Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng CTST (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Viết phương trình mặt phẳng (ABC)

    Trong không gian với hệ toạ độ Oxyz, cho A(a;0;0), B(0;b;0), C(0;0;c), (abc \neq 0). Khi đó phương trình mặt phẳng (ABC) là:

    Hướng dẫn:

    Phương trình mặt phẳng (ABC) cần tìm là: \frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

  • Câu 2: Nhận biết
    Tính thể tích tứ diện

    Trong không gian với hệ tọa độ Oxyz, tính thể tích tứ diện OABC, biết A;B;C lần lượt là giao điểm của mặt phẳng 2x - 3y + 4z + 24 = 0 với trục Ox,Oy,Oz.

    Hướng dẫn:

    Theo giả thiết ta có: A( -
12;0;0),B(0;8;0),C(0;0; - 6) suy ra

    V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.12.8.6 = 96

  • Câu 3: Nhận biết
    Chọn phương án thích hợp

    Một vectơ pháp tuyến của phương trình mặt phẳng (\alpha):2x - y + z - 3 = 0

    Hướng dẫn:

    Vec tơ pháp tuyến của phương trình mặt phẳng (\alpha):2x - y + z - 3 = 0\overrightarrow{n} = (2; - 1;1)

  • Câu 4: Thông hiểu
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho hình cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
1. Phương trình mặt phẳng (\alpha) chứa trục Oz và tiếp xúc với (S)

    Hướng dẫn:

    Mặt phẳng (\alpha) chứa trục Oz có dạng: Ax + By = 0\left( A^{2} + B^{2} \neq 0
\right)

    Ta có: d\left( I,(\alpha) \right) = 3
\Leftrightarrow \frac{|A + 2B|}{\sqrt{A^{2} + B^{2}}} = 1

    \Leftrightarrow 4AB + B^{2} = 0
\Leftrightarrow 4A + B = 0.

    Chọn A = 3,B = - 4 \Rightarrow
(\alpha):3x - 4y = 0

  • Câu 5: Thông hiểu
    Xác định phương trình mặt phẳng (P)

    Trong không gian với hệ trục tọa độ Oxyz, cho H(1;1; - 3). Phương trình mặt phẳng (P) đi qua H cắt các trục tọa độ Ox,Oy,Oz lần lượt tại A;B;C (khác O) sao cho H là trực tâm tam giác ABC là:

    Hướng dẫn:

    Mặt phẳng (P) cắt trục Ox,Oy,Oz lần lượt tại A;B;C suy ra H là trực tâm của tam giác ABCOH\bot(ABC)

    Phương trình mặt phẳng x + y - 3z - 11 =
0.

  • Câu 6: Thông hiểu
    Xác định khoảng cách giữa hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 3 = 0;(Q):x + 2y - 2z - 1 =0. Khoảng cách giữa hai mặt phẳng (P)(Q)

    Hướng dẫn:

    Lấy M( - 3;0;0) \in (P).

    (P)//(Q) nên khoảng cách giữa hai mặt phẳng (P) và (Q) bằng khoảng cách từ điểm M đến mặt phẳng (Q).

    d\left( M;(Q) ight) = \frac{\left|
x_{M} + 2y_{M} - 2z_{M} - 1 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}}
= \frac{4}{3}.

  • Câu 7: Thông hiểu
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng có phương trình (P)x + 2y + 2z - 1 = 0(Q):x + 2y - z - 3 =
0 và mặt cầu (S):(x - 1)^{2} + (y +
2)^{2} + z^{2} = 5. Mặt phẳng (\alpha) vuông với mặt phẳng (P),(Q) đồng thời tiếp xúc với mặt cầu (S).

    Hướng dẫn:

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 5 có tâm I(1; -
2;0) và bán kính R =
\sqrt{5}

    Gọi \overrightarrow{n_{\alpha}} là một vectơ pháp tuyến của mặt phẳng (\alpha)

    Ta có : {\overrightarrow{n}}_{\alpha} =
\overrightarrow{n_{P}} \land {\overrightarrow{n}}_{Q} \Rightarrow
\overrightarrow{n_{\alpha}} = ( - 6;3;0) = - 3(2; - 1;0) = -
3\overrightarrow{n_{1}}

    Lúc đó mặt phẳng (\alpha) có dạng :2x - y + m = 0.

    Do mặt phẳng (\alpha) tiếp xúc với mặt cầu (S)

    \Rightarrow d\left( I,(\alpha) \right) =
\sqrt{5} \Leftrightarrow \frac{|m + 4|}{\sqrt{5}} = \sqrt{5}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 9 \\
\end{matrix} \right.

    Vậy phương trình mặt phẳng (\alpha):2x -
y + 1 = 0 hoặc 2x - y - 9 =
0.

  • Câu 8: Thông hiểu
    Tìm tất cả các giá trị thực của tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD với A( -
3;1; - 1),B(1;2;m), C(0;2; -
1),D(4;3;0). Tìm tất cả các giá trị thực của m để thể tích khối tứ diện ABCD bằng 10.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (3;1;0) \\
\overrightarrow{AD} = (7;2;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = (1; - 3; -
1)

    Lại có: \overrightarrow{AB} = (4;1;m + 1)
\Rightarrow \overrightarrow{AB}.\left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = - m

    Khi đó ta có:

    V_{ABCD} = \frac{1}{6}\left|
\overrightarrow{AB}.\left\lbrack \overrightarrow{AC};\overrightarrow{AD}
ightbrack ight| = \frac{|m|}{6}

    Theo đề ta có: V_{ABCD} = 10
\Leftrightarrow \frac{|m|}{6} = 10 \Leftrightarrow m = \pm
60

  • Câu 9: Thông hiểu
    Viết phương trình (P)

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;1),B(3; - 1;5). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \frac{3}{2}

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (2; - 3;4)
\Rightarrow (P):2x - 3y + 4z + m = 0

    Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz

    Suy ra M\left( - \frac{m}{2};0;0
ight),N\left( 0;\frac{m}{3};0 ight),P\left( 0;0;\frac{- m}{4}
ight)

    Ta có thể tích tứ diện V_{O.MNP} =
\frac{1}{6}.\left| \frac{m^{3}}{24} ight| = \frac{3}{2}
\Leftrightarrow m = \pm 6

    Vậy đáp án cần tìm là: 2x - 3y + 4z \pm 6
= 0

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3; - 2) \\
\overrightarrow{AC} = ( - 2; - 1; - 1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Phương trình mặt phẳng (ABC) là: x + 6y -
8z + 10 = 0.

    Phương trình mặt phẳng qua B và vuông góc với AC là: 2x + y + z - 2 = 0.

    Phương trình mặt phẳng qua C và vuông góc với AB là: 2x - 3y - 2z + 6 = 0.

    Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight).

    Mặt phẳng (P) đi qua A, H nên \overrightarrow{n_{P}}\bot\overrightarrow{AH} =
\left( \frac{- 22}{101}; - \frac{31}{101}; - \frac{26}{101} ight) = -
\frac{1}{101}(22;31;26)

    Mặt phẳng (P) ⊥ (ABC) nên \overrightarrow{n_{P}}\bot\overrightarrow{n_{(ABC)}}
= (1;6; - 8).

    Vậy \left\lbrack
\overrightarrow{n_{(ABC)}};\overrightarrow{u_{AH}} ightbrack = (404;
- 202; - 101) là một vectơ pháp tuyến của (P).

    Chọn \overrightarrow{n_{P}} = (4; - 2; -
1) nên phương trình mặt phẳng (P) là 4x - 2y - z + 4 = 0.

  • Câu 12: Thông hiểu
    Chọn kết quả đúng

    Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P),(Q),(R) (như hình vẽ) của tòa nhà lần lượt có phương trình: (P):x + 2y - 2z + 1 = 0, (Q):2x + y + 2z - 3 = 0,(R):2x + 4y - 4z - 19 = 0.

    Tính khoảng giữa hai bức tường (P)(R) của tòa nhà.

    Hướng dẫn:

    Trước hết thực hiện kiểm tra tính song song hoặc vuông góc giữa các bức tường (P),(Q),(R) của tòa nhà.

    (P):x + 2y - 2z + 1 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{P} =
(1;2; - 2)

    (Q):2x + y + 2z - 3 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{Q} =
(2;1;2)

    (R):2x + 4y - 4z - 19 = 0. có vectơ pháp tuyến là {\overrightarrow{n}}_{R}
= (2;4; - 4)

    Ta có {\overrightarrow{n}}_{R} = (2;4; -
4) = 2(1;2; - 2) \Rightarrow {\overrightarrow{n}}_{R} =
2{\overrightarrow{n}}_{P} nên hai bức tường (P)(R)song song nhau

    {\overrightarrow{n}}_{P}.{\overrightarrow{n}}_{Q}
= 1.2 + 2.1 + ( - 2).2 = 0 \Rightarrow
{\overrightarrow{n}}_{P}\bot{\overrightarrow{n}}_{Q} nên bức tường (Q) vuông góc với hai bức tường (P)(R),

    Chọn điểm M( - 1;0;0) \in
(P)

    Do hai bức tường (P)(R)song song nhau nên:

    d\left( (P),(R) \right) = d\left( M,(R)
\right)= \frac{\left| 2.( - 1) + 4.0 - 4.0 - 19
\right|}{\sqrt{4 + 16 + 16}} = \frac{21}{6} = 3,5m

  • Câu 13: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (\alpha) đi qua điểm M(5;4;3) và cắt các tia Ox,Oy,Oz các đoạn bằng nhau có phương trình là:

    Hướng dẫn:

    Gọi A(a;0;0),\ B(0;a;0),\ C(0;0;a)(a \neq
0)là giao điểm của mặt phẳng (\alpha) và các tia Ox,Oy,Oz.

    Phương trình mặt phẳng (\alpha)qua A, B, C là: \frac{x}{a} + \frac{y}{a} + \frac{z}{a} =
1.

    Mặt phẳng (\alpha) qua điểm M(5;4;3) \Rightarrow a = 12

    Ta có \frac{x}{12} + \frac{y}{12} +
\frac{z}{12} = 1 \Leftrightarrow x + y + z - 12 = 0

  • Câu 14: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;2; - 3). Gọi M,N,P là hình chiếu vuông góc của điểm A trên ba trục tọa độ Ox,Oy,Oz. Viết phương trình mặt phẳng (MNP)?

    Hướng dẫn:

    M(1;0;0),N(0;2;0),P(0;0; - 3) là hình chiếu của A lên các trục tọa độ nên mặt phẳng cần tìm là (MNP):\frac{x}{1} + \frac{y}{2} + \frac{z}{- 3} =
1

    \Rightarrow (MNP):6x + 3y - 2z - 6 =
0

  • Câu 15: Thông hiểu
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, có bao nhiêu mặt phẳng song song với mặt phẳng (P):\ \ x + y + z - 6 =
0 và tiếp xúc với mặt cầu (S):x^{2}
+ y^{2} + z^{2} = 12?

    Hướng dẫn:

    +) Mặt phẳng (Q) song song với mặt phẳng (P) có dạng: x + y + z + D = 0\ \ (D \neq - 6).

    +) Do mặt phẳng (Q)tiếp xúc với mặt cầu (S):x^{2} + y^{2} + z^{2} =
12 nên d(I;(Q)) = R với Ilà tâm cầu, R là bán kính mặt cầu.

    Tìm được D = 6 hoặc D = - 6(loại) Vậy có 1 mặt phẳng thỏa mãn.

  • Câu 16: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 17: Vận dụng
    Tính tổng P

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;2;5),B(0;4; - 3),C(2; - 3;7). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tính tổng P = x + y + z.

    Hướng dẫn:

    Vì M ∈ (Oxy) nên M(x;y;0).

    Gọi G là trọng tâm của tam giác ABC.

    Ta có G(2; 1; 3).

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \left|
\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} +
\overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}
ight|

    = \left| 3\overrightarrow{MG} ight| =
3MG = 3\sqrt{(x - 2)^{2} + (y - 1)^{2} + 3^{2}} \geq 9

    Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).

    Vậy P = 3

  • Câu 18: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Hướng dẫn:

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 19: Vận dụng
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại A , B , C ( khác gốc toạ độ O ) sao cho M là trực tâm tam giác ABC . Mặt phẳng (\alpha) có phương trình là:

    Hướng dẫn:

    Hình vẽ minh họa

    Cách 1: Gọi H là hình chiếu vuông góc của Ctrên AB, K là hình chiếu vuông góc B trên AC.M là trực tâm của tam giác ABC khi và chỉ khi M = BK \cap CH

    Ta có : \left. \ \begin{matrix}
AB\bot CH \\
AB\bot CO \\
\end{matrix} \right\} \Rightarrow AB\bot(COH) \Rightarrow AB\bot OM\
(1) (1)

    Chứng minh tương tự, ta có: AC\bot
OM (2).

    Từ (1) và (2), ta có: OM\bot(ABC)

    Ta có: \overrightarrow{OM}(1;2;3).

    Mặt phẳng (\alpha)đi qua điểm M(1;2;3) và có một VTPT\overrightarrow{OM}(1;2;3) nên có phương trình là:

    (x - 1) + 2(y - 2) + 3(z
- 3) = 0 \Leftrightarrow x + 2y + 3z - 14 = 0.

    Cách 2:

    +) Do A,B,C lần lượt thuộc các trục Ox,Oy,Oznên A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c\ \  \neq 0).

    Phương trình đoạn chắn của mặt phẳng (ABC) là: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    +) Do M là trực tâm tam giác ABC nên \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BM}.\overrightarrow{AC} = 0 \\
M \in (ABC) \\
\end{matrix} \right. .

    Giải hệ điều kiện trên ta được a,b,c

    Vậy phương trình mặt phẳng: x + 2y + 3z -
14 = 0.

  • Câu 20: Vận dụng
    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Hướng dẫn:

    Ta có: \overrightarrow{OA} = (0;2; -
2),\overrightarrow{OB} = (2;2; - 4)

    \Rightarrow \left\lbrack
\overrightarrow{OA},\overrightarrow{OB} ightbrack = ( - 4; - 4; -
4)

    Mặt phẳng (OAB) đi qua O và có vec-tơ pháp tuyến \overrightarrow{n} = - \frac{1}{4}\left\lbrack
\overrightarrow{OA},\overrightarrow{OB} ightbrack = (1;1;1) nên có phương trình x + y + z =
0.

    Ta xác định được \left\{ \begin{matrix}
\overrightarrow{AI} = (a;b - 2;c + 2) \\
\overrightarrow{BI} = (a - 2;b - 2;c + 4) \\
\overrightarrow{OI} = (a;\ b;\ c) \\
\end{matrix} ight.

    Theo giả thiết\left\{ \begin{matrix}
AI = BI \\
AI = OI \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + (c + 2)^{2} = (a - 2)^{2} + (c + 4)^{2} \\
(b - 2)^{2} + (c + 2)^{2} = b^{2} + c^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - c = 4\ \ \ (1) \\
- b + c = - 2\ \ \ (2) \\
\end{matrix} ight.

    Mặt khác I \in (OAB) \Rightarrow a + b +
c = 0\ (3)

    Giải hệ gồm (1), (2) và (3) ta được a =
2,b = 0,c = - 2.

    Vậy I(2;0; - 2) \Rightarrow T = a^{2} +
b^{2} + c^{2} = 8.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo