Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm số giao điểm của đồ thị hàm số với trục hoành

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 7xvới trục hoành là

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là: - x^{3} + 7x = 0

    \Leftrightarrow x\left( x^{2} - 7 ight)
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{7} \\
\end{matrix} ight..

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 7xvới trục hoành bằng 3.

  • Câu 2: Nhận biết
    Xác định hàm số tương ứng với hình vẽ

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 3: Nhận biết
    Chọn hàm số tương ứng đồ thị

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số y = f(x):

    Hàm số y = f(x) là hàm số:

    Hướng dẫn:

    Đồ thị hàm số bậc ba có dạng y = ax^{3} +
bx^{2} + cx + d có hệ số a >
0 nên hàm số cần tìm là y = x^{3} -
3x + 2.

  • Câu 4: Thông hiểu
    Chọn đáp án thích hợp

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{3} - 3x^{2} - m^{2} + 5m = 0 có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Đặt f(x) = x^{3} - 3x^{2} - m^{2} +
5m

    Để x^{3} - 3x^{2} - m^{2} + 5m =
0 có ba nghiệm thực phân biệt thì f'(x) = 0 có ba nghiệm thực phân biệt x_{1};x_{2} thỏa mãn f\left( x_{1} ight).f\left( x_{2} ight) <
0

    Ta có: f'(x) = 3x^{2} - 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f(0) = - m^{2} + 5m \\
f(2) = - m^{2} + 5m - 4 \\
\end{matrix} ight..

    Khi đó f(0).f(2) = \left( - m^{2} + 5m
ight)\left( - m^{2} + 5m - 4 ight) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
0 < m < 1 \\
4 < m < 5 \\
\end{matrix} ight.

    Vậy không có giá trị nguyên của tham số m thỏa mãn.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x)=1 là

    Hướng dẫn:

    Ta thấy đường thẳng y=1 cắt đồ thị hàm số y=f(x) tại 3 điểm phân biệt nên phương trình f(x)=1 có 3 nghiệm.

  • Câu 6: Thông hiểu
    Chọn phương án đúng

    Hình vẽ sau đây là đồ thị của một trong bốn hàm số cho ở các đáp án A,\ B,\ C,\ D. Hỏi đó là hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty, loại phương án y = - x^{3} + 2x + 1.

    Xét phương án y = x^{3} + 2x + 1y' = 3x^{2} + 2 > 0,\ \ \forall
x\mathbb{\in R}, hàm số không có cực tri, loại phương án y = x^{3} + 2x + 1.

    Xét phương án y = x^{3} - 2x^{2} +
1y' = 3x^{2} - 6xy' đổi dấu khi đi qua các điểm x = 0,\ \ x = 2 nên hàm số đạt cực tri tại x = 0x = 2, loại phương án y = x^{3} - 2x^{2} + 1.

    Vậy phương án đúng là y = x^{3} - 2x +
1.

  • Câu 7: Nhận biết
    Tìm tọa độ giao điểm

    Cho hàm số y = \frac{ax + b}{cx +
d} có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là

    Hướng dẫn:

    Từ đồ thị ta thấy đồ thị hàm số cắt trục tung tại điểm có tọa độ (0\ ;\  - 2).

  • Câu 8: Nhận biết
    Tìm số giao điểm của (C) với trục hoành

    Cho hàm số y = x^{3} - 3x có đồ thị (C). Tìm số giao điểm của (C) và trục hoành.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của (C) và trục hoành:x^{3} - 3x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight.

    Vậy số giao điểm của (C) và trục hoành là 3.

  • Câu 9: Nhận biết
    Tìm hàm số

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 10: Thông hiểu
    Xác định số tọa độ nguyên thuộc đồ thị

    Đồ thị hàm số y = \frac{2x - 1}{3x +
4} có bao nhiêu điểm có tọa độ nguyên?

    Hướng dẫn:

    Ta có: y\mathbb{\in Z\Rightarrow}3y\in\mathbb{ Z }\Rightarrow\frac{6x - 3}{3x + 4} = 2 -\frac{11}{3x + 4}\mathbb{\in Z}

    \Rightarrow \frac{11}{3x + 4}\mathbb{\in
Z \Rightarrow}3x + 4 \in U(11)

    \Rightarrow \left\lbrack \begin{matrix}3x + 4 = 1 \\3x + 4 = - 1 \\3x + 4 = 11 \\3x + 4 = - 11 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = - 1 \Rightarrow y = \dfrac{1}{7}(L) \\x = - \dfrac{5}{3}(L) \\x = \dfrac{7}{3}(L) \\x = - 5 \Rightarrow y = 1(TM) \\\end{matrix} ight.

    Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.

  • Câu 11: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Dựa trên hình dáng đồ thị, ta loại y = {x^3} - 3{x^2} - 2 và y = x^{4} - x^{2} -
2

    Mặt khác từ đồ thị, ta thấy \lim_{x
ightarrow + \infty}y = - \infty nên loại y = - x^{4} + x^{2} -
2

  • Câu 12: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x)có đồ thị như hình vẽ bên. Số nghiệm của phương trình f(x)
+ 1 = 0

    Hướng dẫn:

    Xét phương trình:f(x) + 1 =
0

    \Leftrightarrow f(x) = - 1.

    Số nghiệm của phương trình f(x) = -
1bằng số giao điểm của đồ thị hàm số y = f(x)với đường thẳng y = - 1.

    Dựa vào đồ thị hàm số y = f(x)suy ra số nghiệm của phương trình là 1.

  • Câu 13: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho trước

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Quan sát đồ thị ta thấy đây là đồ thị của hàm số y = ax^{4} + bx^{2} + c(a > 0).

    Vậy chọn y = x^{4} - 2x^{2} -
2

  • Câu 14: Nhận biết
    Chọn hàm số thích hợp

    Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

    Hướng dẫn:

    Đường cong trong hình vẽ là đồ thị hàm số y = ax^{3} + bx^{2} + cx + d với a > 0 nên đồ thị đã cho là đồ thị của hàm số y = x^{3} - 3x - 1.

  • Câu 15: Nhận biết
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đường cong có dạng của đồ thị hàm số bậc 3 với hệ số a
> 0 nên chỉ có hàm số y = x^{3}
- 3x thỏa yêu cầu bài toán.

  • Câu 16: Nhận biết
    Chọn hàm số tương ứng với đồ thị

    Quan sát hình vẽ sau:

    Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?

    Hướng dẫn:

    Đồ thị hàm số có tiệm cận ngang y =\frac{1}{2} và tiệm cận đứng là x =1 nên hàm số tương ứng là y =\frac{x + 1}{2x - 2}.

  • Câu 17: Thông hiểu
    Xét đúng sai của các khẳng định

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    a) Đạo hàm của hàm số đã cho là y' =
1 - \frac{4}{x^{2}} nên mệnh đề sai.

    b) y' = 1 - \frac{4}{x^{2}} > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x > 2 \\
x < - 2
\end{matrix} \right.\ ,x \neq 0 nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0)
\cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2) \cup (2;\  +
\infty).

    c) Bảng biến thiên của hàm số đã cho là:

    Mệnh đề sai vì thấy y( - 2) = - 4 \neq
4

    d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng

    .

    Đáp án: a) Sai b) Đúng c) Sai d) Đúng.

  • Câu 18: Nhận biết
    Chọn hàm số tương ứng với đồ thị

    Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số là hàm số bậc 4 với \left\{ \begin{matrix}
a < 0 \\
ab < 0 \\
\end{matrix} ight..

  • Câu 19: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số a < 0 nên đáp án y = - x^{3} + 3x^{2} - 1 đúng.

  • Câu 20: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Từ đồ thị hàm số y = f'(x), ta có bảng biến thiên

    a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).

    b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).

    c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.

    d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo