Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ trục toạ độ Oxyz. Mặt phẳng đi qua M(1;4;3) và vuông góc với trục Oy có phương trình là:

    Hướng dẫn:

    Phương pháp tự luận

    Mặt phẳng qua M(1;4;3) và có vectơ pháp tuyến \overrightarrow{j} =
(0;1;0) có phương trình y - 4 =
0.

    Phương pháp trắc nghiệm

    Mặt phẳng qua M và vuông góc với trục Oy có phương trình y = y_{M}.

  • Câu 2: Nhận biết
    Mp qua 3 điểm

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

    Hướng dẫn:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x + 2y + 4z - 1 = 0;(\beta):2x + 3y - 2z+ 5 = 0. Chọn khẳng định đúng.

    Hướng dẫn:

    Hai mặt phẳng (\alpha);(\beta) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(\alpha)}} =
(1;2;4),\overrightarrow{n_{(\beta)}} = (2;3; - 2)

    Ta có \overrightarrow{n_{(\alpha)}}.\overrightarrow{n_{(\beta)}}
= 1.2 + 2.3 + 4.( - 2) = 0

    (\alpha)\bot(\beta).

  • Câu 4: Thông hiểu
    Định độ dài đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2;3),B( - 2;4;4),C(4;0;5). Gọi G là trọng tâm của tam giác ABC. Gọi M là điểm nằm trên mặt phẳng (Oxy) sao cho độ dài đoạn thẳng GM ngắn nhất. Tính độ dài đoạn thẳng GM.

    Hướng dẫn:

    Ta có: G là trọng tâm tam giác ABC nên G = (1;2;4)

    Mặt phẳng (Oxy) có phương trình z = 0.

    GM ngắn nhất khi và chỉ khi M là hình chiếu vuông góc của G lên mặt phẳng (Oxy). Khi đó, ta có:

    GM = d\left( G,(Oxy) ight) =
\frac{4}{\sqrt{1}} = 4.

  • Câu 5: Thông hiểu
    Xác định số cặp mặt phẳng song song với nhau

    Trong không gian với hệ trục tọa độ Oxyz, cho 4 mặt phẳng (P):x - 2y + 4x - 3 = 0, (Q) - 2x + 4y - 8z + 5 = 0, (R):3x - 6y + 12z - 10 = 0, (W):4x - 8y + 8z - 12 = 0. Có bao nhiêu cặp mặt phẳng song song với nhau.

    Hướng dẫn:

    Hai mặt phẳng song song khi \frac{a}{a'} = \frac{b}{b'} =
\frac{c}{c'} \neq \frac{d}{d'}

    Xét (P)(Q): \frac{1}{- 2} = \frac{- 2}{4} = \frac{4}{- 8} \neq
\frac{- 3}{5} \Rightarrow (P) \parallel (Q)

    Xét (P)(R): \frac{1}{3} = \frac{- 2}{- 6} = \frac{4}{12} \neq
\frac{- 3}{- 10} \Rightarrow (P) \parallel (R)

    \Rightarrow (Q) \parallel(R)

    Xét (P)(W): \frac{1}{4} = \frac{- 2}{- 8} \neq
\frac{4}{8}

    Xét (Q)(W): \frac{-
2}{4} = \frac{4}{- 8} \neq \frac{- 8}{8}

    Xét (R)(W): \frac{3}{4} = \frac{- 6}{- 8} \neq
\frac{12}{8}.

    Vậy có 3 cặp mặt phẳng song song.

  • Câu 6: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{m} = (4;3;1),\overrightarrow{n} =
(0;0;1). Gọi \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack (tích có hướng của hai vectơ \overrightarrow{m}\overrightarrow{n}. Biết \left| \overrightarrow{p} ight| = 15, tìm tọa độ vectơ \overrightarrow{p}.

    Hướng dẫn:

    Ta thấy \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0)

    \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0) nên \overrightarrow{p} = (3k;
- 4k;0),k\mathbb{\in R};k > 0.

    Mặt khác \left| \overrightarrow{p}
ight| = 15 \Leftrightarrow \sqrt{9k^{2} + 16k^{2} + 0} = 15
\Rightarrow k = 3

    Vậy \overrightarrow{p} = (9; -
12;0).

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa Oz và đi qua điểm P(3; - 4;7)?

    Hướng dẫn:

    Mặt phẳng (P) có cặp véc-tơ chỉ phương là \overrightarrow{k} =
(0;0;1),\overrightarrow{OP} = (3; - 4;7)

    Suy ra mặt phẳng có (P) một véc-tơ pháp tuyến là \overrightarrow{n} =
\overrightarrow{k} \land \overrightarrow{OP} = ( - 4; - 3;0) = -
1(4;3;0).

    Mặt phẳng (P) đi qua O(0;0;0) có vectơ pháp tuyến (4; 3; 0).

    Vậy mặt phẳng (P) có phương trình tổng quát là 4x + 3y = 0.

  • Câu 8: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3; - 2) \\
\overrightarrow{AC} = ( - 2; - 1; - 1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Phương trình mặt phẳng (ABC) là: x + 6y -
8z + 10 = 0.

    Phương trình mặt phẳng qua B và vuông góc với AC là: 2x + y + z - 2 = 0.

    Phương trình mặt phẳng qua C và vuông góc với AB là: 2x - 3y - 2z + 6 = 0.

    Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight).

    Mặt phẳng (P) đi qua A, H nên \overrightarrow{n_{P}}\bot\overrightarrow{AH} =
\left( \frac{- 22}{101}; - \frac{31}{101}; - \frac{26}{101} ight) = -
\frac{1}{101}(22;31;26)

    Mặt phẳng (P) ⊥ (ABC) nên \overrightarrow{n_{P}}\bot\overrightarrow{n_{(ABC)}}
= (1;6; - 8).

    Vậy \left\lbrack
\overrightarrow{n_{(ABC)}};\overrightarrow{u_{AH}} ightbrack = (404;
- 202; - 101) là một vectơ pháp tuyến của (P).

    Chọn \overrightarrow{n_{P}} = (4; - 2; -
1) nên phương trình mặt phẳng (P) là 4x - 2y - z + 4 = 0.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    +) Trục Ox véctơ đơn vị \overrightarrow{i} = (1;0;0).

    Mặt phẳng (Q) có VTPT {\overrightarrow{n}}_{(Q)} = (1;1;1).

    Mặt phẳng (P) chứa trục Ox và vuông góc với (Q):x + y + z - 3 = 0nên (P) có VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{i},\overrightarrow{n_{(Q)}} \right\rbrack = (0; -
1;1).

    Phương trình mặt phẳng (P) là: y - z = 0.

  • Câu 10: Thông hiểu
    Chọn khẳng định sai

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 1 = 0. Trong các mệnh đề sau, mệnh đề nào sai?

    Hướng dẫn:

    Mặt phẳng (P) có một véc-tơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1;0).

    Ta có \frac{2}{2} = \frac{- 1}{1} eq
\frac{0}{1} nên \overrightarrow{n_{P}} không cùng phương với \overrightarrow{n} = (2; -
1;1).

    Suy ra \overrightarrow{n} = (2; -
1;1) không là vectơ pháp tuyến của (P).

    Vậy khẳng định sai là: “Vectơ \overrightarrow{n} = (2; - 1;1) là một véc-tơ pháp tuyến của (P)”.

  • Câu 11: Thông hiểu
    Tìm khẳng định đúng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm A( - 1;2;1) và hai mặt phẳng (\alpha):2x + 4y - 6z - 5 = 0(\beta):x + 2y - 3z = 0. Tìm khẳng định đúng?

    Hướng dẫn:

    \overrightarrow{n_{\alpha}} = (2;4; -
6), \overrightarrow{n_{\beta}} =
(1;2; - 3) \Rightarrow
(\alpha)//(\beta)

    A \in (\beta)

  • Câu 12: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Hướng dẫn:

    Mặt phẳng (P)đi qua A(0;1;1)và nhận vecto \overrightarrow{AB} = (1;1;2)là vectơ pháp tuyến

    (P):1(x - 0) + 1(y - 1) + 2(z - 1) =
0

    \Leftrightarrow x + y + 2z - 3 =
0.

  • Câu 13: Thông hiểu
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm M(1;0;0),N(0; - 2;0),P(0;0;1). Tính khoảng cách h từ gốc toạ độ O đến mặt phẳng (MNP)?

    Hướng dẫn:

    Phương trình tổng quát của mặt phẳng (MNP) có dạng:

    \frac{x}{1} + \frac{y}{- 2} +
\frac{z}{1} = 1 \Leftrightarrow 2x - y + 2z - 2 = 0

    Khoảng cách từ gốc tọa độ (0;0;0) đến (MNP) là: h =
\frac{| - 2|}{\sqrt{4 + 1 + 4}} = \frac{2}{3}

  • Câu 14: Thông hiểu
    Tìm độ dài đường cao tứ diện

    Cho tứ diện ABCDA(0;1; - 1),B(1;1;2),C(1; -
1;0),D(0;0;1). Tính độ dài đường cao AH của tứ diện ABCD?

    Hướng dẫn:

    Ta có:

    \overrightarrow{BA} = ( - 1;0; -
3),\overrightarrow{BC} = (0; - 2; - 2),\overrightarrow{BD} = ( - 1; - 1;
- 1)

    \left\lbrack
\overrightarrow{BC},\overrightarrow{BD} ightbrack = (0; - 2; - 2)
\Rightarrow \left\lbrack \overrightarrow{BC},\overrightarrow{BD}
ightbrack.\overrightarrow{BA} = 6

    V_{ABCD} = \frac{1}{3}AH.S_{BCD}
\Rightarrow AH = \frac{3V_{ABCD}}{S_{BCD}} = \frac{3}{\sqrt{2}} =
\frac{3\sqrt{2}}{2}.

  • Câu 15: Thông hiểu
    Định phương trình mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(
- 2;1;3), C(2; - 1;3)D(0;3;1). Phương trình mặt phẳng (\alpha) đi qua A,B đồng thời cách đều C,D

    Hướng dẫn:

    Trường hợp 1:CD \parallel
(P)

    \overrightarrow{n_{P}} =
\overrightarrow{AB} \land \overrightarrow{CD} = ( - 6; - 10; - 14) = -
2(3;5;7) \Rightarrow (P):3x + 5y + 7z - 20 = 0

    Trường hợp 2:(P) đi qua trung điểm I(1;1;2) của CD

    \overrightarrow{n_{P}} =
\overrightarrow{AB} \land \overrightarrow{AI} = (1;3;3) \Rightarrow
(P):x + 3y + 3z - 10 = 0.

  • Câu 16: Thông hiểu
    Xác định khoảng cách giữa hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 3 = 0;(Q):x + 2y - 2z - 1 =0. Khoảng cách giữa hai mặt phẳng (P)(Q)

    Hướng dẫn:

    Lấy M( - 3;0;0) \in (P).

    (P)//(Q) nên khoảng cách giữa hai mặt phẳng (P) và (Q) bằng khoảng cách từ điểm M đến mặt phẳng (Q).

    d\left( M;(Q) ight) = \frac{\left|
x_{M} + 2y_{M} - 2z_{M} - 1 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}}
= \frac{4}{3}.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng
    Viết PT mp

    Cho hai điểm A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) và mặt phẳng \left( \beta  ight):3x - 2y + z + 9 = 0. Mặt phẳng (\alpha) chứa hai điểm A,B và vuông góc với mặt phẳng (\beta) có phương trình:

    Hướng dẫn:

    Theo đề bài, ta có: A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) ; \left( \beta  ight):3x - 2y + z + 9 = 0.

    Suy ra \overrightarrow {AB}  = \left( {3, - 5, - 2} ight); (\beta) có vectơ pháp tuyến \overrightarrow n  = \left( {3, - 2,1} ight)

    Ta có \left[ {\overrightarrow {AB} ,\overrightarrow n } ight] = \left( { - 9, - 9,9} ight) cùng phương với vectơ \overrightarrow p  = \left( {1,1, - 1} ight)

    Chọn \vec{p} làm 1 vectơ pháp tuyến cho mặt phẳng (\alpha) .

    Phương trình mặt phẳng (\alpha) có dạng: x + y - z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 2 + 3 + 1 + D = 0 \Leftrightarrow D =  - 2

    Mặt phẳng :(\alpha): x + y - z - 2 = 0

  • Câu 20: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho mặt phẳng (\alpha):x - y + z - 3 = 0. Viết phương trình mặt phẳng (\beta) sao cho phép đối xứng qua mặt phẳng (Oxy) biến mặt phẳng (\alpha) thành mặt phẳng (\beta).

    Hướng dẫn:

    Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là A(3;0;0),B(0; - 3;0),C(0;0;3).

    Ta có A; B ∈ (Oxy)C ∈ Oz.

    Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.

    Ta có Đ(Oxy):(\alpha) ightarrow (\beta)
\Rightarrow Đ(Oxy):(A;B;C) ightarrow (A;B;C'), (ảnh của A, B trùng với chính nó vì A,B \in
(Oxy)).

    Do C’ đối xứng với C(0;0;3) qua mặt phẳng Oxy, suy ra C'(0;0; -
3)

    Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:

    \frac{x}{3} + \frac{y}{- 3} + \frac{z}{-
3} = 1 \Leftrightarrow (\beta):x - y - z - 3 = 0

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo