Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số y = \frac{2x + 3}{x -
2}. Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 0;1brack. Khi đó giá trị của biểu thức S = M + m là:

    Hướng dẫn:

    Ta có: y' = \frac{- 7}{(x - 2)^{2}}
< 0;\forall x \in \lbrack 0;1brack

    Vậy \left\{ \begin{matrix}M = y(0) = - \dfrac{3}{2} \\m = y(1) = - 5 \\\end{matrix} ight.\  \Rightarrow S = M + m = -\dfrac{13}{2}

  • Câu 2: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 3: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị nhỏ nhất của hàm số trên đoạn [0;1] là:

  • Câu 4: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Biết giá trị lớn nhất của hàm số y = -
2x^{3} + 3x^{2} + m trên đoạn \lbrack 0;2brack bằng 5. Tìm giá trị của tham số m?

    Hướng dẫn:

    Ta có: y' = - 6x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta có:

    \max_{\lbrack 0;2brack}f(x) = 5
\Leftrightarrow f(1) = 5 \Leftrightarrow m + 1 = 5 \Leftrightarrow m =
4

  • Câu 5: Thông hiểu
    Tìm tất cả các giá trị của tham số m

    Cho hàm số f(x) = x^{3} + \left( m^{2} +1 \right)x + m^{2} - 2 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;2\rbrack bằng 7.

    Hướng dẫn:

    Đạo hàmf'(x) = 3x^{2} + m^{2} + 1> 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;2brack

    \Rightarrow \min_{\lbrack 0;2brack}f(x)= f(0) = m^{2} - 2

    Theo bài ra: \min_{\lbrack0;2brack}f(x) = 7 \Leftrightarrow m^{2} - 2 = 7 \Leftrightarrow m =\pm 3.

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Hướng dẫn:

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 7: Nhận biết
    Xác định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 8: Thông hiểu
    Tìm m để hàm số đồng biến trên đoạn

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - (m - 1)x^{2} - 4mx đồng biến trên đoạn \lbrack 1;4brack?

    Hướng dẫn:

    Theo yêu cầu bài toán ta có:

    y' = x^{2} - 2(m - 1)x - 4m \geq
0;\forall x \in \lbrack 1;4brack(*)

    Để hàm số đồng biến trên đoạn \lbrack
1;4brack

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1;4brack

    \Leftrightarrow x^{2} - 2(m - 1)x - 4m
\geq 0

    \Leftrightarrow m \leq \frac{x^{2} +
2x}{4 + 2x}

    Đặt g(x) = \frac{x^{2} + 2x}{4 + 2x}
\Rightarrow g'(x) = \frac{8x}{(4 + 2x)^{2}} > 0;\forall x \in
\lbrack 1;4brack

    \Rightarrow \min_{\lbrack
1;4brack}g(x) = g(1) = \frac{1}{2} \Rightarrow m \leq
\frac{1}{2}

    Vậy m \leq \frac{1}{2} là đáp án cần tìm.

  • Câu 9: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 10: Nhận biết
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, có đồ thị như hình vẽ bên:

    Xét tính đúng sai của các nhận định dưới đây?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 2;2\rbrack- 1. Đúng||Sai

    b) Giá trị nhỏ nhất của hàm số trên \lbrack 0; + \infty)- 5. Đúng||Sai

    c) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên ( - \infty;1\rbrack là 2. Sai||Đúng

    d) Hàm số đạt giá trị nhỏ nhất trên đoạn \lbrack - 1;2\rbrack tại điểm x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, có đồ thị như hình vẽ bên:

    Xét tính đúng sai của các nhận định dưới đây?

    a) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 2;2\rbrack- 1. Đúng||Sai

    b) Giá trị nhỏ nhất của hàm số trên \lbrack 0; + \infty)- 5. Đúng||Sai

    c) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên ( - \infty;1\rbrack là 2. Sai||Đúng

    d) Hàm số đạt giá trị nhỏ nhất trên đoạn \lbrack - 1;2\rbrack tại điểm x = 1. Đúng||Sai

    a. Đúng

    b. Đúng

    c. Sai

    d. Đúng

  • Câu 11: Thông hiểu
    Xác định giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Giá trị lớn nhất của hàm số y = x^{3} +
2x^{2} - 7x - 3 trên đoạn \lbrack -
1;2brack bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} + 4x -
7

    y' = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = - \dfrac{7}{3} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}
y(1) = - 7 \\
y(2) = - 1 \\
y( - 1) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}y = y( -
1) = 5

  • Câu 13: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị lớn nhất của hàm số trên đoạn [0;1] là:

  • Câu 14: Nhận biết
    Xác định tính đúng sai của từng phương án

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Đáp án là:

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Dựa vào bảng biến thiên trên \lbrack -
1;3brack ta có:

    m = f( - 1) = 0

    M = f(0) = 5

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    \begin{matrix}  y' = 4{x^3} - 4x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Chọn đáp án đúng

    Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.

  • Câu 16: Thông hiểu
    Tìm giá trị thực của tham số

    Tìm giá trị thực của tham số a để hàm số f(x) = - x^{3} - 3x^{2} +
a có giá trị nhỏ nhất trên đoạn \lbrack - 1;1brack bằng 0.

    Hướng dẫn:

    Đạo hàm f'(x) = - 3x^{2} -
6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 1;1brack \\
x = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = a - 2 \\
f(0) = a \\
f(1) = a - 4 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 1;1brack}f(x) = f(1) = a - 4

    Theo bài ra: \min_{\lbrack -
1;1brack}f(x) = 0 \Leftrightarrow a - 4 = 0 \Leftrightarrow a =
4

  • Câu 17: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số trên đoạn

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{3} - 3x}{x + 1} trên đoạn \lbrack 0;2brack bằng:

    Hướng dẫn:

    Ta có: y' = \frac{x^{2} + 2x - 3}{(x
+ 1)^{2}}

    \Rightarrow y' = 0 \Leftrightarrow
\frac{x^{2} + 2x - 3}{(x + 1)^{2}} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.. Khi đó \left\{ \begin{matrix}y(0) = 0 \\y(2) = - \dfrac{2}{3} \\y(1) = - 1 \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y = y(1) = -1.

  • Câu 18: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 19: Nhận biết
    Chọn khẳng định đúng

    Gọi giá trị nhỏ nhất của hàm số y =
\frac{x - 1}{x + 1} trên đoạn \lbrack 0;3brackm. Chọn khẳng định đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{2}{(x + 1)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên \lbrack
0;3brack suy ra \min_{\lbrack
0;3brack}y = f(0) = - 1 = m

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Hướng dẫn:

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo