Giá trị lớn nhất của hàm số trên đoạn
là:
Ta có:
Giá trị lớn nhất của hàm số trên đoạn
là:
Ta có:
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn ?
Từ đồ thị hàm số ta có:
Khi đó .
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.

Giá trị nhỏ nhất của hàm số trên đoạn [0;1] là:
Cho hàm số . Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Gọi là tập hợp tất cả các giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên
bằng
. Số phần tử của tập hợp
:
Ta có:
Đặt
Hàm số đã cho trở thành:
Ta có:
Vậy số phần tử của tập hợp S là 1.
Cho hàm số liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy: tại
.
Suy ra .
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Cho hàm số có bảng biến thiên trên đoạn
như sau:
Mệnh đề nào sau đây đúng?
Từ bảng biến thiên ta suy ra
Cho hàm số . Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].
Học sinh cần nhớ công thức
Xét hàm số trên [2; 4] ta có:
Tính f(2) = 7; f(3) = 6; f(4) = 19/3
Vậy
Giá trị nhỏ nhất của hàm số là:
Đặt
Khi đó hàm số trở thành:
Xét hàm số trên đoạn
ta có:
=> Hàm số đồng biến trên
=>
Một chất điểm chuyển động theo phương trình trong đó
được tính bằng giây và
được tính bằng mét. Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là:
Ta có:
Khi đó
Cho hàm số liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?
Nhìn vào bảng biến thiên ta thấy
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ bên. Gọi
và
lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên
. Giá trị của
bằng?
Dựa vào hình vẽ ta có: ,
nên
.
Cho hàm số với
là tham số thực. Tìm giá trị lớn nhất của
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
Đạo hàm .
Suy ra hàm số đồng biến trên đoạn
Thao bài ra:
Suy ra giá trị lớn nhất là
Giá trị nhỏ nhất của hàm số trên đoạn
bằng:
Tập xác định nên hàm số xác định và liên tục trên
Ta có:
Mà
Biết rằng hàm số đạt giá trị nhỏ nhất trên
tại điểm
. Khi đó giá trị biểu thức
bằng:
Ta có:
Mà khi
Suy ra .
Cho hàm số có bảng biến thiên như sau:
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Giá trị nhỏ nhất của hàm số trên đoạn
bằng
Ta có:
;
.
.
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: