Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?
Đường cong trong hình vẽ là đồ thị hàm số với
nên đồ thị đã cho là đồ thị của hàm số
.
Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?
Đường cong trong hình vẽ là đồ thị hàm số với
nên đồ thị đã cho là đồ thị của hàm số
.
Cho hàm số có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là .
Số giao điểm của đồ thị hàm số và đồ thị hàm số
là
Phương trình hoành độ giao điểm của hai đồ thị là
Vậy có tất cả 3 giao điểm cần tìm.
Cho hai hàm số và
. Giá trị của tham số
để đồ thị của hai hàm số có
giao điểm phân biệt và
giao điểm đó nằm trên đường tròn bán kính bằng
thuộc vào khoảng nào dưới đây?
Giả sử là số thực thỏa mãn bài toán.
Phương trình hoành độ giao điểm giữa hai đồ thị là
Gọi là một trong
giao điểm. Ta có
.
Từ và
suy ra
Hay
.
Rút gọn ta được .
Đây là phương trình đường tròn khi .
Với điều kiện thì
thuộc đường tròn có bán kính
.
Theo đề bài .
Thử lại.
Với thì phương trình
có
nghiệm. Do đó,
không thỏa mãn.
Với thì phương trình
có
nghiệm và cũng thỏa mãn
.
Vậy giá trị cần tìm là
.
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là
Ta thấy đường thẳng cắt đồ thị hàm số
tại 3 điểm phân biệt nên phương trình
có 3 nghiệm.
Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

Quan sát đồ thị hàm số ta thấy:
Hàm số có dạng hàm số bậc bốn trùng phương:
=> Loại đáp án B
Đồ thị có nhánh cuối của đồ thị đi lên
=> Hệ số a > 0
=> Loại đáp án A
Đồ thị hàm số cắt trục tung tại điểm O
=> c = 0
=> Loại đáp án C
Cho hàm số có đồ thị như sau:
Hỏi số nghiệm của phương trình bằng bao nhiêu?
Ta có:
Lại có đường thẳng nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số
tại 4 điểm nên phương trình
có hai nghiệm.
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?
Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Cho hàm số có đồ thị
Tìm số giao điểm của
và trục hoành.
Pthd của và trục hoành là:
có
giao điểm.
Chú ý: Ở bài toán này hoàn toàn có thể giải trực tiếp bằng Casio với phương trình , nhưng chắc chắn thao tác bấm máy sẽ chậm hơn việc tính tay (thậm chí bài này không cần nháp khi mà kết quả đã hiện ra luôn khi ta đọc đề xong). Vì vậy, Casio là điều không cần thiết với câu hỏi này.
Số giao điểm của đồ thị hàm số với trục hoành là
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
.
Số giao điểm của đồ thị hàm số với trục hoành bằng
.
Số giao điểm của đồ thị hàm số và đồ thị hàm số
Phương trình hoành độ giao điểm:
.
Vậy số giao điểm của 2 đồ thị là 3.
Chọn hàm số tương ứng với bảng biến thiên sau?
Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số có đồ thị
. Mệnh đề nào dưới đây đúng?
Dễ thấy phương trình có 1 nghiệm
cắt trục hoành tại một điểm.

Đường cong trong hình là đồ thị của hàm số nào dưới đây?
Hình vẽ trên là đồ thị của hàm số dạng Loại phương án
;
Ta thấy: Đồ thị có đường tiệm cận đứng là và đường tiệm cận ngang là
Phương án : Đồ thị có đường tiệm cận đứng là
loại
đúng.
Cho hàm số liên tục trên
và có bảng biến thiên như sau.

a) Hàm số đã cho nghịch biến trên khoảng Sai||Đúng
b) Giá trị nhỏ nhất của hàm số bằng .Đúng||Sai
c) Hàm số đạt cực đại tại Sai||Đúng
d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai
Cho hàm số liên tục trên
và có bảng biến thiên như sau.

a) Hàm số đã cho nghịch biến trên khoảng Sai||Đúng
b) Giá trị nhỏ nhất của hàm số bằng .Đúng||Sai
c) Hàm số đạt cực đại tại Sai||Đúng
d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai
Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.
Hàm số có đồ thị như sau:
Tìm điều kiện của tham số để phương trình
có
nghiệm dương?
Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng cắt đồ thị hàm số
tại một điểm có hoành độ dương
.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:
Đồ thị của hàm số thỏa mãn bài toán.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Dựa vào dáng đồ thị, ta chọn .
Cho hàm số có đồ thị như Hình 2.

a) Hàm số có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng
c) Hàm số nghịch biến trên khoảng . Sai||Đúng
d) . Đúng||Sai
Cho hàm số có đồ thị như Hình 2.

a) Hàm số có hai điểm cực trị là
và
. Đúng||Sai
b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng
c) Hàm số nghịch biến trên khoảng . Sai||Đúng
d) . Đúng||Sai
Dựa vào đồ thị ta thấy hàm số có hai điểm cực trị là
và
.
Giá trị lớn nhất của hàm số trên R không tồn tại.
Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng
Dựa vào đồ thị ta có
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: