Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm m nguyên thỏa mãn yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 2: Nhận biết
    Xét sự đúng sai của các khẳng định

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.

  • Câu 3: Thông hiểu
    Chọn đáp án thích hợp

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{3} - 3x^{2} - m^{2} + 5m = 0 có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Đặt f(x) = x^{3} - 3x^{2} - m^{2} +
5m

    Để x^{3} - 3x^{2} - m^{2} + 5m =
0 có ba nghiệm thực phân biệt thì f'(x) = 0 có ba nghiệm thực phân biệt x_{1};x_{2} thỏa mãn f\left( x_{1} ight).f\left( x_{2} ight) <
0

    Ta có: f'(x) = 3x^{2} - 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f(0) = - m^{2} + 5m \\
f(2) = - m^{2} + 5m - 4 \\
\end{matrix} ight..

    Khi đó f(0).f(2) = \left( - m^{2} + 5m
ight)\left( - m^{2} + 5m - 4 ight) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
0 < m < 1 \\
4 < m < 5 \\
\end{matrix} ight.

    Vậy không có giá trị nguyên của tham số m thỏa mãn.

  • Câu 4: Thông hiểu
    Định m để bất phương trình nghiệm đúng với mọi x

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và thỏa mãn f( - 1) = 1,\ \ f\left( - \frac{1}{e} \right) =
2. Hàm số f'(x) có đồ thị như hình vẽ. Bất phương trình f(x) <
\ln( - x) + x^{2} + m nghiệm đúng với mọi x \in \left( - 1; - \frac{1}{e} \right) khi và chỉ khi

    Hướng dẫn:

    Điều kiện: - x > 0 \Leftrightarrow x
< 0

    Bất phương trình đã cho tương đương với f(x) - \ln( - x) - x^{2} < m (*).

    Xét hàm số g(x) = f(x) - \ln( - x) -
x^{2} trên \left( - 1; -
\frac{1}{e} ight).

    Ta có g'(x) = f'(x) - \frac{1}{x}
- 2x. Với x \in \left( - 1; -
\frac{1}{e} ight) thì f'(x)
> 0; - \frac{1}{x} - 2x > 0 nên g'(x) > 0.

    Do đó hàm số g(x) đồng biến trên \left( - 1; - \frac{1}{e}
ight).

    Suy ra (*) nghiệm đúng với mọi x \in
\left( - 1; - \frac{1}{e} ight) khi và chỉ khi m \geq g\left( - \frac{1}{e} ight) = f\left( -
\frac{1}{e} ight) - \ln\frac{1}{e} - \frac{1}{e^{2}} = 3 -
\frac{1}{e^{2}}.

  • Câu 5: Nhận biết
    Tìm giá trị của tham số m

    Với giá trị nào của tham số m để đồ thị hàm số y = \frac{2x^{2} + 6mx + 4}{mx
+ 2} đi qua điểm A( -
1;4)?

    Hướng dẫn:

    Thay tọa độ điểm A( - 1;4) vào y = \frac{2x^{2} + 6mx + 4}{mx + 2} ta được:

    4 = \frac{2.( - 1)^{2} + 6m.( - 1) +
4}{m.( - 1) + 2} \Leftrightarrow 2m = - 2 \Leftrightarrow m = -
1

    Vậy giá trị m cần tìm là m = -
1.

  • Câu 6: Nhận biết
    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

    Hướng dẫn:

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

    Hướng dẫn:

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0nên chọn y = - x^{4} +
4x^{2}.

  • Câu 8: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Theo hình vẽ, hàm số đồng biến trên khoảng ( - 1;\ 1) và đạt cực tiểu tại điểm x_{o} = - 1. giá trị không âm trên khoảng đó.

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1\ ;\ 0brack bằng - 1.

  • Câu 9: Nhận biết
    Tìm hàm số

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 10: Thông hiểu
    Xét sự đúng sai của các nhận định

    Cho hàm số f(x) liên tục trên \lbrack - 1;5\rbrack và có đồ thị trên đoạn \lbrack - 1;5\rbrack như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây:

    a) Hàm số có ba điểm cực trị trên đoạn \lbrack 0;5\rbrack. Sai||Đúng

    b) Hàm số đồng biến trên khoảng ( -
1;2). Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn \lbrack - 1;5\rbrackbằng 1. Đúng||Sai

    d) Giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0;1\rbrackbằng 1. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;5\rbrack và có đồ thị trên đoạn \lbrack - 1;5\rbrack như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây:

    a) Hàm số có ba điểm cực trị trên đoạn \lbrack 0;5\rbrack. Sai||Đúng

    b) Hàm số đồng biến trên khoảng ( -
1;2). Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn \lbrack - 1;5\rbrackbằng 1. Đúng||Sai

    d) Giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0;1\rbrackbằng 1. Đúng||Sai

    Hàm số có hai điểm cực trị trên đoạn \lbrack 0;5\rbrack.

    Hàm số đồng biến trên khoảng ( - 1;0).

    Trên đoạn \lbrack -
1;5\rbrackhàm số f(x) có GTLN là 3; GTNN là -2.

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) bằng 1.

    Giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0;1\rbrackbằng 1.

    Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.

  • Câu 11: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên

    Hướng dẫn:

    Trong bốn hàm số đã cho thì chỉ có hàm số y = - x^{3} + 3x + 1 (hàm số đa thức bậc ba với hệ số a < 0) có dạng đồ thị như đường cong trong hình.

  • Câu 12: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Hướng dẫn:

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 13: Nhận biết
    Chọn hàm số tương ứng đồ thị

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số y = f(x):

    Hàm số y = f(x) là hàm số:

    Hướng dẫn:

    Đồ thị hàm số bậc ba có dạng y = ax^{3} +
bx^{2} + cx + d có hệ số a >
0 nên hàm số cần tìm là y = x^{3} -
3x + 2.

  • Câu 14: Nhận biết
    Tìm hàm số tương ứng bảng biến thiên

    Chọn hàm số tương ứng với bảng biến thiên sau?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - x^{4} + 2x^{2} + 1.

  • Câu 15: Nhận biết
    Tìm số giao điểm

    Số điểm giao điểm của đồ thị hàm số y =
x^{2} + 2x và trục hoành là:

    Hướng dẫn:

    Xét phương trình:

    x^{2} + 2x = 0 \Leftrightarrow x(x + 2)
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    Số điểm giao điểm của đồ thị hàm số và trục hoành là 2.

  • Câu 16: Nhận biết
    Chọn phương án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Dạng đồ thị hình bên là đồ thị hàm số trùng phương y = ax^{4} + bx^{2} + c có hệ số a < 0.

    Do đó, chỉ có đồ thị ở đáp án y = -
2x^{4} + 4x^{2} + 1 là thỏa mãn.

  • Câu 17: Nhận biết
    Tìm hàm số tương ứng với đồ thị đã cho

    Cho đồ thị hàm số sau:

    Xác định hàm số tương ứng với đồ thị đã cho?

    Hướng dẫn:

    Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc 4 có hệ số a < 0 nên hàm số tương ứng là y = - x^{4} + 2x^{2} + 2.

  • Câu 18: Nhận biết
    Chọn mệnh đề đúng

    Cho hình vẽ sau:

    Đường cong trong hình vẽ là đồ thị của hàm số có dạng y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 1)( - 1; + \infty) suy ra y' > 0;\forall x eq 1.

  • Câu 19: Nhận biết
    Chọn phương án thích hợp

    Biết rằng đường thẳng y = 4x + 5 cắt đồ thị hàm số y = x^{3} + 2x +
1 tại điểm duy nhất; kí hiệu (x_0;y_0) là tọa độ của điểm đó. Tìm y_0.

    Hướng dẫn:

    Phương trình hoành độ giao điểm là x^{3}
+ 2x + 1 = 4x + 5

    \Leftrightarrow x^{3} - 2x - 4 = 0 \Leftrightarrow x = 2

    Với x = 2 \Rightarrow y =
13.

    Vậy y_{0} = 13

  • Câu 20: Thông hiểu
    Chọn hàm số tương ứng đồ thị

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d} với a,b,c,dlà các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có :

    Dựa vào hình dáng của đồ thị ta được:

    + Điều kiện x eq 1

    + Đây là đồ thị của hàm nghịch biến

    Từ đó ta được y' < 0,\forall x
eq 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo