Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +10
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án đúng

    Giá trị nhỏ nhất của hàm số y = x +
\frac{2}{x} - \left( 1 + \sqrt{2} \right)^{2}y=x+2x(1+2)2 trên khoảng (0; + \infty)(0;+)

    Hướng dẫn:

    Hàm số xác định và liên tục trên khoảng (0; + \infty).

    y' = 1 - \frac{2}{x^{2}} =
\frac{x^{2} - 2}{x^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.\ .

    Bảng biến thiên:

    Vậy \min_{(0; + \infty)}y = f\left(
\sqrt{2} ight) = - 3.

  • Câu 2: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) = \frac{3x - 1}{x -
3}f(x)=3x1x3. Tìm giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số trên đoạn \lbrack 0;2brack.[0;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{- 8}{(x -3)^2}.

    Ta có f'(x) < 0,\forall x \in
(0;2).

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack 0;2brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;2brack}f(x) = f(0) = \frac{1}{3} \\
m = \min_{\lbrack 0;2brack}f(x) = f(2) = - 5 \\
\end{matrix} ight.\ .

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x)xác định, liên tục trên  và có bảng biến thiên:

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Đáp án “Hàm số có giá trị cực tiểu bằng 1." sai vì hàm số có 2 điểm cực trị.

    Đáp án “Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng -1” sai vì hàm số có giá trị cực tiểu y = -
1 khi x = 0.

    Đáp án “Hàm số đạt cực đại tại x =
0 và đạt cực tiểu tại x = 1” sai vì hàm số không có GTLN và GTNN trên \mathbb{R}.

    Đáp án “Hàm số có đúng một cực trị” đúng vì hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.

  • Câu 4: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị lớn nhất của hàm số trên đoạn [0;1] là:

  • Câu 5: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên nửa khoảng

    Giá trị nhỏ nhất của hàm số f(x) = x +
\frac{1}{x}f(x)=x+1x trên nửa khoảng \lbrack
2; + \infty)[2;+) là:

    Hướng dẫn:

    Áp dụng bất đẳng thức Cô-si, ta được:

    f(x) = x + \frac{1}{x} = \frac{3x}{4} +
\frac{x}{4} + \frac{1}{x} \geq \frac{3.2}{4} +
2\sqrt{\frac{x}{4}.\frac{1}{x}} = \frac{5}{2}.

    Dấu bằng xảy ra khi x = 2.

  • Câu 6: Nhận biết
    Tính giá trị của biểu thức

    Cho hàm số y = f(x)y=f(x) liên tục trên đoạn \lbrack - 1;1brack[1;1brack và có đồ thị như hình vẽ.

    Gọi MMmm lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;1brack[1;1brack. Giá trị của M -
mMm bằng:

    Hướng dẫn:

    Từ đồ thị ta thấy M = 1,\ m = 0 nên M - m = 1.

  • Câu 7: Nhận biết
    Chọn mệnh đề đúng

    Xét hàm số f(x) = - \frac{4}{3}x^{3} -
2x^{2} - x - 3f(x)=43x32x2x3 trên \lbrack -
1;1brack[1;1brack. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Đạo hàm f'(x) = - 4x^{2} - 4x - 1 = -(2x + 1)^2 \leq 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack - 1;1brack nên có giá trị nhỏ nhất tại x = 1 và giá trị lớn nhất tại x = - 1.

  • Câu 8: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x)y=f(x) liên tục trên \lbrack - 3;2brack[3;2brack và có bảng biến thiên như sau. Gọi M,\ mM, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)y=f(x) trên đoạn \lbrack - 1;\ 2brack[1; 2brack. Tính M + mM+m.

    Hướng dẫn:

    Trên đoạn \lbrack - 1;\ 2brack ta có giá trị lớn nhất M = 3 khi x = - 1 và giá trị nhỏ nhất m = 0 khi x =
0.

    Khi đó M + m = 3 + 0 = 3.

  • Câu 9: Nhận biết
    Khẳng định nào sau đây đúng?
  • Câu 10: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) = \sqrt{2x + 14} +
\sqrt{5 - x}f(x)=2x+14+5x. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    TXĐ: D = \lbrack -
7;5brack.

    Đạo hàm f(x) = \frac{1}{\sqrt{2x + 14}} -
\frac{1}{2\sqrt{5 - x}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in \lbrack - 7;5brack

    Ta có \left\{ \begin{matrix}
f( - 7) = 2\sqrt{3} \\
f(5) = 2\sqrt{6} \\
f(1) = 6 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 7;5brack}f(x) = f( - 7) = 2\sqrt{3}

  • Câu 11: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị nhỏ nhất của hàm số trên đoạn [0;1] là:

  • Câu 12: Thông hiểu
    Chọn đáp án đúng:

    Xét hàm số y = f(x) = x + 1 - \frac{3}{x+2}y=f(x)=x+13x+2 trên đoạn [-1;1]. Mệnh đề nào sau đây đúng?

  • Câu 13: Nhận biết
    Tính tổng m + M

    Cho hàm số f(x)f(x) liên tục trên đoạn \lbrack 0\ ;\ 3brack[0 ; 3brack và có đồ thị như hình vẽ bên. Gọi MM và mm lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên \lbrack 0\
;\ 3brack[0 ; 3brack. Giá trị của M +
mM+m bằng?

    Hướng dẫn:

    Dựa vào hình vẽ ta có: M = 3, m = - 2 nên M + m = 1.

  • Câu 14: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{4} - 2x^{2} + 5f(x)=x42x2+5 trên đoạn \lbrack - 2;2brack.[2;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 4x^3 -4x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 2;2brack \\
x = 1 \in \lbrack - 2;2brack \\
x = - 1 \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = f(2) = 13 \\
f( - 1) = f(1) = 4 \\
f(0) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;2brack}f(x) =
13

  • Câu 15: Nhận biết
    Tìm câu sai

    Cho hàm số y = f(x)y=f(x) xác định trên \mathbb{R}R và có đồ thị như hình bên.

    Khẳng định nào sau đây là sai?

    Hướng dẫn:

    Dựa vào đồ thị suy ra hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.

  • Câu 16: Nhận biết
    Tính tổng min và max của hàm số trên đoạn

    Cho hàm số f(x)f(x) liên tục trên \lbrack - 1;5brack[1;5brack và có đồ thị trên đoạn \lbrack - 1;5brack[1;5brack như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)f(x) trên đoạn \lbrack - 1;5brack[1;5brack bằng

    Hướng dẫn:

    Từ đồ thị ta thấy: \left\{ \begin{matrix}
M = \max_{\lbrack - 1;5brack}f(x) = 3 \\
n = \min_{\lbrack - 1;5brack}f(x) = - 2 \\
\end{matrix} ight.\  \Rightarrow M + n = 1.

  • Câu 17: Nhận biết
    Tìm điều kiện của tham số m

    Cho hàm số y = f(x)y=f(x) liên tục trên \lbrack 2;5brack[2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack[2;5brack lần lượt là M;mM;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{
\begin{matrix}
\max_{\lbrack 2;5brack}y = M = 4 \\
\min_{\lbrack 2;5brack}y = m = - 6 \\
\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x)y=f(x) liên tục trên \lbrack - 1;5brack[1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack[1;5brack?

    Hướng dẫn:

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 19: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x)y=f(x) liên tục và có bảng biến thiên trên đoạn \lbrack - 1\ ;\
3brack[1 ; 3brack như hình vẽ bên. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Nhìn vào bảng biến thiên ta thấy \max_{\lbrack - 1;3brack}f(x) =
f(0).

  • Câu 20: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x)y=f(x) xác định, liên tục trên\left\lbrack - 1,\frac{5}{2}
\right\rbrack[1,52]và có đồ thị là đường cong như hình vẽ.

    Giá trị lớn nhất MM và giá trị nhỏ nhất mm của hàm số f(x)f(x) trên \left\lbrack - 1,\frac{5}{2}
\right\rbrack[1,52] là:

    Hướng dẫn:

    Dựa vào đồ thị M = 4,\ \ m = -
1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng