Cho hình vẽ sau:
Đường cong trong hình vẽ là đồ thị của hàm số có dạng . Mệnh đề nào dưới đây đúng?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng và
suy ra
.
Cho hình vẽ sau:
Đường cong trong hình vẽ là đồ thị của hàm số có dạng . Mệnh đề nào dưới đây đúng?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng và
suy ra
.
Số điểm giao điểm của đồ thị hàm số và trục hoành là:
Xét phương trình:
Số điểm giao điểm của đồ thị hàm số và trục hoành là 2.
Cho hàm số bậc ba có đồ thị là đường cong trong hình vẽ bên.
Số nghiệm thực của phương trình là:
Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Dựa vào đồ thị ta có phương trình có ba nghiệm phân biệt.
Cho hàm số xác định và liên tục trên
và có bảng biến thiên như hình vẽ:
Tìm giá trị của tham số thực để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Cho hàm số có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt thì
Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.
Tìm điều kiện cần và đủ của tham số thực ủa tham số để đường thẳng
cắt đồ thị
tại ba điểm phân biệt là:
Phương trình hoành độ giao điểm của hai đồ thị:
(*) là phương trình hoành độ giao điểm của hai đồ thị
Xét hàm số có
Bảng biến thiên
Vậy theo yêu cầu bài toán
Đồ thị được cho dưới đây là đồ thị của hàm số nào?

Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Tọa độ tâm đối xứng của đồ thị hàm số là:
Ta có:
Tọa độ tâm đối xứng của đồ thị hàm số là
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ dưới đây

Hàm số y = f(x) là hàm số nào trong các hàm số sau:
Dựa vào bảng biến thiên ta thấy:
=> Hệ số a > 0
=> Loại đáp án B và C
Mặt khác hàm số đạt cực trị tại x = 0 và x = 2
=> Loại đáp án D
Đồ thị hàm số nào sau đây nhận điểm làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:
Đồ thị của hàm số thỏa mãn bài toán.
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Đồ thị hàm số là đồ thị của hàm số bậc ba nên loại và
Đồ thi hàm số bậc ba có hệ số nên
đúng.

Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình là
Kí hiệu bảng biến thiên như sau:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số và đường thẳng
.
Dựa vào bảng biến thiên, ta thấy đồ thị hàm số cắt đường thẳng
tại 2 điểm phân biệt.
Vậy phương trình có 2 nghiệm phân biệt.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên
Trong bốn hàm số đã cho thì chỉ có hàm số (hàm số đa thức bậc ba với hệ số
) có dạng đồ thị như đường cong trong hình.
Đồ thị hàm số cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Cho hàm số . Xét tính đúng sai của các nhận định dưới đây:
a) Đạo hàm của hàm số đã cho là . Sai||Đúng
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng và nhận giá trị dương trên các khoảng
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở hình 4:

Đúng||Sai
Cho hàm số . Xét tính đúng sai của các nhận định dưới đây:
a) Đạo hàm của hàm số đã cho là . Sai||Đúng
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng và nhận giá trị dương trên các khoảng
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho là:

Sai||Đúng
d) Đồ thị hàm số đã cho như ở hình 4:

Đúng||Sai
a) Đạo hàm của hàm số đã cho là nên mệnh đề sai.
b) ;
;
không xác định tại
.
nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng và nhận giá trị dương trên các khoảng
.
c) Bảng biến thiên của hàm số đã cho là:

Mệnh đề sai vì thấy
d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng
.
Đáp án: a) Sai b) Đúng c) Sai d) Đúng.
Cho hàm số có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là
Số nghiệm thực của phương trình bằng số giao điểm của đường thẳng
và có đồ thị hàm số
.
Ta thấy đường thẳng cắt đồ thị hàm số tại
điểm nên phương trình
có
nghiệm.
Số giao điểm của đồ thị hàm số và đồ thị hàm số
Phương trình hoành độ giao điểm:
.
Vậy số giao điểm của 2 đồ thị là 3.
Cho hình vẽ:
Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: