Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định hàm số tương ứng với đồ thị hàm số

    Đường cong trong hình vẽ dưới đây là của hàm số nào?

    Xác định hàm số tương ứng với đồ thị hàm số

    Hướng dẫn:

    Đường tiệm cận ngang: y = \frac{1}{2}

    Đường tiệm cận đứng: x = 1

     

  • Câu 2: Nhận biết
    Chọn phương án thích hợp

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số là đồ thị của hàm số bậc ba nên loại y = x^{4} - 3x^{2} - 1y = - x^{4} + x^{2} - 1

    Đồ thi hàm số bậc ba có hệ số a >
0 nên y = x^{3} - 3x - 1 đúng.

  • Câu 3: Nhận biết
    Đồ thị của hàm số y = f(x)

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Hướng dẫn:

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

  • Câu 4: Nhận biết
    Số nghiệm thực của phương trình

    Cho hàm số bậc ba có đồ thị như hình vẽ:

    Số nghiệm thực của phương trình

    Số nghiệm thực của phương trình 2f\left( x ight) - 5 = 0 là:

    Hướng dẫn:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2}

    Quan sát đồ thị ta thấy y = \frac{5}{2} cắt đồ thị hàm số y = f\left( x ight) tại ba điểm phân biệt

    => Phương trình 2f\left( x ight) - 5 = 0 có ba nghiệm thực phân biệt.

  • Câu 5: Nhận biết
    Chọn hàm số tương ứng với đồ thị

    Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số là hàm số bậc 4 với \left\{ \begin{matrix}
a < 0 \\
ab < 0 \\
\end{matrix} ight..

  • Câu 6: Nhận biết
    Xác định hàm số

    Đường cong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Đồ thị hình vẽ là đồ thị hàm số bậc ba có hệ số a > 0 nên chỉ có hàm số \mathbf{y
=}\mathbf{x}^{\mathbf{3}}\mathbf{-}\mathbf{3}\mathbf{x
+}\mathbf{2} thỏa mãn điều kiện trên.

  • Câu 7: Nhận biết
    Tìm số nghiệm thực của phương trình

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 8: Nhận biết
    Xác định hàm số y = f(x)

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)
    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 9: Nhận biết
    Chọn đáp án đúng:

    Giả sử hàm số y = ax^{4} + bx^{2} + c. Có đồ thị là hình bên. Khẳng định nào sau đây là khẳng định đúng?

    Trắc nghiệm Toán 12 bài 4

  • Câu 10: Nhận biết
    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Hướng dẫn:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 11: Nhận biết
    Xác định hàm số

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Hướng dẫn:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

  • Câu 12: Thông hiểu
    Tìm số nghiệm của phương trình

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2\rbrack và có đồ thị là đường cong như hình vẽ bên. Tìm số nghiệm của phương trình \left| f(x) \right| = 1 trên đoạn \lbrack - 2;2\rbrack.

    Hướng dẫn:

    Ta có số nghiệm của phương trình \left|
f(x) ight| = 1 là số giao điểm của đồ thị hàm số y = \left| f(x) ight| với đường thẳng y = 1 .

    Từ hình vẽ ta thấy đường thẳng y =
1 cắt đồ thị hàm số y = \left| f(x)
ight| tại 6 điểm. Vậy số nghiệm của phương trình \left| f(x) ight| = 1 là 6.

  • Câu 13: Thông hiểu
    Tìm điều kiện của tham số m

    Tìm tất cả các giá trị của tham số m để đường thẳng y = my =
- x^{3} + 6x^{2} tại ba điểm phân biệt?

    Hướng dẫn:

    Ta có: y = - x^{3} + 6x^{2} \Rightarrow
y' = - 3x^{2} + 12x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Để đường thẳng y = - x^{3} +
6x^{2}y = m tại ba điểm phân biệt thì 0 < m <
32.

  • Câu 14: Thông hiểu
    Định m để bất phương trình nghiệm đúng với mọi x

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và thỏa mãn f( - 1) = 1,\ \ f\left( - \frac{1}{e} \right) =
2. Hàm số f'(x) có đồ thị như hình vẽ. Bất phương trình f(x) <
\ln( - x) + x^{2} + m nghiệm đúng với mọi x \in \left( - 1; - \frac{1}{e} \right) khi và chỉ khi

    Hướng dẫn:

    Điều kiện: - x > 0 \Leftrightarrow x
< 0

    Bất phương trình đã cho tương đương với f(x) - \ln( - x) - x^{2} < m (*).

    Xét hàm số g(x) = f(x) - \ln( - x) -
x^{2} trên \left( - 1; -
\frac{1}{e} ight).

    Ta có g'(x) = f'(x) - \frac{1}{x}
- 2x. Với x \in \left( - 1; -
\frac{1}{e} ight) thì f'(x)
> 0; - \frac{1}{x} - 2x > 0 nên g'(x) > 0.

    Do đó hàm số g(x) đồng biến trên \left( - 1; - \frac{1}{e}
ight).

    Suy ra (*) nghiệm đúng với mọi x \in
\left( - 1; - \frac{1}{e} ight) khi và chỉ khi m \geq g\left( - \frac{1}{e} ight) = f\left( -
\frac{1}{e} ight) - \ln\frac{1}{e} - \frac{1}{e^{2}} = 3 -
\frac{1}{e^{2}}.

  • Câu 15: Nhận biết
    Xác định hàm số

    Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

    Hướng dẫn:

    Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số a > 0 nên hàm số cần tìm là y = x^{3} - 3x - 1.

  • Câu 16: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = \frac{1}{2}

    Hướng dẫn:

    Số nghiệm thực của phương trình f(x) =
\frac{1}{2} chính là số giao điểm của đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2}

    Dựa vào hình trên ta thấy đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2} có 2 giao điểm.

    Vậy phương trình f(x) =
\frac{1}{2} có hai nghiệm.

  • Câu 17: Nhận biết
    Tìm hàm số thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Hướng dẫn:

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 18: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = mx^{4} + (m - 1)x^{2} +
1, m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có ba điểm cực trị khi và chỉ 0 < m < 1. Đúng||Sai

    b) Hàm số có hai điểm cực trị khi m = 0. Sai|| Đúng

    c) Hàm số có ba điểm cực trị khi và chỉ 0 ≤ m ≤ 1. Sai|| Đúng

    d) Hàm số có một điểm cực trị khi . Đúng||Sai

    Đáp án là:

    Cho hàm số y = mx^{4} + (m - 1)x^{2} +
1, m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có ba điểm cực trị khi và chỉ 0 < m < 1. Đúng||Sai

    b) Hàm số có hai điểm cực trị khi m = 0. Sai|| Đúng

    c) Hàm số có ba điểm cực trị khi và chỉ 0 ≤ m ≤ 1. Sai|| Đúng

    d) Hàm số có một điểm cực trị khi . Đúng||Sai

    Nếu m = 0 thì hàm số đã cho trở thànhy =
- x^{2} + 1.

    Đây là hàm số đa thức bậc hai nên có 1 điểm cực trị.

    Nếu m eq 0 thì hàm số đã cho là hàm số trùng phương có:

    y' = 4mx^{3} +
2(m - 1)x = 2x\left( 2mx^{2} + m - 1 ight).

    Ta có y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2mx^{2} + m - 1 = 0(*) \\
\end{matrix} ight.

    Hàm số đã cho có ba điểm cực trị khi và chỉ khi phương trình (∗) có hai nghiệm phân biệt khác 0.

    Điều kiện tương đương là:

    \left\{ \begin{matrix}
m eq 0 \\
m(m - 1) < 0 \\
2m.0^{2} + m - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
0 < m < 1 \\
m eq 1 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 1

  • Câu 19: Nhận biết
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Dựa trên hình dáng đồ thị, ta loại y = {x^3} - 3{x^2} - 2 và y = x^{4} - x^{2} -
2

    Mặt khác từ đồ thị, ta thấy \lim_{x
ightarrow + \infty}y = - \infty nên loại y = - x^{4} + x^{2} -
2

  • Câu 20: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y =  - {x^4} + b{x^2} + c có bảng biến thiên như hình vẽ.

    Tính giá trị của biểu thức

    Tính giá trị của biểu thức H = 2c + b

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y\left( 0 ight) = 2 \Rightarrow c =  - 3 \hfill \\   \Rightarrow y =  - {x^4} + b{x^2} - 3 \hfill \\ \end{matrix}

    Mặt khác

    \begin{matrix}  f\left( 1 ight) =  - 2 \hfill \\   \Rightarrow  - 1 + b + c =  - 2 \hfill \\   \Rightarrow b + c =  - 1 \Rightarrow b = 2 \hfill \\   \Rightarrow 2c + b =  - 4 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo