Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz. Mặt phẳng (P) là - x + 3z - 2 = 0 có phương trình song song với:

    Hướng dẫn:

    Mặt phẳng (P) là - x + 3z - 2 =
0 có phương trình song song với trục Oy.

  • Câu 2: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Hướng dẫn:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 3: Nhận biết
    Tìm điều kiện để hai mặt phẳng song song

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x - my - z + 7 = 0,(Q):6x + 5y - 2z - 4 =
0. Xác định m để hai mặt phẳng (P)(Q) song song với nhau?

    Hướng dẫn:

    Hai mặt phẳng đã cho song song với nhau khi và chỉ khi

    Tập xác định \frac{3}{6} = \frac{- m}{5}
= \frac{- 1}{- 2} eq \frac{7}{- 4}

    Vậy m = - \frac{5}{2} thì hai mặt phẳng (P);(Q) song song với nhau.

  • Câu 4: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2; - 1; - 3) và mặt phẳng (P):3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là:

    Hướng dẫn:

    Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là \overrightarrow{n} = (3; -
2;4)

    Phương trình mặt phẳng (Q) là:

    3(x - 2) - 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow 3x - 2y + 4z + 4 =
0

  • Câu 5: Thông hiểu
    Tìm điểm không thuộc mặt phẳng (Q)

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 1;2;1) và mặt phẳng (P):2x - y + z - 3 = 0. Gọi (Q) là mặt phẳng đi qua A và song song với mặt phẳng (P). Điểm nào sau đây không nằm trên mặt phẳng (Q)?

    Hướng dẫn:

    Phương trình mặt phẳng (Q)đi qua A và song song với mặt phẳng (P) có dạng

    (Q):2x - y + z + 3 = 0

    Thay tọa độ các đáp án vào phương trình mặt phẳng (Q) ta có 3 điểm K;I;M thoả mãn, còn điểm N không thoả mãn.

  • Câu 6: Thông hiểu
    Tìm m để hai mặt phẳng song song

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + 3y - z - 1 = 0(\beta):4x + 6y - mz - 2 = 0. Tìm m để hai mặt phẳng (\alpha)(\beta) song song với nhau.

    Hướng dẫn:

    Mặt phẳng (\alpha) có vectơ pháp tuyến \overrightarrow{n_{1}} = (2;3; -
1)

    Mặt phẳng (\beta) có vectơ pháp tuyến \overrightarrow{n_{2}} = (4;6; -
m)

    Để (\alpha)//(\beta) thì \frac{2}{4} = \frac{3}{6} = \frac{- 1}{- m} eq
\frac{- 1}{- 2}

    Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 7: Thông hiểu
    Tính khoảng cách giữa hai mặt phẳng

    Trong không gian Oxyz khoảng cách giữa hai mặt phẳng (P):x + 2y + 2z - 10
= 0(Q):x + 2y + 2z - 3 =
0 bằng:

    Hướng dẫn:

    Dựa vào phương trình (P);(Q) có vectơ pháp tuyến là \overrightarrow{n} =
(1;2;2) nên (P)//(Q)

    Ta có: \left\{ \begin{matrix}\left| \overrightarrow{n} ight| = \sqrt{1^{2} + 2^{2} + 2^{2}} = 3 \\d\left( O;(P) ight) = \dfrac{10}{3} \\d\left( O;(Q) ight) = \dfrac{3}{3} = 1 \\\end{matrix} ight. suy ra d\left( (P);(Q) ight) = d\left( O;(P) ight) -
d\left( O;(Q) ight) = \frac{7}{3}

  • Câu 8: Thông hiểu
    Chọn kết quả đúng

    Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P),(Q),(R) (như hình vẽ) của tòa nhà lần lượt có phương trình: (P):x + 2y - 2z + 1 = 0, (Q):2x + y + 2z - 3 = 0,(R):2x + 4y - 4z - 19 = 0.

    Tính khoảng giữa hai bức tường (P)(R) của tòa nhà.

    Hướng dẫn:

    Trước hết thực hiện kiểm tra tính song song hoặc vuông góc giữa các bức tường (P),(Q),(R) của tòa nhà.

    (P):x + 2y - 2z + 1 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{P} =
(1;2; - 2)

    (Q):2x + y + 2z - 3 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{Q} =
(2;1;2)

    (R):2x + 4y - 4z - 19 = 0. có vectơ pháp tuyến là {\overrightarrow{n}}_{R}
= (2;4; - 4)

    Ta có {\overrightarrow{n}}_{R} = (2;4; -
4) = 2(1;2; - 2) \Rightarrow {\overrightarrow{n}}_{R} =
2{\overrightarrow{n}}_{P} nên hai bức tường (P)(R)song song nhau

    {\overrightarrow{n}}_{P}.{\overrightarrow{n}}_{Q}
= 1.2 + 2.1 + ( - 2).2 = 0 \Rightarrow
{\overrightarrow{n}}_{P}\bot{\overrightarrow{n}}_{Q} nên bức tường (Q) vuông góc với hai bức tường (P)(R),

    Chọn điểm M( - 1;0;0) \in
(P)

    Do hai bức tường (P)(R)song song nhau nên:

    d\left( (P),(R) \right) = d\left( M,(R)
\right)= \frac{\left| 2.( - 1) + 4.0 - 4.0 - 19
\right|}{\sqrt{4 + 16 + 16}} = \frac{21}{6} = 3,5m

  • Câu 9: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (\alpha) đi qua điểm M(5;4;3) và cắt các tia Ox,Oy,Oz các đoạn bằng nhau có phương trình là:

    Hướng dẫn:

    Gọi A(a;0;0),\ B(0;a;0),\ C(0;0;a)(a \neq
0)là giao điểm của mặt phẳng (\alpha) và các tia Ox,Oy,Oz.

    Phương trình mặt phẳng (\alpha)qua A, B, C là: \frac{x}{a} + \frac{y}{a} + \frac{z}{a} =
1.

    Mặt phẳng (\alpha) qua điểm M(5;4;3) \Rightarrow a = 12

    Ta có \frac{x}{12} + \frac{y}{12} +
\frac{z}{12} = 1 \Leftrightarrow x + y + z - 12 = 0

  • Câu 10: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x - 3y + 2z - 1 = 0,(Q):x - z + 2 =0. Mặt phẳng (\alpha) vuông góc với cả (P)(Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của mặt phẳng (\alpha) là:

    Hướng dẫn:

    Ta có: (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1; - 3;2), (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} =
(1;0; - 1).

    Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{n_{Q}} ightbrack = (3;3;3) =
3(1;1;1)

    Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).

    Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến \overrightarrow{n_{(\alpha)}} = (1;1;1) nên (α) có phương trình x + y + z - 3 =
0.

  • Câu 11: Thông hiểu
    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Hướng dẫn:

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 12: Thông hiểu
    Viết phương trình mặt phẳng thỏa mãn điều kiện

    Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau \left( d_{1}
ight):\frac{x - 2}{2} = \frac{y + 2}{1} = \frac{z - 6}{- 2}\left( d_{2} ight):\frac{x - 4}{1} =
\frac{y + 2}{- 2} = \frac{z + 1}{3}. Phương trình mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight)

    Hướng dẫn:

    Phương trình tham số \left( d_{1}
ight):\left\{ \begin{matrix}
x = 2 + 2t_{1} \\
y = - 2 + t_{1} \\
z = 6 - 2t_{1} \\
\end{matrix} ight.\ ;\left( t_{1}\mathbb{\in R} ight)

    \left( d_{1} ight) đi qua điểm M(2; - 2;6) và có vectơ chỉ phương \overrightarrow{u_{1}} = (2;1; -
2)

    Phương trình tham số \left( d_{2}
ight):\left\{ \begin{matrix}
x = 4 + t_{2} \\
y = - 2 - 2t_{2} \\
z = - 1 + 3t_{2} \\
\end{matrix} ight.\ ;\left( t_{2}\mathbb{\in R} ight)

    \left( d_{2} ight) đi qua điểm N(4; - 2; - 1) và có vectơ chỉ phương \overrightarrow{u_{2}} = (1; -
2;3)

    Vì mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight), ta có:

    \left\{ \begin{matrix}
\overrightarrow{n_{P}}\bot\overrightarrow{u_{1}} \\
\overrightarrow{n_{P}}\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = -
(1;8;5)

    Mặt phẳng (P) đi qua M(2; - 2;6) và vectơ pháp tuyến \overrightarrow{u_{1}} = (2;1; - 2) nên phương trình mặt phẳng (P):(x - 2) + 8(y +
2) + 5(z - 6) = 0 hay (P):x + 8y +
5z - 16 = 0.

  • Câu 13: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B(0;1;1),C(1;0; - 2). Điểm M(a;b;c) thuộc mặt phẳng (P):x + y + z + 2 = 0 sao cho giá trị của biểu thức T = MA^{2} + 2MB^{2} +
3MC^{2} nhỏ nhất. Khi đó, giá trị của biểu thức a + b + c là:

    Hướng dẫn:

    Điểm M luôn tồn tại.

    Ta có M \in (P) nên a + b + c + 2 = 0 \Leftrightarrow a + b + c = -
2.

  • Câu 14: Thông hiểu
    Tính độ dài đường cao tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(1;0;1),B(0;2;3),C(2;1;0). Độ dài đường cao của tam giác ABC kẻ từ C là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2;2) \Rightarrow \left| \overrightarrow{AB}
ight| = 3 \\
\overrightarrow{AC} = (1;1; - 1) \\
\end{matrix} ight.

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
4;1;3)

    S_{ABC} = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight| =
\frac{\sqrt{26}}{2}

    S_{ABC} =
\frac{1}{2}d(C;AB).AB

    \Rightarrow d(C;AB) =
\frac{2S_{ABC}}{AB} = \frac{\sqrt{26}}{3}

  • Câu 15: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Đáp án là:

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Ta có: \overrightarrow{n_{P}} = (2; -1;2);\overrightarrow{n_{Q}} = (1;m;1)

    Để hai mặt phẳng (P)(Q)vuông góc với nhau thì \overrightarrow{n_{P}}\bot\overrightarrow{n_{Q}}.

    \Leftrightarrow 2.1 - 1.m + 2.1 = 0
\Leftrightarrow m = 4.

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(2; - 4;1) và chắn trên các trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài đại số lần lượt là a;b;c. Phương trình tổng quát của mặt phẳng (P) khi a;b;c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là:

    Hướng dẫn:

    Do giả thiết suy ra \left\{
\begin{matrix}
a,b,c eq 0\  \\
b = 2a,c = 2b \\
\end{matrix} ight..

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) khi đó phương trình mặt phẳng\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

    Do M thuộc (P) nên \frac{2}{a} -
\frac{4}{b} + \frac{1}{c} = 1 \Leftrightarrow \frac{2}{a} - \frac{4}{2a}
+ \frac{1}{4a} = 1 \Leftrightarrow a = \frac{1}{4}

    Suy ra b = \frac{1}{2};c = 1 do đó phương trình mặt phẳng (P):4x + 2y + z -
1 = 0.

  • Câu 17: Vận dụng
    Viết PT mp qua giao tuyến 2 mp

    Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0  và vuông góc với mặt phẳng \left( S ight):x - 3y + z - 4 = 0

    Hướng dẫn:

    Theo đề bài, (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0 nên (P) có dạng là 

    \begin{array}{l}\left( P ight):2x - y + z + 2 + m\left( {x + y - z - 3} ight) = 0,\,\,m \in \mathbb{R} \\ \Leftrightarrow \left( P ight):\left( {m + 2} ight)x + \left( {m - 1} ight)y + \left( {1 - m} ight)z + 2 - 3m = 0\end{array}

    Chọn \vec{n} làm vectơ pháp tuyến của (P), ta có: \left( P ight):\overrightarrow n  = \left( {m + 2,m - 1,1 - m} ight) \bot \overrightarrow {{n_s}}  = \left( {1, - 3,1} ight) 

    \begin{array}{l} \Rightarrow \left( {m + 2} ight)1 + \left( {m - 1} ight)\left( { - 3} ight) + \left( {1 - m} ight)1 = 0 \Leftrightarrow m = 2\\ \Rightarrow \left( P ight):4x + y - z - 4 = 0\end{array}

  • Câu 18: Vận dụng
    Tính tổng P

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;2;5),B(0;4; - 3),C(2; - 3;7). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tính tổng P = x + y + z.

    Hướng dẫn:

    Vì M ∈ (Oxy) nên M(x;y;0).

    Gọi G là trọng tâm của tam giác ABC.

    Ta có G(2; 1; 3).

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \left|
\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} +
\overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}
ight|

    = \left| 3\overrightarrow{MG} ight| =
3MG = 3\sqrt{(x - 2)^{2} + (y - 1)^{2} + 3^{2}} \geq 9

    Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).

    Vậy P = 3

  • Câu 19: Vận dụng
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng (Q):x + y + z + 3 = 0, cách điểm M(3;2;1) một khoảng bằng 3\sqrt{3} biết rằng tồn tại một điểm X(a;b;c) trên mặt phẳng đó thỏa mãn a + b + c < - 2?

    Hướng dẫn:

    Mặt phẳng song song với (Q) có dạng (P):x
+ y + z + m = 0,(m eq 3)

    d\left( M,(P) ight) = \frac{|3 + 2 + 1
+ m|}{\sqrt{3}} = 3\sqrt{3} \Leftrightarrow \left\lbrack \begin{matrix}
m = 3(ktm) \\
m = - 15 \\
\end{matrix} ight.

    Với m = −15 thì với mọi X(a;b;c) \in
(P) ta có a + b + c - 15 = 0
\Leftrightarrow a + b + c = 15 > - 2

    Do đó không có mặt phẳng nào thỏa mãn đề bài

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo