Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định số tọa độ nguyên thuộc đồ thị

    Đồ thị hàm số y = \frac{2x - 1}{3x +
4} có bao nhiêu điểm có tọa độ nguyên?

    Hướng dẫn:

    Ta có: y\mathbb{\in Z\Rightarrow}3y\in\mathbb{ Z }\Rightarrow\frac{6x - 3}{3x + 4} = 2 -\frac{11}{3x + 4}\mathbb{\in Z}

    \Rightarrow \frac{11}{3x + 4}\mathbb{\in
Z \Rightarrow}3x + 4 \in U(11)

    \Rightarrow \left\lbrack \begin{matrix}3x + 4 = 1 \\3x + 4 = - 1 \\3x + 4 = 11 \\3x + 4 = - 11 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = - 1 \Rightarrow y = \dfrac{1}{7}(L) \\x = - \dfrac{5}{3}(L) \\x = \dfrac{7}{3}(L) \\x = - 5 \Rightarrow y = 1(TM) \\\end{matrix} ight.

    Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.

  • Câu 2: Thông hiểu
    Tính tổng tất cả các tham số m

    Cho hàm số y = x^{3} - 3x^{2} + m -
1 với m là tham số. Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng:

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} - 3x^{2} + m - 1 = 0
\Leftrightarrow x^{3} - 3x^{2} + 1 = m

    Xét hàm số f(x) = - x^{3} + 3x^{2} +
1;\forall x\mathbb{\in R}

    Ta có: f'(x) = - 3x^{2} + 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi 1 < m <
5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3;4 ight\}

    Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng 9.

  • Câu 3: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình f(x) = - \frac{3}{2}

    Hướng dẫn:

    Từ đồ thị ta f(x) = -
\frac{3}{2}4 nghiệm phân biệt

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 6x với trục hoành là

    Hướng dẫn:

    Ta có hoành độ giao điểm của đồ thị hàm số y = - x^{3} + 6x với trục hoành là nghiệm của phương trình - x^{3} + 6x = 0 (*)

    \Leftrightarrow - x\left( x^{2} - 6
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{6} \\
\end{matrix} ight..

    Phương trình (*) có ba nghiệm phân biệt, do đó đồ thị hàm số y = - x^{3} + 6x cắt trục hoành tại ba điểm phân biệt.

  • Câu 5: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = x^{3} - 3x^{2} + mx +
1 có đồ thị (C) và đường thẳng d:y = 2x + 1. Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    x^{3} - 3x^{2} + mx + 1 = 2x +
1

    \Leftrightarrow x^{3} + 3x^{2} + (m -
2)x = 0

    \Leftrightarrow x\left( x^{2} - 3x + m -
2 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3x + m - 2 = 0 \\
\end{matrix} ight.

    Đặt f(x) = x^{2} - 3x + m -
2

    Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình x^{3} - 3x^{2} + (m - 2)x = 0 phải có 3 nghiệm phân biệt, khi đó f(x) =
0 phải có hai nghiệm phân biệt khác 0.

    Do đó \left\{ \begin{gathered}
  f\left( 0 ight) e 0 \hfill \\
  \Delta  > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m - 2 e 0 \hfill \\
  9 - 4\left( {m - 2} ight) > 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
  m e 2 \hfill \\
   - 4m >  - 17 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e 2 \hfill \\
  m < \frac{{17}}{4} \hfill \\ 
\end{gathered}  ight.

    Do m nguyên dương nên m \in \left\{ 1;3;4 ight\}.

    Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.

  • Câu 6: Nhận biết
    Số nghiệm thực của phương trình

    Cho hàm số bậc ba có đồ thị như hình vẽ:

    Số nghiệm thực của phương trình

    Số nghiệm thực của phương trình 2f\left( x ight) - 5 = 0 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2}

    Quan sát đồ thị ta thấy y = \frac{5}{2} cắt đồ thị hàm số y = f\left( x ight) tại ba điểm phân biệt

    => Phương trình 2f\left( x ight) - 5 = 0 có ba nghiệm thực phân biệt.

  • Câu 7: Nhận biết
    Tìm tung độ của giao điểm

    Đồ thị của hàm số y = - x^{4} - 3x^{2} +
1 cắt trục tung tại điểm có tung độ bao nhiêu

    Hướng dẫn:

    Trục tung có phương trình: x =
0.

    Thay x = 0vào y = - x^{4} - 3x^{2} + 1 được: y = 1.

  • Câu 8: Nhận biết
    Tìm số giao điểm của (C) với trục hoành

    Cho hàm số y = - 2x^{3} + 5x có đồ thị (C) Tìm số giao điểm của (C) và trục hoành.

    Hướng dẫn:

    Pthd của (C) và trục hoành là:

    - 2x^{3} + 5x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{\frac{5}{2}} \\
\end{matrix} ight.3 giao điểm.

    Chú ý: Ở bài toán này hoàn toàn có thể giải trực tiếp bằng Casio với phương trình - 2x^{3} + 5x = 0, nhưng chắc chắn thao tác bấm máy sẽ chậm hơn việc tính tay (thậm chí bài này không cần nháp khi mà kết quả đã hiện ra luôn khi ta đọc đề xong). Vì vậy, Casio là điều không cần thiết với câu hỏi này.

  • Câu 9: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A,B,C,D dưới đây. Hỏi hàm số đó là hàm số nào?

    Hướng dẫn:

    Từ đồ thị :\lim_{x ightarrow +
\infty}y = + \infty và đây là đồ thị hàm bậc ba nên ta chọn phương án y = x^{3} - 3x + 1.

  • Câu 11: Nhận biết
    Chọn đáp án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong hình bên

    Hướng dẫn:

    Qua đồ thị là hàm bậc 3 nên loại y =
x^{4} - 2x^{2} - 2, y = - x^{4} + 2x^{2} - 2

    Bên phải ngoài cùng của đồ thị đi xuống nên hệ số a < 0

    \Rightarrow Loại đáp án y = x^{3} - 3x^{2} - 2

  • Câu 12: Thông hiểu
    Tìm hàm số tương ứng với đồ thị

    Cho hình vẽ:

    Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?

    Hướng dẫn:

    Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số a > 0

    Mặt khác hàm số đạt cực tiểu tại x = 1;x= - 1 và giá trị cực tiểu y(1) = y(- 1) = - 2 nên hàm số cần tìm là y= x^{4} - 2x^{2} - 1.

  • Câu 13: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

    Hướng dẫn:

    Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là ( - 1\ ;\ 0).

  • Câu 14: Nhận biết
    Chọn kết luận đúng

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

    Hướng dẫn:

    Đồ thị trong hình vẽ là hàm số có dạng y= \frac{ax + b}{cx + d}

    Đồ thị hàm số có tiệm cận ngang là y =1 và tiệm cận đứng x = 2 nên hàm số cần tìm là y = \frac{x + 3}{x -2}.

  • Câu 15: Thông hiểu
    Tính giá trị của hàm số tại một điểm

    Biết rằng đồ thị hàm số y = f(x) = ax^{4}
+ bx^{2} + c có hai điểm cực trị là A(0;2)B(2; - 14). Khi đó giá trị của hàm số y = f(x) tại x = 3 bằng:

    Hướng dẫn:

    Ta có: y = f(x) = ax^{4} + bx^{2} + c
\Rightarrow y' = 4ax^{3} + 2bx

    Đồ thị hàm số y = f(x) = ax^{4} + bx^{2}
+ c có hai điểm cực trị là A(0;2)B(2; - 14) nên ta có

    \left\{ \begin{matrix}
y(0) = 2 \\
y(2) = - 14 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
16a + 4b + c = - 14 \\
32a + 4b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
b = - 8 \\
a = 1 \\
\end{matrix} ight.

    Suy ra y = f(x) = x^{4} - 8x^{2} + 2
\Rightarrow f(3) = 11.

  • Câu 16: Nhận biết
    Đồ thị của hàm số y = f(x)

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Hướng dẫn:

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

  • Câu 17: Nhận biết
    Tìm tọa độ tâm đối xứng

    Tọa độ tâm đối xứng của đồ thị hàm số y =
x^{3} - 3x + 2 là:

    Hướng dẫn:

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
\left\{ \begin{matrix}
y' = 3x^{2} - 3 \\
y'' = 6x \\
\end{matrix} ight.

    y'' = 0 \Leftrightarrow x = 0
\Rightarrow y = 2

    Tọa độ tâm đối xứng của đồ thị hàm số là (0;2)

  • Câu 18: Nhận biết
    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 19: Nhận biết
    Xác định hàm số

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 20: Nhận biết
    Xét sự đúng sai của các khẳng định

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo