Trong không gian với hệ trục tọa độ . Tọa độ giao điểm
của mặt phẳng
với trục
là?
Gọi là điểm thuộc trục
. Điểm
.
Vậy là giao điểm của
.
Phương pháp trắc nghiệm
Giải hệ PT gồm PT của (P) và của (Ox): ; bấm máy tính.
Trong không gian với hệ trục tọa độ . Tọa độ giao điểm
của mặt phẳng
với trục
là?
Gọi là điểm thuộc trục
. Điểm
.
Vậy là giao điểm của
.
Phương pháp trắc nghiệm
Giải hệ PT gồm PT của (P) và của (Ox): ; bấm máy tính.
Trong không gian với hệ tọa độ , cho mặt phẳng
, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của
?
Ta có phương trình mặt phẳng nên có một vectơ pháp tuyến của mặt phẳng
là:
Mặt khác cùng phương với
Do đó là một vectơ pháp tuyến của
.
Trong không gian với hệ tọa độ , cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Trong không gian , cho các điểm
và
. Mặt phẳng
đi qua các điểm
sao cho khoảng cách từ điểm
đến
gấp hai lần khoảng cách từ điểm
đến
. Hỏi có bao nhiêu mặt phẳng
thỏa mãn đề bài?
Gọi là vectơ pháp tuyến của
. Khi đó
.
Do đó
Khoảng cách từ điểm B đến gấp hai lần khoảng cách từ điểm A đến
(luôn đúng)
Vậy có vô số mặt phẳng .
Trong không gian với hệ tọa độ cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Trong không gian , cho hình chóp
có đáy là hình vuông và
vuông góc với đáy. Biết
, lập phương trình mặt phẳng
.
Dễ dàng chứng minh được là mặt phẳng trung trực của
.
Chọn vectơ pháp tuyến của mặt phẳng là
.
Mặt phẳng đi qua trung điểm
của
và có vtcp
nên có phương trình:
.
Trong không gian với hệ tọa độ ; cho bốn điểm
. Tính thể tích tứ diện
.
Theo giả thiết ta có: suy ra
Vậy thể tích tứ diện là:
Trong không gian với hệ tọa độ ; cho điểm
. Gọi
là hình chiếu vuông góc của điểm
trên ba trục tọa độ
. Viết phương trình mặt phẳng
?
Có là hình chiếu của
lên các trục tọa độ nên mặt phẳng cần tìm là
Trong hệ tọa độ , cho hai đường thẳng chéo nhau
và
. Phương trình mặt phẳng
chứa
và song song với
là
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Vì mặt phẳng chứa
và song song với
, ta có:
Mặt phẳng đi qua
và vectơ pháp tuyến
nên phương trình mặt phẳng
hay
.
Trong không gian với hệ trục tọa độ , cho hai mặt phẳng
và
, với
là tham số. Tìm tất cả các giá trị của tham số thực
để mặt phẳng
vuông góc với mặt phẳng
.
Gọi lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).
Ta có: . Để (P) ⊥ (Q)
Trong không gian với hệ toạ độ , cho ba điểm
,
,
. Phương trình mặt phẳng
là:
Phương pháp tự luận
,
qua
và có vectơ pháp tuyến
Phương pháp trắc nghiệm
Sử dụng MTBT tính tích có hướng.
Hoặc thay tọa độ cả 3 điểm A, B, C vào mặt phẳng xem có thỏa hay không?
Cho và mặt phẳng
. Mặt phẳng
song song với mặt phẳng
và
cách điểm
một khoảng bằng
. Phương trình mặt phẳng
là:
Vì
Mà
Vậy .
Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với
Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là:
Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận làm 1 VTPT. Ta có VTPT của
Trong không gian , cho
. Tính diện tích tam giác
?
Ta có:
Lại có diện tích tam giác là:
Trong không gian với hệ tọa độ , cho hai điểm
và
. Viết phương trình của mặt phẳng
đi qua
và vuông góc với đường thẳng
.
Mặt phẳng đi qua
và nhận vecto
là vectơ pháp tuyến
.
Trong không gian với hệ trục tọa độ , cho hai mặt phẳng
và
. Tìm
để hai mặt phẳng
và
song song với nhau.
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến
Để thì
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Cho mặt phẳng qua điểm
và chắn trên ba trục tọa độ
theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của
khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.
Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2
Phương trình của
(P) qua
Cho tứ giác ABCD có . Viết phương trình của mặt phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.

Theo đề bài, ta có mp (P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số -3
Từ đó, ta suy ra:
Như vậy, VTPT mp (P) là:
Trong không gian tọa độ , mặt phẳng
đi qua
và chắn trên tia
một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia
và
. Giả sử
, với
. Tính
.
Từ giả thiết, ta suy ra các giao điểm của (α) với các tia lần lượt là
.
Suy ra phương trình (đoạn chắn) của (α) là .
Do (α) đi qua M nên .
Suy ra .
Từ đó, ta tính được: .
Trong không gian với hệ toạ độ ,cho
,
. Lập phương trình mặt phẳng
chứa giao tuyến của
và cắt các trục tọa độ tại các điểm
sao cho hình chóp
là hình chóp đều.
Chọn thuộc giao tuyến của
Gọi lần lượt là giao điểm của
với các trục
chứa
Hình chóp là hình chóp đều
Vây phương trình .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: