phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack

    Dựa vào đồ thị ta có để phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack thì - 1 < 2023 - m
\leq 1 \Leftrightarrow 2022 \leq m < 2024

    m nguyên nên m \in \left\{ 2022;2023 ight\}

    Vậy có 2 giá trị nguyên của m thỏa mãn.

  • Câu 9: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 10: Vận dụng cao
    Xác định tất cả giá trị nguyên tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = x^{3} + x + 2. Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình f\left( \sqrt[3]{f^{3}(x) + f(x) + m} \right) = -
x^{3} - x + 2 có nghiệm x \in
\lbrack - 1;2\rbrack?

    Hướng dẫn:

    Xét hàm số f(t) = t^{3} + t + 2, ta có f'(t) = 3t^{2} + 1 > 0,\forall
t\mathbb{\in R}.

    Do đó hàm số f đồng biến trên \mathbb{R}.

    Ta có f\left( \sqrt[3]{f^{3}(x) + f(x) +
m} ight) = f( - x)

    \Leftrightarrow - x = \sqrt[3]{f^{3}(x)
+ f(x) + m} \Leftrightarrow f^{3}(x) + f(x) + x^{3} + m = 0\ \ \ \ \ \
(1)

    Xét h(x) = f^{3}(x) + f(x) + x^{3} +
m trên đoạn \lbrack -
1;2brack.

    Ta có h'(x) = 3f'(x) \cdot
f^{2}(x) + f'(x) + 3x^{2}

    = f'(x)\left\lbrack 3f^{2}(x) + 1
ightbrack + 3x^{2}.

    Ta có f'(x) = 3x^{2} + 1 >
0,\forall x \in \lbrack - 1;2brack \Rightarrow h'(x) >
0,\forall x \in \lbrack - 1;2brack.

    Hàm số h(x) đồng biến trên \lbrack - 1;2brack nên \min_{\lbrack - 1;2brack}h(x) = h( - 1) = m -
1,\max_{\lbrack - 1;2brack}h(x) = h(2) = m +1748.

    Phương trình (1) có nghiệm khi và chỉ khi

    \begin{matrix}
  \mathop {\min }\limits_{[ - 1;2]} h\left( x ight) \cdot \mathop {\max }\limits_{[ - 1;2]} h\left( x ight) \leqslant 0 \Leftrightarrow h\left( { - 1} ight) \cdot h\left( 2 ight) \hfill \\
   \Leftrightarrow \left( {m - 1} ight)\left( {1748 + m} ight) \leqslant 0 \hfill \\
   \Leftrightarrow  - 1748 \leqslant m \leqslant 1. \hfill \\ 
\end{matrix}

    Do m nguyên nên tập các giá trị m thỏa mãn là S = \{ - 1748; - 1747;\ldots;0;1\}.

    Vậy có tất cả 1750 giá trị nguyên của m thỏa mãn.

  • Câu 11: Vận dụng
    Xác định số cặp điểm thỏa mãn yêu cầu

    Cho hàm số y = x^{3} + x^{2} - 4 có đồ thị (C). Hỏi có bao nhiêu cặp điểm A;B \in (C) sao cho ba điểm O;A;B thẳng hàng và OA - 2OB = 0 với O là gốc tọa độ?

    Hướng dẫn:

    Gọi d là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình y =
k.x

    Khi đó hoành độ của O, A, B là nghiệm của phương trình x^{3} + x^{2} - 4 = kx

    Giả sử A\left( x_{1};kx_{1}
ight),B\left( x_{2};kx_{2} ight) khi đó ta có: \left\{ \begin{matrix}
{x_{1}}^{3} + {x_{1}}^{2} - 4 = kx_{1} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    Do OA - 2OB = 0 nên \overrightarrow{OA} = \pm 2\overrightarrow{OB}
\Rightarrow x_{1} = \pm 2kx_{2}

    TH1: x_{1} = 2kx_{2} \Rightarrow \left\{
\begin{matrix}
8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow 6{x_{2}}^{3} + 2{x_{2}}^{2}
+ 4 = 0 \Rightarrow x_{2} = - 1

    Khi đó A( - 2; - 8),B( - 1; -
4).

    TH2: x_{1} = - 2kx_{2} \Rightarrow
\left\{ \begin{matrix}
- 8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = - 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow - 6{x_{2}}^{3} +
6{x_{2}}^{2} - 12 = 0 \Rightarrow x_{2} = - 1

    Khi đó A(2;8),B( - 1; - 4).

    Vậy có 2 cặp A; B thỏa mãn.

  • Câu 12: Vận dụng cao
    Tính giá trị biểu thức

    Trong số các cặp số thực (a;b) để bất phương trình (x - 1)(x - a)\left(
x^{2} + x + b \right) \geq 0 nghiệm đúng với mọi x\mathbb{\in R}, tích ab nhỏ nhất bằng

    Hướng dẫn:

    Đặt f(x) = (x - 1)(x - a)\left( x^{2} + x
+ b ight)g(x) = (x - a)\left(
x^{2} + x + b ight)

    Giả sử x = 1 không phải là nghiệm của phương trình g(x) = (x - a)\left(
x^{2} + x + b ight) = 0 thì hàm số f(x) = (x - 1)(x - a)\left( x^{2} + x + b
ight) sẽ đổi dấu khi qua điểm x =
1, nghĩa là(x - 1)(x - a)\left(
x^{2} + x + b ight) \geq 0 không nghiệm đúng với mọi x\mathbb{\in R}.

    Do đó yêu cầu bài toán được thỏa mãn thì một điều kiện cần làg(x) = (x - a)\left( x^{2} + x + b ight) =
0 có nghiệm x = 1 suy ra hoặc \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\ \forall x\mathbb{\in R} \\
\end{matrix} ight. hoặc là phương trình x^{2} + x + b = 0 có hai nghiệm x = 1x =
a

    Trường hợp 1: \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\forall x \in R \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
1 > 0 \\
\Delta = 1 - 4b \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.

    Trường hợp 2: phương trình x^{2} + x + b
= 0 có hai nghiệm x = 1x = a

    Ta thay x = 1vào phương trình x^{2} + x + b = 01^{2} + 1 + b = 0 \Rightarrow b = - 2.

    Với b = - 2 có phương trình x^{2} + x + b = 0 \Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    x = a cũng là nghiệm của phương trình nên a = - 2.

    Trong trường hợp 1: \left\{
\begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.\  \Rightarrow ab \geq \frac{1}{4} suy ra tích ab nhỏ nhất khi ab = \frac{1}{4}

    Và với a = 1,b = \frac{1}{4}, tích ab = \frac{1}{4} thì bất phương trình đã cho tương đương với (x -
1)(x - 1)\left( x^{2} + x + \frac{1}{4} ight) \geq 0 \Leftrightarrow (x - 1)^{2}\left( x + \frac{1}{2}
ight)^{2} \geq 0 thỏa mãn với mọi x\mathbb{\in R} (nhận)

    Trong trường hợp 2: Tích ab = 4 >
\frac{1}{4}

    Vậy tích ab nhỏ nhất khi ab = \frac{1}{4}.

  • Câu 13: Vận dụng
    Xác định tính đúng sai của từng phương án

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Đáp án là:

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Sau t phút, khối lượng muối trong bể là 25.30.t = 750t (gam)

    Thể tích của lượng nước trong bể là 5000
+ 25t (lít).

    Vậy nồng độ muối sau t phút là: f(t) = \frac{750t}{5000 + 25t} =
\frac{30t}{200 + t} (gam/lít).

    Ta có \lim_{t ightarrow + \infty}f(t) =
\lim_{t ightarrow + \infty}\frac{30t}{200 + t} = \lim_{x ightarrow +
\infty}\left( 30 - \frac{6000}{200 + t} ight) = 30

    Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t):

    Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).

    Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.

    a) Đúng. b) Sai. c) Đúng. d) Đúng.

  • Câu 14: Vận dụng
    Xác định các giá trị thực tham số m

    Cho hàm số y = x^{3} - 3mx^{2} +
2m. Có bao nhiêu giá trị của tham số thực m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ lập thành cấp số cộng?

    Hướng dẫn:

    Phương trình hoành độ giao điểm: x^{3} -
3mx^{2} + 2m = 0 (*)

    Phương trình ax^{3} + bx^{2} + cx + d =
0 có ba nghiệm lập thành cấp số cộng

    \overset{}{ightarrow} Phương trình có một nghiệm x_{0} = -
\frac{b}{3a}.

    Suy ra phương trình (*) có một nghiệm x = m.

    Thay x = m vào phương trình (*), ta được m^{3} - 3m\ .\ m^{2} + 2m = 0 \Leftrightarrow -
2m^{3} + 2m = 0 \leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 0 \\
\end{matrix} ight..

    Thử lại:

    Với m = 1, ta được x^{3} - 3x^{2} + 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = 1 - \sqrt{3} \\
x = 1 \\
x = 1 + \sqrt{3} \\
\end{matrix} ight..

    Do đó m = 1 thỏa mãn.

    Với m = - 1, ta được x^{3} + 3x^{2} - 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 + \sqrt{3} \\
x = - 1 \\
x = - 1 - \sqrt{3} \\
\end{matrix} ight..

    Do đó m = - 1 thỏa mãn.

    Với m = 0, ta được x^{3} = 0 \Leftrightarrow x = 0.

    Do đó m = 0 không thỏa mãn.

    Vậy m = \pm 1 là hai giá trị cần tìm.

  • Câu 15: Vận dụng
    Xác định các giá trị nguyên tham số m

    Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y = x^{4} - 4x^{3} + (m - 2)x^{2} + 8x +
4 cắt trục hoành tại đúng hai điểm có hoành độ lớn hơn 1.

    Hướng dẫn:

    Phương trình hoành độ giao điểm x^{4} -
4x^{3} + (m - 2)x^{2} + 8x + 4 = 0(*)

    Đồ thị hàm số y = x^{4} - 4x^{3} + (m -
2)x^{2} + 8x + 4 cắt rục hoành tại đúng hai điểm có hoành độ lớn hơn 1 \Leftrightarrow (*) có đúng hai nghiệm lớn hơn 1.

    (*) \Leftrightarrow x^{4} - 4x^{3} + 8x+ 4 = (2 - m)x^{2}

    \Leftrightarrow 2 - m = x^{2} - 4x +
\frac{8}{x} + \frac{4}{x^{2}}

    Đây là phương trình hoành độ giao điểm của (C):y = x^{2} - 4x + \frac{8}{x} +
\frac{4}{x^{2}}\ \ (x > 1) với đường thẳng y = 2 - m song song với trục hoành.

    Xét hàm số y = x^{2} - 4x + \frac{8}{x} +
\frac{4}{x^{2}}\ \ (x > 1).

    y' = 2x - 4 - \frac{8}{x^{2}} -
\frac{8}{x^{3}} = \frac{2x^{4} - 4x^{3} - 8x - 8}{x^{2}}.

    Cho y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 - \sqrt{3}\ \ (L) \\
x = 1 + \sqrt{3}\ \ (t/m) \\
\end{matrix} ight..

    Bảng biến thiên

    Dựa vào bảng biến thiên ta thấy, ycbt\Leftrightarrow 0 < 2 - m < 9
\Leftrightarrow - 7 < m < 2.

    m nguyên nên m \in \left\{ - 6,\  - 5,...,\ 1
ight\}.

    Vậy có 8 giá trị nguyên của m thỏa bài toán.

  • Câu 16: Vận dụng
    Tìm m để phương trình có 4 nghiệm

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \left| {f\left( {\cos x} ight)} ight| =  - 2m + 3 có bốn nghiệm thuộc đoạn \left[ {0;2\pi } ight] là:

    Tìm m để phương trình có 4 nghiệm

    Hướng dẫn:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Ta có: \left| {f\left( t ight)} ight| =  - 2m + 3\left( * ight);t \in \left[ { - 1;1} ight]

    Ta có đồ thị hình vẽ như sau:

    Tìm m để phương trình có 4 nghiệm

    Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn \left[ {0;2\pi } ight] khi phương trình (*) có hai nghiệm t \in \left[ { - 1;1} ight]

    \Leftrightarrow 0 < 2m + 3 \leqslant 1 \Leftrightarrow 1 \leqslant m < \frac{3}{2}

  • Câu 17: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số y = \frac{3x + 2}{x +
2},(C) và đường thẳng d:y = ax + 2b
- 4. Đường thẳng d cắt ( C ) tại A, B đối xứng nhau qua gốc tọa độ O, khi đó T = a + b bằng

    Hướng dẫn:

    Xét phương trình hoành độ: \frac{3x +
2}{x + 2} = ax + 2b - 4\ ;\ x eq - 2.

    \Leftrightarrow ax^{2} + (2a + 2b - 7)x
- 10 = 0\ (*).

    Đường thẳng d cắt ( C) tại hai điểm phân biệt A, B khi phương trình (*) có hai nghiệm phân biệt\Leftrightarrow
\left\{ \begin{matrix}
a eq 0 \\
(2a + 2b - 7)^{2} - 4a(4b - 10) > 0 \\
4 eq 0\  \\
\end{matrix} ight.\ \ (2*)

    Gọi A\left( x_{1};ax_{1} + 2b - 4
ight);\ B\left( x_{2};ax_{2} + 2b - 4 ight).

    Do A, B đối xứng nhau qua gốc O nên \left\{ \begin{matrix}
x_{1} + x_{2} = 0 \\
4b - 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + x_{2} = 0 \\
b = 2 \\
\end{matrix} ight.

    Theo Viét của phương trình (*) ta có x_{1} + x_{2} = \frac{7 - 2a -
2b}{a}.

    \Rightarrow \frac{7 - 2a - 2b}{a} = 0
\Leftrightarrow 7 - 2a - 2b = 0 \Rightarrow a =
\frac{3}{2}.

    Thay \left\{ \begin{matrix}
a = \frac{3}{2} \\
b = 2 \\
\end{matrix} ight. vào điều kiện (2*) tháy thỏa mãn.

    Vậy a + b = \frac{7}{2}.

  • Câu 18: Vận dụng
    Tìm m để AB đạt giá trị nhỏ nhất

    Tìm m để đường thẳng y = 2x + m cắt đồ thị hàm số y = \frac{x + 3}{x + 1} tại hai điểm A,\ B sao cho độ dài AB là nhỏ nhất.

    Hướng dẫn:

    Gọi hàm số y = \frac{x + 3}{x +
1} có đồ thị là (C) và đường thẳng y = 2x + m có đồ thị là (d).

    Xét phương trình hoành độ giao điểm của (C)(d): \frac{x
+ 3}{x + 1} = 2x + m,\ \ \forall x eq - 1.

    \Leftrightarrow x + 3 = 2x^{2} + 2x + mx
+ m\ \ \  \Leftrightarrow 2x^{2} + (m + 1)x + m - 3 = 0,\ \ \forall x
eq 1\ \ \ \ (1)

    Để (d) cắt (C) tại hai điểm A,B\ \  \LeftrightarrowPhương trình (1) có hai nghiệm phân biệt khác - 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
g( - 1) eq 0 \\
\end{matrix} ight. với g(x) =
2x^{2} + (m + 1)x + m - 3

    \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - 4.2.(m - 3) > 0 \\
- 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 6m + 25 > 0,\ \
\forall m.

    Giả sử hoành độ giao điểm của (C)(d)x_{1},x_{2}.

    Khi đó A\left( x_{1};2x_{1} + m
ight)B\left( x_{2};2x_{2} + m ight).

    Theo hệ thức Vi-ét ta có x_{1} + x_{2} =
- \frac{m + 1}{2};\ \ \ x_{1}x_{2} = \frac{m - 3}{2}

    Ta có AB = \sqrt{\left( x_{2} - x_{1}
ight)^{2} + \left( 2x_{2} - 2x_{1} ight)^{2}}= \sqrt{5\left( x_{1}
- x_{2} ight)^{2}} = \sqrt{5\left( x_{1} + x_{2} ight)^{2} -
20x_{1}x_{2}}

    AB = \sqrt{5.\left( \frac{m + 1}{2}
ight)^{2} - 20.\frac{m - 3}{2}}

    = \sqrt{\frac{5m^{2} + 10m + 5 - 40m +
120}{4}}

    = \frac{\sqrt{5(m - 3)^{2} + 80}}{2}
\geq 2\sqrt{5}.

    Dấu " = " xảy ra khi và chỉ khi m = 3.

    Vậy m = 3 thì độ dài AB đạt giá trị nhỏ nhất bằng 2\sqrt{5}.

  • Câu 19: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số f(x), hàm số f'(x) liên tục trên \mathbb{R} và có đồ thị như sau:

    Bất phương trình f(x) < x + m (với m là một số thực) nghiệm đúng với mọi x \in ( - 1;0) khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    f(x) < x + m \Leftrightarrow f(x) - x< m

    Xét hàm số g(x) = f(x) - x ta có:

    g'(x) = f'(x) - 1. Với \forall x \in ( - 1;0) thì - 1 < f'(x) < 1

    Từ đó g'(x) = f'(x) - 1 <0 nên hàm số nghịch biến trên ( -1;0)

    Suy ra g(x) = f(x) - x < f( - 1) +1. Yêu cầu bài toán tương đương với m \geq f( - 1) + 1.

  • Câu 20: Vận dụng cao
    Tìm các giá trị nguyên m thỏa mãn yêu cầu

    Cho hàm y = f(x) là hàm đa thức bậc bốn. Biết rằng f(0) = 0, f( - 3) = f\left( \frac{3}{2} \right) = -
\frac{19}{4} và đồ thị hàm số y =
f'(x) có dạng như hình vẽ.

    Xét hàm số g(x) = \left| 4f(x) + 2x^{2}
\right| - 2m^{2} + 1 với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên m \in ( - 50;50) để phương trình g(x) = 1 có đúng hai nghiệm thực?

    Hướng dẫn:

    Ta có \left| 4f(x) + 2x^{2} ight| -
2m^{2} + 1 = 1

    \Leftrightarrow \left| 4f(x) + 2x^{2}
ight| = 2m^{2}(1)

    Xét hàm số h(x) = 4f(x) +
2x^{2}, ta có h'(x) =
4\left\lbrack f'(x) - ( - x) ightbrack.

    Dựa vào đồ thị hàm số f'(x) và đường thẳng y = - x.

    Ta thấy: h'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = 0 \\
x = \frac{3}{2} \\
\end{matrix} ight.

    h( - 3) = 4f( - 3) + 2( - 3)^{2} = -
1, h(0) = 0, h\left( \frac{3}{2} ight) = 4f\left( \frac{3}{2}
ight) + 2\left( \frac{3}{2} ight)^{2} = - \frac{29}{2}.

    Do đó ta có bảng biến thiên hàm số h(x) như sau

    Từ đó suy ra bảng biến thiên của hàm số \left| h(x) ight|như sau

    Do đó để phương trình (1)có đúng hai nghiệm thực thì 2m^{2} > \frac{29}{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{\sqrt{29}}{2} \\
m < - \frac{\sqrt{29}}{2} \\
\end{matrix} ight..

    m là số nguyên thuộc ( - 50;50) nên \left\lbrack \begin{matrix}
3 \leq m \leq 49 \\
- 49 \leq m \leq - 3 \\
\end{matrix} ight..

    Vậy có 94 số nguyên m thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo