Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 4 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng cao
    Tính giá trị f(0)

    Cho hàm số bậc ba y = f(x) có đồ thị đi qua điểm A(1;1),B(2;4),C(3;9). Các đường thẳng AB,AC,BC lại cắt đồ thị lần lượt tại các điểm M,N,P (M khác AB, N khác AC, P khác BC. Biết rằng tổng các hoành độ của M,N,P bằng 5, giá trị của f(0)

    Hướng dẫn:

    Từ giả thuyết bài toán ta giả sử

    f(x) = a(x - 1)(x - 2)(x - 3) +
x^{2} (a eq 0)

    Ta có: AB:y = 3x - 2, AC:y = 4x - 3, BC:y = 5x - 6.

    Khi đó:

    Hoành độ của M là nghiệm của phương trình:

    a\left( x_{M} - 1 ight)\left( x_{M} - 2
ight)\left( x_{M} - 3 ight) + {x_{M}}^{2} = 3x_{M} - 2

    \Leftrightarrow a\left( x_{M} - 1
ight)\left( x_{M} - 2 ight)\left( x_{M} - 3 ight) + \left( x_{M} -
1 ight)\left( x_{M} - 2 ight) = 0

    \Leftrightarrow a\left( x_{M} - 3 ight)
+ 1 = 0 \Leftrightarrow x_{M} = 3 - \frac{1}{a}.

    Hoành độ của N là nghiệm của phương trình:

    a\left( x_{N} - 1 ight)\left( x_{N} -
2 ight)\left( x_{N} - 3 ight) + {x_{N}}^{2} = 4x_{N} -
3

    \Leftrightarrow a\left( x_{N} - 1
ight)\left( x_{N} - 2 ight)\left( x_{N} - 3 ight) + \left( x_{N} -
1 ight)\left( x_{N} - 3 ight) = 0

    \Leftrightarrow a\left( x_{N} - 2 ight)
+ 1 = 0 \Leftrightarrow x_{N} = 2 - \frac{1}{a}.

    Hoành độ của P là nghiệm của phương trình:

    a\left( x_{P} - 1 ight)\left( x_{P} - 2
ight)\left( x_{P} - 3 ight) + {x_{P}}^{2} = 5x_{P} - 6

    \Leftrightarrow a\left( x_{P} - 1
ight)\left( x_{P} - 2 ight)\left( x_{P} - 3 ight) + \left( x_{P} -
2 ight)\left( x_{P} - 3 ight) = 0

    \Leftrightarrow a\left( x_{P} - 1 ight)
+ 1 = 0 \Leftrightarrow x_{P} = 1 - \frac{1}{a}.

    Từ giả thuyết ta có; x_{M} + x_{N} +
x_{P} = 5 \Leftrightarrow 6 - \frac{3}{a} = 5 \Leftrightarrow a =
3.

    Do đó: f(x) = 3(x - 1)(x - 2)(x - 3) +
x^{2}

    f(0) = - 18.

  • Câu 3: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng
    Số nghiệm thực phân biệt của phương trình

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 5: Vận dụng
    Chọn đáp án đúng

    Tìm số giao điểm của đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x?

    Hướng dẫn:

    Cách 1: Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x \Leftrightarrow
\sqrt{x^{4} - 4} = x - 5

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - 4 = (x - 5)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - x^{2} + 10x - 29 = 0\ \ \ (*) \\
\end{matrix} ight.

    Do x \geq 5nên x^{4} - x^{2} = x^{2}(x^{2} - 1) > 010x - 29 > 0. Vì vậy (*) vô nghiệm

    Như vậy phương trình \sqrt{x^{4} - 4} + 5
= x vô nghiệm hay đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào.

    Cách 2:

    Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x. Ta có điều kiện xác định \left\lbrack \begin{matrix}
x \geq \sqrt{2} \\
x \leq - \sqrt{2} \\
\end{matrix} ight.

    Với điều kiện trên ta có \sqrt{x^{4} - 4}
+ 5 = x \Leftrightarrow \sqrt{x^{4} - 4} + 5 - x = 0

    Xét hàm số h(x) = \sqrt{x^{4} - 4} + 5 -
x. Ta có h'(x) =
\frac{2x^{3}}{\sqrt{x^{4} - 4}} - 1; h'(x) = 0 \Leftrightarrow 2x^{3} = \sqrt{x^{4}
- 4}

    Với x \geq \sqrt{2} ta có 2x^{3} > \sqrt{x^{4} - 4}. Với x \leq - \sqrt{2} ta có 2x^{3} < \sqrt{x^{4} - 4}

    Ta có Bảng biến thiên:

    Số nghiệm của phương trình\sqrt{x^{4} -
4} + 5 = x là số giao điểm của đồ thịy = h(x) = \sqrt{x^{4} - 4} + 5 - x và trục hoànhy = 0.

    Dựa vào BBT ta thấy phương trình \sqrt{x^{4} - 4} + 5 = x vô nghiệm hay đồ thị hàm số y = \sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào. 

  • Câu 6: Vận dụng
    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Cho hàm số y = f\left( x ight) có đồ thị như hình vẽ:

    Phương trình có tất cả bao nhiêu nghiệm phân biệt

    Hỏi phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 có tất cả bao nhiêu nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)?

    Hướng dẫn:

    Đặt t= x - 2;\left( {t >  - 2} ight)

    Phương trình \left| {f\left( {x - 2} ight) - 2} ight| = 1 tương đương

    \left| {f\left( t ight) - 2} ight| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( t ight) = 3} \\   {f\left( t ight) = 1} \end{array}} ight.

    Dựa vào đồ thị ta thấy phương trình có 6 nghiệm phân biệt t \in \left( { - 2; + \infty } ight)

    => Phương trình đã cho có 6 nghiệm phân biệt thuộc khoảng \left( {0; + \infty } ight)

  • Câu 7: Vận dụng cao
    Tính giá trị biểu thức

    Trong số các cặp số thực (a;b) để bất phương trình (x - 1)(x - a)\left(
x^{2} + x + b \right) \geq 0 nghiệm đúng với mọi x\mathbb{\in R}, tích ab nhỏ nhất bằng

    Hướng dẫn:

    Đặt f(x) = (x - 1)(x - a)\left( x^{2} + x
+ b ight)g(x) = (x - a)\left(
x^{2} + x + b ight)

    Giả sử x = 1 không phải là nghiệm của phương trình g(x) = (x - a)\left(
x^{2} + x + b ight) = 0 thì hàm số f(x) = (x - 1)(x - a)\left( x^{2} + x + b
ight) sẽ đổi dấu khi qua điểm x =
1, nghĩa là(x - 1)(x - a)\left(
x^{2} + x + b ight) \geq 0 không nghiệm đúng với mọi x\mathbb{\in R}.

    Do đó yêu cầu bài toán được thỏa mãn thì một điều kiện cần làg(x) = (x - a)\left( x^{2} + x + b ight) =
0 có nghiệm x = 1 suy ra hoặc \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\ \forall x\mathbb{\in R} \\
\end{matrix} ight. hoặc là phương trình x^{2} + x + b = 0 có hai nghiệm x = 1x =
a

    Trường hợp 1: \left\{ \begin{matrix}
a = 1 \\
x^{2} + x + b \geq 0,\forall x \in R \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
1 > 0 \\
\Delta = 1 - 4b \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.

    Trường hợp 2: phương trình x^{2} + x + b
= 0 có hai nghiệm x = 1x = a

    Ta thay x = 1vào phương trình x^{2} + x + b = 01^{2} + 1 + b = 0 \Rightarrow b = - 2.

    Với b = - 2 có phương trình x^{2} + x + b = 0 \Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    x = a cũng là nghiệm của phương trình nên a = - 2.

    Trong trường hợp 1: \left\{
\begin{matrix}
a = 1 \\
b \geq \frac{1}{4} \\
\end{matrix} ight.\  \Rightarrow ab \geq \frac{1}{4} suy ra tích ab nhỏ nhất khi ab = \frac{1}{4}

    Và với a = 1,b = \frac{1}{4}, tích ab = \frac{1}{4} thì bất phương trình đã cho tương đương với (x -
1)(x - 1)\left( x^{2} + x + \frac{1}{4} ight) \geq 0 \Leftrightarrow (x - 1)^{2}\left( x + \frac{1}{2}
ight)^{2} \geq 0 thỏa mãn với mọi x\mathbb{\in R} (nhận)

    Trong trường hợp 2: Tích ab = 4 >
\frac{1}{4}

    Vậy tích ab nhỏ nhất khi ab = \frac{1}{4}.

  • Câu 8: Vận dụng
    Xác định tính đúng sai của từng phương án

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Đáp án là:

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Sau t phút, khối lượng muối trong bể là 25.30.t = 750t (gam)

    Thể tích của lượng nước trong bể là 5000
+ 25t (lít).

    Vậy nồng độ muối sau t phút là: f(t) = \frac{750t}{5000 + 25t} =
\frac{30t}{200 + t} (gam/lít).

    Ta có \lim_{t ightarrow + \infty}f(t) =
\lim_{t ightarrow + \infty}\frac{30t}{200 + t} = \lim_{x ightarrow +
\infty}\left( 30 - \frac{6000}{200 + t} ight) = 30

    Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t):

    Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).

    Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.

    a) Đúng. b) Sai. c) Đúng. d) Đúng.

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng cao
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để đồ thị hàm sốy = (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m +
5 cắt trục hoành tại 4 điểm phân biệt có các hoành độ  thỏa mãn x_{\ ^{1}} < x_{\
^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}.

    Hướng dẫn:

    C1: Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là

    (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m + 5 =
0(1)

    Đặt t = x^{2} \geq 0 pt trở thành (m + 1)t^{2} - 2(2m - 3)t + 6m + 5 =
0(2)

    g(t) = (m + 1)t^{2} - 2(2m - 3)t + 6m +
5

    Để pt (1) có 4 nghiệm phân biệt thì pt (2) phải có 2 nghiệm dương phân biệt

    Hay \left\{ \begin{matrix}
m + 1 eq 0 \\
\Delta' > 0 \\
t_{1}.t_{2} > 0 \\
t_{1} + t_{2} > 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
(2m - 3)^{2} - (m + 1)(6m + 5) > 0 \\
\frac{6m + 5}{m + 1} > 0 \\
\frac{2m - 3}{m + 1} > 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
\frac{- 23 - \sqrt{561}}{4} < m < \frac{- 23 + \sqrt{561}}{4} \\
m < - 1 \vee m > - \frac{5}{6} \\
m < - 1 \vee m > \frac{3}{2} \\
\end{matrix} ight.\ (*)

    Để pt (1) có 4 nghiệm thỏa mãn x_{\ ^{1}}
< x_{\ ^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}

    thì pt (2) phải có 2 nghiệm thỏa 0 <
t_{\ ^{1}} < 1 < t_{\ ^{2}}

    \Leftrightarrow \left\{ \begin{matrix}
t_{1} - 1 < 0 \\
t_{2} - 1 > 0 \\
\end{matrix} ight.\Leftrightarrow \left( t_{1} - 1 ight)\left(
t_{2} - 1 ight) < 0 \Leftrightarrow t_{1}t_{2} - \left( t_{1} +
t_{2} ight) + 1 < 0

    \Leftrightarrow \frac{6m + 5}{m + 1} -
\frac{2(2m - 3)}{m + 1} + 1 < 0\Leftrightarrow \frac{3m + 12}{m + 1}
< 0 \Leftrightarrow - 4 < m < - 1

    Kết hợp với (*) ta có m \in ( - 4; -
1) thỏa yêu cầu bài toán.

    C2:

    Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là

    (m + 1)x^{4} - 2(2m - 3)x^{2} + 6m + 5 =
0(1)

    Đặt t = x^{2} \geq 0pt trở thành (m + 1)t^{2} - 2(2m - 3)t + 6m + 5 =
0(2)

    Để pt (1) có 4 nghiệm thỏa mãn x_{\ ^{1}}
< x_{\ ^{2}} < x_{\ ^{3}} < 1 < x_{\ ^{4}}

    thì pt (2) phải có 2 nghiệm thỏa 0 <
t_{\ ^{1}} < 1 < t_{\ ^{2}}

    Phương trình (2) \Leftrightarrow m =
\frac{- t^{2} - 6t - 5}{t^{2} - 4t + 6} (biểu thức t^{2} - 4t + 6 eq 0,\forall t )

    Xét hàm số f(t) = \frac{- t^{2} - 6t -
5}{t^{2} - 4t + 6}, với t \in (0; +
\infty)

    Ta có f(t) liên tục trên (0; + \infty) và có

    f'(t) = \frac{10t^{2} - 2t -
56}{\left( t^{2} - 4t + 6 ight)^{2}}

    f'(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = \frac{1 - \sqrt{561}}{10} < 0 \\
t = \frac{1 + \sqrt{561}}{10} > 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta thấy đường thẳng y = m cắt đồ thị hàm số f(t) = \frac{- t^{2} - 6t - 5}{t^{2} - 4t +
6} tại hai giao điểm có hoàng độ thỏa 0 < t_{\ ^{1}} < 1 < t_{\ ^{2}} khi - 4 < m < - 1.

  • Câu 11: Vận dụng cao
    Tìm số giá trị nguyên của tham số m

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f^{2}\left( \cos x \right) +
(m - 2022)f\left( \cos x \right) + m - 2023 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn \lbrack
0;2\pi\rbrack

    Hướng dẫn:

    Ta có f^{2}\left( \cos x ight) + (m -
2022)f\left( \cos x ight) + m - 2023 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f\left( \cos x ight) = - 1 \\
f\left( \cos x ight) = 2023 - m \\
\end{matrix} ight. (1)

    * Với f\left( \cos x ight) = -
1

    Dựa vào đồ thị ta có f\left( \cos x
ight) = - 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos x = 0 \\
\cos x = x_{1};\left( x_{1} > 1 ight)(VN) \\
\end{matrix} ight.

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{\pi}{2};\frac{3\pi}{2}
ight\}

    * Với f\left( \cos x ight) = 2023 -
m

    Đặt t = \cos x\ \ \left( t \in \lbrack -
1;1brack ight)

    Với t \in ( - 1;1brack thì phương trình t = \cos x có hai nghiệm phân biệt thuộc \lbrack
0;2\pibrack.

    Với t = - 1 thì phương trình t = \cos x có một nghiệm thuộc \lbrack 0;2\pibrack

    Phương trình trở thành f(t) = 2023 -
m

    Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình f\left( \cos x ight) = 2023 - m có 4 nghiệm phân biệt, hay phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack

    Dựa vào đồ thị ta có để phương trình f(t)
= 2023 - m có hai nghiệm t \in ( -
1;1brack thì - 1 < 2023 - m
\leq 1 \Leftrightarrow 2022 \leq m < 2024

    m nguyên nên m \in \left\{ 2022;2023 ight\}

    Vậy có 2 giá trị nguyên của m thỏa mãn.

  • Câu 12: Vận dụng
    Xác định các giá trị thực tham số m

    Cho hàm số y = x^{3} - 3mx^{2} +
2m. Có bao nhiêu giá trị của tham số thực m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt có hoành độ lập thành cấp số cộng?

    Hướng dẫn:

    Phương trình hoành độ giao điểm: x^{3} -
3mx^{2} + 2m = 0 (*)

    Phương trình ax^{3} + bx^{2} + cx + d =
0 có ba nghiệm lập thành cấp số cộng

    \overset{}{ightarrow} Phương trình có một nghiệm x_{0} = -
\frac{b}{3a}.

    Suy ra phương trình (*) có một nghiệm x = m.

    Thay x = m vào phương trình (*), ta được m^{3} - 3m\ .\ m^{2} + 2m = 0 \Leftrightarrow -
2m^{3} + 2m = 0 \leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 0 \\
\end{matrix} ight..

    Thử lại:

    Với m = 1, ta được x^{3} - 3x^{2} + 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = 1 - \sqrt{3} \\
x = 1 \\
x = 1 + \sqrt{3} \\
\end{matrix} ight..

    Do đó m = 1 thỏa mãn.

    Với m = - 1, ta được x^{3} + 3x^{2} - 2 = 0 \leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 + \sqrt{3} \\
x = - 1 \\
x = - 1 - \sqrt{3} \\
\end{matrix} ight..

    Do đó m = - 1 thỏa mãn.

    Với m = 0, ta được x^{3} = 0 \Leftrightarrow x = 0.

    Do đó m = 0 không thỏa mãn.

    Vậy m = \pm 1 là hai giá trị cần tìm.

  • Câu 13: Vận dụng
    Tìm giá trị lớn nhất của tham số m

    Giá trị lớn nhất của m để đường thẳng (d):y = x - m + 1 cắt đồ thị hàm số y = x^{3} + 2(m - 2)x^{2} + (8 - 5m)x
+ m - 5 tại 3 điểm phân biệt có hoành độ x_{1},\ x_{2},\ x_{3} thỏa mãn điều kiện x_{1}^{2} + x_{2}^{2} + x_{3}^{2} =
20

    Hướng dẫn:

    Hoành độ giao điểm của đường thẳng (d) và đồ thị hàm số là nghiệm của phương trình

    x^{3} + 2(m - 2)x^{2} + (8 - 5m)x + m -
5 = x - m + 1

    \Leftrightarrow (x - 2)\left\lbrack
x^{2} + (2m - 2)x - m + 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{3} = 2 \\
x^{2} + (2m - 2)x - m + 3 = 0(1) \\
\end{matrix} ight..

    Đường thẳng (d) cắt đồ thị hàm số tại 3 điểm phân biệt \Leftrightarrow phương trình (1) có hai nghiệm phân biệt x_{1};x_{2} khác 2 \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m - 1)^{2} + (m - 3) > 0 \\
4 + (2m - 2).2 - m + 3 eq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight.\  \\
m eq - 1 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight. (2).

    Khi đó, \left\{ \begin{matrix}
x_{1} + x_{2} = - (2m - 2) \\
x_{1}x_{2} = - m + 3 \\
\end{matrix} ight..

    Theo giả thiết x_{1}^{2} + x_{2}^{2} +
x_{3}^{2} = 20 \Leftrightarrow \left( x_{1} + x_{2} ight)^{2} -
2x_{1}x_{2} + x_{3}^{2} = 20

    \Leftrightarrow (2m - 2)^{2} + 2(m - 3) +
4 = 20

    \Leftrightarrow 2m^{2} - 3m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - \frac{3}{2} \\
\end{matrix} ight.(thỏa mãn (2)).

    Vậy giá trị lớn nhất của m thỏa mãn yêu cầu bài toán là 3.

  • Câu 14: Vận dụng
    Tính giá trị của biểu thức M

    Cho hàm số y = \frac{{ax + b}}{{cx + 1}}\left( C ight) có bảng biến thiên như hình vẽ:

    Tính giá trị của biểu thức M

    Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn {S_{OAB}} = 4. Tính giá trị của biểu thức M = ab + 2c?

    Hướng dẫn:

    Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2

    => Hàm số có dạng y = \frac{{2x + b}}{{x + 1}}

    => \left\{ {\begin{array}{*{20}{c}}  {\left( C ight) \cap Ox = A\left( {\frac{{ - b}}{2};0} ight)} \\   {\left( C ight) \cap Oy = B\left( {0;b} ight)} \end{array}} ight. \Rightarrow {S_{OAB}} = \frac{{{b^2}}}{2} = 4 \Rightarrow b =  \pm 4

    Ta có:

    \begin{matrix}  y' = \dfrac{{2 - b}}{{{{\left( {x + 1} ight)}^2}}} < 0 \Rightarrow b = 4 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2} \\   {b = 4} \\   {c = 1} \end{array} \Rightarrow M = ab + 2c = 10} ight. \hfill \\ \end{matrix}

  • Câu 15: Vận dụng cao
    Tìm các giá trị nguyên m thỏa mãn yêu cầu

    Cho hàm y = f(x) là hàm đa thức bậc bốn. Biết rằng f(0) = 0, f( - 3) = f\left( \frac{3}{2} \right) = -
\frac{19}{4} và đồ thị hàm số y =
f'(x) có dạng như hình vẽ.

    Xét hàm số g(x) = \left| 4f(x) + 2x^{2}
\right| - 2m^{2} + 1 với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên m \in ( - 50;50) để phương trình g(x) = 1 có đúng hai nghiệm thực?

    Hướng dẫn:

    Ta có \left| 4f(x) + 2x^{2} ight| -
2m^{2} + 1 = 1

    \Leftrightarrow \left| 4f(x) + 2x^{2}
ight| = 2m^{2}(1)

    Xét hàm số h(x) = 4f(x) +
2x^{2}, ta có h'(x) =
4\left\lbrack f'(x) - ( - x) ightbrack.

    Dựa vào đồ thị hàm số f'(x) và đường thẳng y = - x.

    Ta thấy: h'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = 0 \\
x = \frac{3}{2} \\
\end{matrix} ight.

    h( - 3) = 4f( - 3) + 2( - 3)^{2} = -
1, h(0) = 0, h\left( \frac{3}{2} ight) = 4f\left( \frac{3}{2}
ight) + 2\left( \frac{3}{2} ight)^{2} = - \frac{29}{2}.

    Do đó ta có bảng biến thiên hàm số h(x) như sau

    Từ đó suy ra bảng biến thiên của hàm số \left| h(x) ight|như sau

    Do đó để phương trình (1)có đúng hai nghiệm thực thì 2m^{2} > \frac{29}{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{\sqrt{29}}{2} \\
m < - \frac{\sqrt{29}}{2} \\
\end{matrix} ight..

    m là số nguyên thuộc ( - 50;50) nên \left\lbrack \begin{matrix}
3 \leq m \leq 49 \\
- 49 \leq m \leq - 3 \\
\end{matrix} ight..

    Vậy có 94 số nguyên m thỏa mãn.

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =f(x) có đồ thị của hàm số y =f'(x) như hình vẽ:

    Xác định khoảng đồng biến của hàm số y =f\left( |3 - x| ight)?

    Hướng dẫn:

    Ta có: y = f\left( |3 - x| ight) =\left\{ \begin{matrix}f(3 - x)\ \ khi\ x \leq 3 \\f(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    y' = \left\{ \begin{matrix}- f'(3 - x)\ \ khi\ x \leq 3 \\f'(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    Với x < 3 \Rightarrow y' = -f'(3 - x) > 0

    \Leftrightarrow f'(3 - x) < 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x < - 1 \\1 < 3 - x < 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 4 \\- 1 < x < 2 \\\end{matrix} ight.

    Kết hợp với điều kiện x < 3 ta có: - 1 < x < 2

    Với x > 3 \Rightarrow y' =f'(x - 3) > 0

    \Leftrightarrow f'(3 - x) > 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x > 4 \\- 1 < 3 - x < 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 7 \\2 < x < 4 \\\end{matrix} ight.

    Kết hợp với điều kiện x > 3 ta có: \left\lbrack \begin{matrix}x > 7 \\3 < x < 4 \\\end{matrix} ight.

    Vậy hàm số y = f\left( |3 - x|ight) đồng biến trên mỗi khoảng (- 1;2),(3;4),(7; + \infty)

  • Câu 19: Vận dụng cao
    Chọn đáp án đúng:

    Cho hàm số y = x^{4} -2(2m+1)x^{2} +4m^{2}  (C). Các giá trị của tham số thực m để đồ thị (C) cắt trục hoành tại 4 điểm phân biệt có hoành độ x1, x2, x3, x4 thoả mãn x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2}=6 là:

  • Câu 20: Vận dụng cao
    Chọn phương án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số nghiệm trên khoảng ( -
\pi;4\pi) của phương trình f\left(
2|cos2x| \right) = 1

    Hướng dẫn:

    Đặt t = 2|cos2x|.

    x \in ( - \pi;4\pi) nên t \in \lbrack 0;2brack

    Phương trình trở thành: f(t) =
1.

    Từ đồ thị hàm số ta suy ra phương trình f(t) = 1 có các nghiệm thuộc \lbrack 0;2brack\left\lbrack \begin{matrix}
t = 1 \\
t = 2 \\
\end{matrix} ight..

    Với t = 1 \Leftrightarrow |cos2x| =
\frac{1}{2} \Leftrightarrow
\left\lbrack \begin{matrix}
cos2x = \frac{1}{2} \\
cos2x = \frac{- 1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{\pm \pi}{6} + k\pi \\
x = \frac{\pm \pi}{3} + k\pi \\
\end{matrix} ight.

    x \in ( - \pi;2\pi) \Rightarrow
\left\lbrack \begin{matrix}
- \pi < \frac{\pi}{6} + k\pi < 4\pi \\
- \pi < \frac{- \pi}{6} + k\pi < 4\pi \\
- \pi < \frac{\pi}{3} + k\pi < 4\pi \\
- \pi < \frac{- \pi}{3} + k\pi < 4\pi \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
\frac{- 7}{6} < k < \frac{23}{6} \\
\frac{- 5}{6} < k < \frac{25}{6} \\
\frac{- 4}{3} < k < \frac{11}{3} \\
\frac{- 2}{3} < k < \frac{13}{3} \\
\end{matrix} ight.

    \Rightarrowphương trình có 20 nghiệm thuộc khoảng ( - \pi;4\pi).

    Với t = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
cos2x = 1 \\
cos2x = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = k\pi \\
x = \frac{\pi}{2} + k\pi \\
\end{matrix} ight.

    x \in ( - \pi;2\pi) \Rightarrow
\left\lbrack \begin{matrix}
- \pi < k\pi < 4\pi \\
- \pi < \frac{\pi}{2} + k\pi < 4\pi \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
- 1 < k < 4 \\
\frac{- 3}{2} < k < \frac{7}{2} \\
\end{matrix} ight.

    \Rightarrowphương trình có 9nghiệm thuộc khoảng ( - \pi;4\pi).

    Vậy phương trình đã cho có tất cả 29 nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo