Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2x^{2} có đồ thị (C), có bao nhiêu đường thẳng dcó đúng 3 điểm chung với đồ thị (C) và các điểm chung có hoành độ x_{1},x_{2},x_{3} thỏa mãn\ {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Hướng dẫn:

    Vì đường thẳng d cắt đồ thị hàm số (C) tại 3 điểm phân biệt nên đường thẳng dlà đường thẳng có hệ số góc dạng y = ax + b.

    Phương trình hoành độ giao điểm của d (C) là: x^{4}
- 2x^{2} = ax + b.

    Mà phương trình là phương trình bậc 4 nên phương trình muốn có 3 nghiệm phân biệt thì trong đó sẽ có 1 nghiệm kép gọi là x_{1}, hai nghiệm còn lại là x_{2},x_{3}.

    Suy ra đường thẳng dlà tiếp tuyến của đồ thị (C), không mất tính tổng quát giả sử đường thẳng dtiếp xúc với đồ thị hàm số (C)tại x_{1}.

    Gọi dlà tiếp tuyến của (C)tại điểm có hoành độ x_{1}, d cắt (C) tại 2 điểm phân biệt có hoành độ x_{2},x_{3}( eq x_{1}) thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    Ta có: d:y = (4{x_{1}}^{3} - 4x_{1})(x -
x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}.

    Phương trình hoành độ giao điểm của d(C)là:

    x^{4} - 2x^{2} = (4{x_{1}}^{3} -
4x_{1})(x - x_{1}) + {x_{1}}^{4} - 2{x_{1}}^{2}(1)

    Yêu cầu bài toán \Leftrightarrow
(1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3} + {x_{3}}^{3} = -
1.

    (1) \Leftrightarrow (x -
x_{1})^{2}(x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2) = 0\Leftrightarrow
\left\{ \begin{matrix}
x = x_{1} \\
f(x) = x^{2} + 2x_{1}x + 3{x_{1}}^{2} - 2 = 0 \\
\end{matrix} ight.

    Để phương trình (1) có 3 nghiệm phân biệt thỏa mãn {x_{1}}^{3} + {x_{2}}^{3}
+ {x_{3}}^{3} = - 1thì phương trình f(x) = 0 phải có 2 nghiệm phân biệt x_{2},x_{3} khác x_{1}và thỏa mãn định lí Vi – ét:

    \left\{ \begin{matrix}
x_{2} + x_{3} = - 2x_{1} \\
x_{2}.x_{3} = 3{x_{1}}^{2} - 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
\Delta' = {x_{1}}^{2} - 3{x_{1}}^{2} + 2 > 0 \\
{x_{1}}^{2} + 2{x_{1}}^{2} + 3{x_{1}}^{2} - 2 eq 0 \\
{x_{1}}^{3} + (x_{2} + x_{3})^{3} - 3x_{2}x_{3}(x_{2} + x_{3}) = - 1 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
- 1 < x_{1} < 1 \\
3{x_{1}}^{2} - 1 eq 0 \\
{x_{1}}^{3} + ( - 2x_{1})^{3} - 3(3{x_{1}}^{2} - 2).( - 2x_{1}) = - 1 \\
\end{matrix} ight.

     

    \Leftrightarrow x_{1} = \frac{- 11 +
\sqrt{165}}{22}.

    Vậy có đúng 1 đường thẳng thỏa mãn yêu cầu bài toán.

  • Câu 2: Vận dụng
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =f(x) có đồ thị của hàm số y =f'(x) như hình vẽ:

    Xác định khoảng đồng biến của hàm số y =f\left( |3 - x| ight)?

    Hướng dẫn:

    Ta có: y = f\left( |3 - x| ight) =\left\{ \begin{matrix}f(3 - x)\ \ khi\ x \leq 3 \\f(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    y' = \left\{ \begin{matrix}- f'(3 - x)\ \ khi\ x \leq 3 \\f'(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    Với x < 3 \Rightarrow y' = -f'(3 - x) > 0

    \Leftrightarrow f'(3 - x) < 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x < - 1 \\1 < 3 - x < 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 4 \\- 1 < x < 2 \\\end{matrix} ight.

    Kết hợp với điều kiện x < 3 ta có: - 1 < x < 2

    Với x > 3 \Rightarrow y' =f'(x - 3) > 0

    \Leftrightarrow f'(3 - x) > 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x > 4 \\- 1 < 3 - x < 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 7 \\2 < x < 4 \\\end{matrix} ight.

    Kết hợp với điều kiện x > 3 ta có: \left\lbrack \begin{matrix}x > 7 \\3 < x < 4 \\\end{matrix} ight.

    Vậy hàm số y = f\left( |3 - x|ight) đồng biến trên mỗi khoảng (- 1;2),(3;4),(7; + \infty)

  • Câu 3: Vận dụng
    Tìm các giá trị thực tham số m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số mđể đường thẳng y = mx - m + 1cắt đồ thị hàm số y = x^{3} - 3x^{2} + x + 2 tại ba điểm A,B,C phân biệt sao AB = BC

    Hướng dẫn:

    Ta có phương trình hoành độ giao điểm là: x^{3} - 3x^{2} + x + 2 = mx - m + 1
\Leftrightarrow x^{3} - 3x^{2} + x - mx + m + 1 = 0\ \ \ \
(1)

    \Leftrightarrow (x - 1)\left( x^{2} - 2x
- m - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} - 2x - m - 1 = 0 \\
\end{matrix} ight..

    Để đường thẳng cắt đồ thị hàm số tại ba điểm phân biệt thì phương trình x^{2} - 2x - m - 1 = 0có hai nghiệm phân biệt khác 1 \Leftrightarrow \left\{ \begin{matrix}
1 + m + 1 > 0 \\
1 - 2 - m - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m eq - 2 \\
\end{matrix} ight.\  \Leftrightarrow m > - 2.

    Với m > - 2 thì phương trình (1) có ba nghiệm phân biệt là 1,x_{1},x_{2} (x_{1},x_{2} là nghiệm của x^{2} - 2x - m - 1 = 0).

    \frac{x_{1} + x_{2}}{2} = 1 suy ra điểm có hoành độ x = 1luôn là trung điểm của hai điểm còn lại nên luôn có 3 điểm A,B,C thoả mãn AB = BC

    Vậy m > - 2

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Có bao nhiêu giá trị của m để đồ thị của hàm số y = \frac{x}{1 - x} cắt đường thẳng y = x - m tại hai điểm phân biệt A,B sao cho góc giữa hai đường thẳng OAOB bằng 60^{0}( với O là gốc tọa độ)?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    \frac{x}{1 - x} = x - m \Leftrightarrow
\left\{ \begin{matrix}
x eq 1 \\
x^{2} - mx + m = 0\ \ \ \ \ \ (*) \\
\end{matrix} ight.

    Để có hia điểm phân biệt A,B thì phương trình (*) phải có hai nghiệm phân biệt khác 1

    \left\{ \begin{matrix}
1 - m + m eq 0 \\
m^{2} - 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > 4 \\
m < 0 \\
\end{matrix} ight.

    Khi đó phương trình (*) có hai nghiệm phân biết x_{1},x_{2} thỏa mãn:

    \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}x_{2} = m \\
\end{matrix} ight.

    Giả sử A\left( x_{1};x_{1} - m
ight),B\left( x_{2};x_{2} - m ight), suy ra: \overrightarrow{OA}\left( x_{1};x_{1} - m
ight),\overrightarrow{OB}\left( x_{2};x_{2} - m ight)

    Theo giả thiết góc giữa hai đường thẳng OAOB bằng 60^{0} suy ra:

    \cos\left(
\overrightarrow{OA};\overrightarrow{OB} ight) = cos60^{0}

    \Leftrightarrow \frac{\left| x_{1}x_{2}
+ \left( x_{1} - m ight)\left( x_{2} - m ight)
ight|}{\sqrt{x_{1}^{2} + \left( x_{1} - m ight)^{2}}\sqrt{x_{2}^{2}
+ \left( x_{2} - m ight)^{2}}} = \frac{1}{2}

    \Leftrightarrow \frac{\left| 2x_{1}x_{2}- m\left( x_{1} + x_{2} ight) + m^{2}ight|}{\sqrt{x_{1}^{2}x_{2}^{2} + \left( x_{1}x_{2} - mx_{2}ight)^2 + x_{1}^{2}\left( x_{1}x_{2} - m ight)^{2} + \left\lbrack\left( x_{1} - m ight)\left( x_{2} - m ight) ightbrack^{2}}} =\frac{1}{2}

    \Leftrightarrow \frac{\left| 2m - m^{2}
+ m^{2} ight|}{\sqrt{m^{2} + \left( m - mx_{2} ight)^{2} + \left( m
- mx_{1} ight)^{2} + \left\lbrack x_{1}x_{2} - m\left( x_{1} + x_{2}
ight) + m^{2} ightbrack^{2}}} = \frac{1}{2}

    \Leftrightarrow \frac{|2m|}{\sqrt{m^{2}
+ \left( m - mx_{2} ight)^{2} + \left( m - mx_{1} ight)^{2} +
\left\lbrack m - m^{2} + m^{2} ightbrack^{2}}} =
\frac{1}{2}

    \Leftrightarrow \frac{2}{\sqrt{2 +
\left( 1 - x_{2} ight)^{2} + \left( 1 - x_{1} ight)^{2}}} =
\frac{1}{2}

    \Leftrightarrow 2 + \left( 1 - x_{2}
ight)^{2} + \left( 1 - x_{1} ight)^{2} = 16

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{2} - 2x_{1}x_{2} - 2\left( x_{1} + x_{2} ight) =
12

    \Leftrightarrow m^{2} - 4m - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 6 \\
m = - 2 \\
\end{matrix} ight.

  • Câu 5: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng
    Tìm tập hợp tham số m thỏa mãn điều kiện

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f\left( \sin x \right) = m có nghiệm thuộc khoảng (0;\pi)

    Hướng dẫn:

    Đặt t = \sin x \Rightarrow \forall x \in
(0;\pi) \Rightarrow t \in (0;1brack

    Vậy phương trình trở thành f(t) =
m.

    Dựa và đồ thị hàm số suy ra m \in \lbrack
- 1;1).

  • Câu 7: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số y = \frac{3x + 2}{x +
2},(C) và đường thẳng d:y = ax + 2b
- 4. Đường thẳng d cắt ( C ) tại A, B đối xứng nhau qua gốc tọa độ O, khi đó T = a + b bằng

    Hướng dẫn:

    Xét phương trình hoành độ: \frac{3x +
2}{x + 2} = ax + 2b - 4\ ;\ x eq - 2.

    \Leftrightarrow ax^{2} + (2a + 2b - 7)x
- 10 = 0\ (*).

    Đường thẳng d cắt ( C) tại hai điểm phân biệt A, B khi phương trình (*) có hai nghiệm phân biệt\Leftrightarrow
\left\{ \begin{matrix}
a eq 0 \\
(2a + 2b - 7)^{2} - 4a(4b - 10) > 0 \\
4 eq 0\  \\
\end{matrix} ight.\ \ (2*)

    Gọi A\left( x_{1};ax_{1} + 2b - 4
ight);\ B\left( x_{2};ax_{2} + 2b - 4 ight).

    Do A, B đối xứng nhau qua gốc O nên \left\{ \begin{matrix}
x_{1} + x_{2} = 0 \\
4b - 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + x_{2} = 0 \\
b = 2 \\
\end{matrix} ight.

    Theo Viét của phương trình (*) ta có x_{1} + x_{2} = \frac{7 - 2a -
2b}{a}.

    \Rightarrow \frac{7 - 2a - 2b}{a} = 0
\Leftrightarrow 7 - 2a - 2b = 0 \Rightarrow a =
\frac{3}{2}.

    Thay \left\{ \begin{matrix}
a = \frac{3}{2} \\
b = 2 \\
\end{matrix} ight. vào điều kiện (2*) tháy thỏa mãn.

    Vậy a + b = \frac{7}{2}.

  • Câu 8: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng cao
    Tính giá trị f(0)

    Cho hàm số bậc ba y = f(x) có đồ thị đi qua điểm A(1;1),B(2;4),C(3;9). Các đường thẳng AB,AC,BC lại cắt đồ thị lần lượt tại các điểm M,N,P (M khác AB, N khác AC, P khác BC. Biết rằng tổng các hoành độ của M,N,P bằng 5, giá trị của f(0)

    Hướng dẫn:

    Từ giả thuyết bài toán ta giả sử

    f(x) = a(x - 1)(x - 2)(x - 3) +
x^{2} (a eq 0)

    Ta có: AB:y = 3x - 2, AC:y = 4x - 3, BC:y = 5x - 6.

    Khi đó:

    Hoành độ của M là nghiệm của phương trình:

    a\left( x_{M} - 1 ight)\left( x_{M} - 2
ight)\left( x_{M} - 3 ight) + {x_{M}}^{2} = 3x_{M} - 2

    \Leftrightarrow a\left( x_{M} - 1
ight)\left( x_{M} - 2 ight)\left( x_{M} - 3 ight) + \left( x_{M} -
1 ight)\left( x_{M} - 2 ight) = 0

    \Leftrightarrow a\left( x_{M} - 3 ight)
+ 1 = 0 \Leftrightarrow x_{M} = 3 - \frac{1}{a}.

    Hoành độ của N là nghiệm của phương trình:

    a\left( x_{N} - 1 ight)\left( x_{N} -
2 ight)\left( x_{N} - 3 ight) + {x_{N}}^{2} = 4x_{N} -
3

    \Leftrightarrow a\left( x_{N} - 1
ight)\left( x_{N} - 2 ight)\left( x_{N} - 3 ight) + \left( x_{N} -
1 ight)\left( x_{N} - 3 ight) = 0

    \Leftrightarrow a\left( x_{N} - 2 ight)
+ 1 = 0 \Leftrightarrow x_{N} = 2 - \frac{1}{a}.

    Hoành độ của P là nghiệm của phương trình:

    a\left( x_{P} - 1 ight)\left( x_{P} - 2
ight)\left( x_{P} - 3 ight) + {x_{P}}^{2} = 5x_{P} - 6

    \Leftrightarrow a\left( x_{P} - 1
ight)\left( x_{P} - 2 ight)\left( x_{P} - 3 ight) + \left( x_{P} -
2 ight)\left( x_{P} - 3 ight) = 0

    \Leftrightarrow a\left( x_{P} - 1 ight)
+ 1 = 0 \Leftrightarrow x_{P} = 1 - \frac{1}{a}.

    Từ giả thuyết ta có; x_{M} + x_{N} +
x_{P} = 5 \Leftrightarrow 6 - \frac{3}{a} = 5 \Leftrightarrow a =
3.

    Do đó: f(x) = 3(x - 1)(x - 2)(x - 3) +
x^{2}

    f(0) = - 18.

  • Câu 10: Vận dụng cao
    Bất phương trình chưa tham số m nghiệm đúng

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Hướng dẫn:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 11: Vận dụng cao
    Tìm m để phương trình có 3 nghiệm thực phân biệt

    Cho hàm số f(x) = log_{3}x + 3^{x} -
3^{\frac{1}{x}}. Tổng bình phương các giá trị của tham số m để phương trình f\left( \frac{1}{4|x - m| + 3} \right) + f\left(
x^{2} - 4x + 7 \right) = 0 có đúng 3 nghiệm thực phân biệt bằng

    Hướng dẫn:

    Ta có f'(x) = \frac{1}{xln3} + 3^{x}
\cdot ln3 + \frac{1}{x^{2}} \cdot 3^{\frac{1}{x}} \cdot ln3 >
0,\forall x > 0

    \Rightarrow Hàm số y = f(x) đồng biến trên (0; + \infty)(1).

    Mặt khác f\left( \frac{1}{x} ight) =
log_{3}\frac{1}{x} + 3^{\frac{1}{x}} - 3^{x} = - \left( log_{3}x -
3^{\frac{1}{x}} + 3^{x} ight) = - f(x), khi đó

    f\left( \frac{1}{4|x - m| + 3} ight) +
f\left( x^{2} - 4x + 7 ight) = 0

    \Leftrightarrow - f(4|x - m| + 3) +
f\left( x^{2} - 4x + 7 ight) = 0

    \Leftrightarrow f\left( 4|x - m| + 3
ight) = f\left( x^{2} - 4x + 7 ight)\ \ (2).

    Từ (1),(2) \Rightarrow 4|x - m| + 3 =
x^{2} - 4x + 7

    \Leftrightarrow \left\lbrack
\begin{matrix}
4m = - x^{2} + 8x - 4 \\
4m = x^{2} + 4 \\
\end{matrix} ight..

    Ta có đồ thị sau:

    Theo yêu cầu bài toán tương đương \left\lbrack \begin{matrix}
4m = 4 \\
4m = 8 \\
4m = 12 \\
\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
m = 3 \\
\end{matrix} ight.\  ight.. Vậy 1^{2} + 2^{2} + 3^{2} = 14.

  • Câu 12: Vận dụng cao
    Tìm số giá trị nguyên của tham số m

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f^{2}\left( \cos x \right) +
(m - 2022)f\left( \cos x \right) + m - 2023 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn \lbrack
0;2\pi\rbrack

    Hướng dẫn:

    Ta có f^{2}\left( \cos x ight) + (m -
2022)f\left( \cos x ight) + m - 2023 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f\left( \cos x ight) = - 1 \\
f\left( \cos x ight) = 2023 - m \\
\end{matrix} ight. (1)

    * Với f\left( \cos x ight) = -
1

    Dựa vào đồ thị ta có f\left( \cos x
ight) = - 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos x = 0 \\
\cos x = x_{1};\left( x_{1} > 1 ight)(VN) \\
\end{matrix} ight.

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{\pi}{2};\frac{3\pi}{2}
ight\}

    * Với f\left( \cos x ight) = 2023 -
m

    Đặt t = \cos x\ \ \left( t \in \lbrack -
1;1brack ight)

    Với t \in ( - 1;1brack thì phương trình t = \cos x có hai nghiệm phân biệt thuộc \lbrack
0;2\pibrack.

    Với t = - 1 thì phương trình t = \cos x có một nghiệm thuộc \lbrack 0;2\pibrack

    Phương trình trở thành f(t) = 2023 -
m

    Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình f\left( \cos x ight) = 2023 - m có 4 nghiệm phân biệt, hay phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack

    Dựa vào đồ thị ta có để phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack thì - 1 < 2023 - m
\leq 1 \Leftrightarrow 2022 \leq m < 2024

    m nguyên nên m \in \left\{ 2022;2023 ight\}

    Vậy có 2 giá trị nguyên của m thỏa mãn.

  • Câu 13: Vận dụng
    Chọn khẳng định đúng

    Cho đồ thị hàm số (C):y = \frac{2x + 1}{x
+ 2}. Giả sử M(a;b) \in
(C) có khoảng cách đến đường thẳng d:y = 3x + 6 nhỏ nhất. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có: M\left( a;\frac{2a + 1}{a + 2}
ight);(a eq - 2)

    Khoảng cách từ M đến đường thẳng (d) bằng:

    d(M;d) = \dfrac{\left| 3a - \dfrac{2a +1}{a + 2} + 6 ight|}{\sqrt{3^{2} + 1}}= \frac{1}{\sqrt{10}}.\left| 3a+ 6 - \frac{2a + 1}{a + 2} ight|= \frac{1}{\sqrt{10}}.\left|\frac{3a^{2} + 10a + 11}{a + 2} ight|

    Xét hàm số f(a) = \frac{3a^{2} + 10a +
11}{a + 2};(a eq - 2)

    f'(a) = \frac{3\left( a^{2} + 4a + 3
ight)}{(a + 2)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = - 3 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy giá trị nhỏ nhất của hàm số \left|
f(a) ight| = 4 tại a = -
1

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b = - 2

  • Câu 14: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 15: Vận dụng
    Giá trị của biểu thức K

    Đồ thị (C) của hàm số y = \frac{{ax + 2}}{{cx + b}} có bảng biến thiên như hình vẽ.

    Giá trị của biểu thức K

    Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng y = 2x + 2018. Giá trị của biểu thức K = a + 2b + 3c là:

    Hướng dẫn:

    Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3

    => Hàm số có dạng y = \frac{{ - 3x + b}}{{x - 1}} \Rightarrow y' = \frac{{3 - b}}{{{{\left( {x - 1} ight)}^2}}} \Rightarrow y'\left( 0 ight) = 3 - b

    Do tiếp tuyến song song với đường thẳng

    => 3 – b = 2 => b = 1

    Vậy a = -3; b = 1; c = 1 => K = 2

  • Câu 16: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số f(x), hàm số f'(x) liên tục trên \mathbb{R} và có đồ thị như sau:

    Bất phương trình f(x) < x + m (với m là một số thực) nghiệm đúng với mọi x \in ( - 1;0) khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    f(x) < x + m \Leftrightarrow f(x) - x< m

    Xét hàm số g(x) = f(x) - x ta có:

    g'(x) = f'(x) - 1. Với \forall x \in ( - 1;0) thì - 1 < f'(x) < 1

    Từ đó g'(x) = f'(x) - 1 <0 nên hàm số nghịch biến trên ( -1;0)

    Suy ra g(x) = f(x) - x < f( - 1) +1. Yêu cầu bài toán tương đương với m \geq f( - 1) + 1.

  • Câu 17: Vận dụng
    Số nghiệm của phương trình

    Cho hàm số y = a{x^3} + b{x^2} + cx + d;\left( {a e 0} ight) có bảng biến thiên như hình vẽ dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình f\left( {f\left( x ight)} ight) = 0 là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = a\left( 1 ight)} \\   {f\left( x ight) = b\left( 2 ight)} \\   {f\left( x ight) = c\left( 3 ight)} \end{array}} ight.;\left( {a < b < c} ight)

    Khi đó \left\{ {\begin{array}{*{20}{c}}  {a < 2} \\   {b \in \left( { - 2;2} ight)} \\   {c > 2} \end{array}} ight. suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.

    => Phương trình f\left( {f\left( x ight)} ight) = 0 có 5 nghiệm

  • Câu 18: Vận dụng cao
    Tìm tất cả các giá trị tham số m

    Tìm tập hợp tất cả các giá trị của tham số m để đồ thị hai hàm số y = \left( 2x^{2} + 1 \right)\sqrt{x - 1}y = \frac{11}{3x - 4} - \frac{1}{2 - x} +
11 + m cắt nhau tại 2 điểm phân biệt?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    \left( 2x^{2} + 1 ight)\sqrt{x - 1} =
\frac{11}{3x - 4} - \frac{1}{2 - x} + 11 + m(*)

    Điều kiện: \left\{ \begin{matrix}
x - 1 \geq 0 \\
x eq \frac{4}{3} \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 1 \\
x eq \frac{4}{3} \\
x eq 2 \\
\end{matrix} ight.

    Ta có: (*) \Leftrightarrow \left( 2x^{2}
+ 1 ight)\sqrt{x - 1} - \frac{11}{3x - 4} + \frac{1}{2 - x} - 11 =
m

    Xét hàm số f(x) = \left( 2x^{2} + 1
ight)\sqrt{x - 1} - \frac{11}{3x - 4} + \frac{1}{2 - x} - 11 trên \lbrack 1;\  + \infty)\backslash\left\{
\frac{4}{3};\ 2 ight\}

    Nhận thấy, hàm số f(x) liên tục trên các khoảng \left\lbrack 1;\frac{4}{3}
ight),\ \left( \frac{4}{3};2 ight),\ (2\ ; + \infty)

    Ta có, f'(x) = \left( \left( 2x^{2} +
1 ight)\sqrt{x - 1} - \frac{11}{3x - 4} + \frac{1}{2 - x} - 11
ight)^{'}

    = 4x\sqrt{x - 1} + \left( 2x^{2} + 1
ight)\frac{1}{2\sqrt{x - 1}} + \frac{33}{(3x - 4)^{2}} + \frac{1}{(2 -
x)^{2}}

    = \frac{10x^{2} - 8x + 1}{2\sqrt{x - 1}}
+ \frac{33}{(3x - 4)^{2}} + \frac{1}{(2 - x)^{2}} > 0 với \forall x \in \lbrack 1;\  +
\infty)\backslash\left\{ \frac{4}{3};\ 2 ight\}

    Suy ra, hàm số f(x) đồng biến trên \lbrack 1;\  + \infty)\backslash\left\{
\frac{4}{3};\ 2 ight\}.

    Bảng biến thiên

    Từ bảng biến thiên ta suy ra đồ thị hai hàm số y = \left( 2x^{2} + 1 ight)\sqrt{x - 1}y = \frac{11}{3x - 4} - \frac{1}{2 - x} +
11 + m cắt nhau tại 2 điểm phân biệt khi m \in ( -
\infty;1).

  • Câu 19: Vận dụng cao
    Tính giá trị biểu thức

    Trong số các cặp số thực (a;b) để bất phương trình (x - 1)(x - a)\left(
x^{2} + x + b \right) \geq 0 nghiệm đúng với mọi x\mathbb{\in R}, tích ab nhỏ nhất bằng

    Hướng dẫn:

    Đặt f(x) = (x - 1)(x - a)\left( x^{2} + x
+ b ight)g(x) = (x - a)\left(
x^{2} + x + b ight)

    Giả sử x = 1 không phải là nghiệm của phương trình g(x) = (x - a)\left(
x^{2} + x + b ight) = 0 thì hàm số f(x) = (x - 1)(x - a)\left( x^{2} + x + b
ight) sẽ đổi dấu khi qua điểm x =
1, nghĩa là(x - 1)(x - a)\left(
x^{2} + x + b ight) \geq 0 không nghiệm đúng với mọi x\mathbb{\in R}.

    Do đó yêu cầu bài toán được thỏa mãn thì một điều kiện cần làg(x) = (x - a)\left( x^{2} + x + b ight) =
0 có nghiệm x = 1 suy ra hoặc \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\ \forall x\mathbb{\in R} \\
\end{matrix} ight. hoặc là phương trình x^{2} + x + b = 0 có hai nghiệm x = 1x =
a

    Trường hợp 1: \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\forall x \in R \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
1 > 0 \\
\Delta = 1 - 4b \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.

    Trường hợp 2: phương trình x^{2} + x + b
= 0 có hai nghiệm x = 1x = a

    Ta thay x = 1vào phương trình x^{2} + x + b = 01^{2} + 1 + b = 0 \Rightarrow b = - 2.

    Với b = - 2 có phương trình x^{2} + x + b = 0 \Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    x = a cũng là nghiệm của phương trình nên a = - 2.

    Trong trường hợp 1: \left\{
\begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.\  \Rightarrow ab \geq \frac{1}{4} suy ra tích ab nhỏ nhất khi ab = \frac{1}{4}

    Và với a = 1,b = \frac{1}{4}, tích ab = \frac{1}{4} thì bất phương trình đã cho tương đương với (x -
1)(x - 1)\left( x^{2} + x + \frac{1}{4} ight) \geq 0 \Leftrightarrow (x - 1)^{2}\left( x + \frac{1}{2}
ight)^{2} \geq 0 thỏa mãn với mọi x\mathbb{\in R} (nhận)

    Trong trường hợp 2: Tích ab = 4 >
\frac{1}{4}

    Vậy tích ab nhỏ nhất khi ab = \frac{1}{4}.

  • Câu 20: Vận dụng
    Tìm m để phương trình có 4 nghiệm

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \left| {f\left( {\cos x} ight)} ight| =  - 2m + 3 có bốn nghiệm thuộc đoạn \left[ {0;2\pi } ight] là:

    Tìm m để phương trình có 4 nghiệm

    Hướng dẫn:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Ta có: \left| {f\left( t ight)} ight| =  - 2m + 3\left( * ight);t \in \left[ { - 1;1} ight]

    Ta có đồ thị hình vẽ như sau:

    Tìm m để phương trình có 4 nghiệm

    Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn \left[ {0;2\pi } ight] khi phương trình (*) có hai nghiệm t \in \left[ { - 1;1} ight]

    \Leftrightarrow 0 < 2m + 3 \leqslant 1 \Leftrightarrow 1 \leqslant m < \frac{3}{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo