Trong không gian với hệ tọa độ , cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.
Trong không gian với hệ tọa độ , cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.
Trong không gian với hệ toạ độ , cho
,
,
,
. Khi đó phương trình mặt phẳng
là:
Phương trình mặt phẳng cần tìm là:
.
Trong không gian với hệ toạ độ , cho mặt phẳng
. Tìm khẳng định đúng trong các mệnh đề sau:
Khẳng định đúng là: “”
Trong không gian với tọa độ cho
và mặt phẳng
. Tìm phương trình mặt phẳng
đi qua
sao cho
vuông góc với (α) và
song song với trục
?
Vì nên
và
nên
Chọn
Phương trình mặt phẳng là
.
Trong không gian khoảng cách giữa hai mặt phẳng
và
bằng:
Dựa vào phương trình có vectơ pháp tuyến là
nên
Ta có: suy ra
Trong không gian với hệ toạ độ , cho mặt phẳng
đi qua hai điểm
,
và có một vectơ chỉ phương là
. Phương trình của mặt phẳng
là:
Ta có: .
Mặt phẳng đi qua hai điểm
,
và có một vectơ chỉ phương là
nên có một VTPT là:
.
Mặt phẳng đi qua điểm
và có một VTPT
có phương trình là:
.
Vậy .
Trong không gian với hệ toạ độ ,cho hai đường thẳng
lần lượt có phương trình
,
. Phương trình mặt phẳng
cách đều hai đường thẳng
là:
Ta có đi qua
và có
,
đi qua
và có
;
nên
chéo nhau.
Do cách đều
nên
song song với
có dạng
Theo giả thiết thì
Trong không gian với hệ trục tọa độ , có bao nhiêu mặt phẳng song song với mặt phẳng
và tiếp xúc với mặt cầu
?
+) Mặt phẳng song song với mặt phẳng
có dạng:
.
+) Do mặt phẳng tiếp xúc với mặt cầu
nên
với
là tâm cầu,
là bán kính mặt cầu.
Tìm được hoặc
(loại) Vậy có 1 mặt phẳng thỏa mãn.
Trong không gian với hệ toạ độ , cho hai điểm
. Phương trình mặt phẳng
vuông góc với
và hợp với các trục tọa độ một tứ diện có thể tích bằng
là
Ta có
Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz
Suy ra
Ta có thể tích tứ diện
Vậy đáp án cần tìm là:
Trong không gian với hệ trục tọa độ , cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn
là:
Phương pháp tự luận
+) .
+) Trung điểm I của đoạn là
Mặt phẳng trung trực của đọan AB là hay
.
Phương pháp trắc nghiệm
Do là mặt phẳng trung trực của AB nên
Kiểm tra mặt phẳng nào có
và chứa điểm
Cả 4 đáp án đều thỏa điều kiện .
Cả 4 PT đều chung dạng: x–y+0z+D=0, nên để kiếm tra PT nào thỏa tọa độ điểm I ta bấm máy tính:
trong đó nhập A, B, C là tọa độ I, còn D là số hạng tự do từng PT, nếu cái nào làm bằng 0 thì chọn.
Cho hai điểm và vectơ
. Mặt phẳng chứa hai điểm A, B và song song với vectơ
có phương trình:
Theo đề bài, ta có:
Như vậy, và
sẽ là cặp vectơ chỉ phương của
Chọn làm vectơ pháp tuyến của
Phương trình mặt phẳng có dạng
Mặt khác, vì điểm nên thay tọa độ điểm A vào phương trình mặt phẳng
được:
Vậy có phương trình là:
Trong không gian với hệ trục tọa độ , cho các điểm
. Viết phương trình mặt phẳng qua
và song song với mặt phẳng
.
Phương pháp tự luận
+).
+) Mặt phẳng đi qua có VTPT
có phương trình:
.
+) Thay tọa độ điểm vào phương trình mặt phẳng thấy không thỏa mãn.
Vậy phương trình mặt phẳng thỏa mãn yêu cầu bài toán là: .
Phương pháp trắc nghiệm
Gọi phương trình mặt phẳng có dạng
.
Sử dụng MTBT giải hệ bậc nhất 3 ẩn, nhập tọa độ 3 điểmvào hệ, chọn
ta được
. (Trong trường hợp chọn
vô nghiệm ta chuyển sang chọn
).
Suy ra mặt phẳng có VTPT
Mặt phẳng đi qua có VTPT
có phương trình:
.
Thay tọa độ điểm vào phương trình mặt phẳng thấy không thỏa mãn.
Trong không gian với hệ trục tọa độ , cho hai mặt phẳng có phương trình
và mặt cầu
. Mặt phẳng
vuông với mặt phẳng
đồng thời tiếp xúc với mặt cầu
.
Mặt cầu có tâm
và bán kính
Gọi là một vectơ pháp tuyến của mặt phẳng
Ta có :
Lúc đó mặt phẳng có dạng :
.
Do mặt phẳng tiếp xúc với mặt cầu
Vậy phương trình mặt phẳng :
hoặc
.
Trong không gian với hệ trục tọa độ , cho mặt phẳng
. Gọi mặt phẳng
là mặt phẳng đối xứng của mặt phẳng
qua trục tung. Khi đó phương trình mặt phẳng
là?
Gọi là điểm bất kỳ thuộc mặt phẳng
.
Điểm là điểm đối xứng của
qua trục tung
là mặt phẳng đi qua
và là mặt phẳng đối xứng của
Vậy .
Trong không gian với hệ trục tọa độ , cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận làm vectơ pháp tuyến.
Vậy phương trình mặt phẳng qua là
Trong không gian , gọi
là mặt phẳng chứa trục
và vuông góc với mặt phẳng
. Phương trình mặt phẳng
là:
Ta có: (Q) có một vectơ pháp tuyến là .
Từ giả thiết, ta suy ra có một vectơ pháp tuyến là
.
Do (P) đi qua gốc tọa độ O nên phương trình của (P) là .
Trong không gian , tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây:
.
Gọi điểm
Mặt phẳng cách đều hai mặt phẳng trên có dạng:
Để mp (γ) cách đều hai mp trên thì
hoặc
Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).
Với ta có
nên A; B cùng phía.
Với ta có
nên A; B khác phía.
Vậy phương trình mặt phẳng cần tìm là .
Trong không gian với hệ tọa độ , cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Vì M ∈ (Oxy) nên .
Gọi G là trọng tâm của tam giác ABC.
Ta có G(2; 1; 3).
Khi đó:
Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).
Vậy P = 3
Cho tứ diện ABCD có . Mặt phẳng chứa BC và song song với AD có phương trình :
Theo đề bài, từ các điểm , ta tính được các vecto tương ứng là:
cùng phương với
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
Phương trình (P) có dạng:
Mặt khác, điểm
Vậy phương trình .
Trong không gian với hệ trục tọa độ , cho các điểm
. Có bao nhiêu điểm
cách đều các mặt phẳng
?
Ta có
Ta có:
Ta có:
Gọi điểm cách đều các mặt phẳng
Từ
Từ
Từ
Từ (1), (3), (5) suy ra , b khác 0 tùy ý.
Như vậy có vô số điểm cách đều bốn mặt phẳng
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: