Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 2 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm GTLN, GTNN của hàm số lượng giác

    Tìm GTLN, GTNN của hàm số lượng giác y = f\left( x ight) = \sin x + \cos x + \sin x.\cos x trên đoạn

    \left[ {0,\pi } ight]

    Hướng dẫn:

    Đặt t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} ight)

    x \in \left[ {0,\pi } ight] \Rightarrow t \in \left[ { - 1,\sqrt 2 } ight]

    Ta có:

    \begin{matrix}  {t^2} = {\left( {\sin x + \cos x} ight)^2} \hfill \\   = {\sin ^2}x + co{x^2}x + 2\sin x.\cos x \hfill \\   = 1 + 2\sin x.\cos x \hfill \\   \Rightarrow \sin x.\cos x = \dfrac{{{t^2} - 1}}{2} \hfill \\ \end{matrix}

    \begin{matrix}  f\left( x ight) = g\left( t ight) = t + \dfrac{{{t^2} - 1}}{2} = \dfrac{{{t^2}}}{2} + t - \dfrac{1}{2} \hfill \\  g'\left( t ight) = t + 1,g'\left( t ight) = 0 \Leftrightarrow t =  - 1 \hfill \\  g\left( { - 1} ight) =  - 1,g\left( {\sqrt 2 } ight) = \sqrt 2  + \dfrac{1}{2} \hfill \\ \end{matrix}

    \mathop { \Rightarrow \max f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  = \sqrt 2  + \frac{1}{2},\mathop {\min f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  =  - 1

     

  • Câu 2: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 3: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Hướng dẫn:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 4: Nhận biết
    Tính giá trị nhỏ nhất của hàm số

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
+ 3x^{2} trên \lbrack - 5; -
1brack?

    Hướng dẫn:

    Ta có: y' = 3x^{2} + 6x

    y' = 0 \Rightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.. Khi đó: y(
- 5) = - 50;y( - 2) = 4;y( - 1) = 2

    Vậy \min_{\lbrack - 5; - 1brack}y = f(
- 5) = - 50.

  • Câu 5: Thông hiểu
    Xác định m để hàm số nghịch biến trên khoảng

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết
    Tìm GTLN của hàm số

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 7: Nhận biết
    Tính tổng min và max của hàm số trên đoạn

    Cho hàm số f(x) liên tục trên \lbrack - 1;5brack và có đồ thị trên đoạn \lbrack - 1;5brack như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn \lbrack - 1;5brack bằng

    Hướng dẫn:

    Từ đồ thị ta thấy: \left\{ \begin{matrix}
M = \max_{\lbrack - 1;5brack}f(x) = 3 \\
n = \min_{\lbrack - 1;5brack}f(x) = - 2 \\
\end{matrix} ight.\  \Rightarrow M + n = 1.

  • Câu 8: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Giá trị lớn nhất của hàm số y = \frac{- x
+ 3}{x - 2} trên đoạn \lbrack -
2;0brack bằng

    Hướng dẫn:

    Ta có: D\mathbb{= R}\backslash\left\{ 2
ight\}

    y' = \frac{- 1}{(x - 2)^{2}} <
0;\forall x eq 2

    Suy ra hàm số nghịch biến trên đoạn \lbrack - 2;0brack.

    Do đó \max_{\lbrack - 2;0brack}y = y( -
2) = \frac{- ( - 2) + 3}{- 2 - 2} = - \frac{5}{4}

  • Câu 9: Nhận biết
    Tìm mệnh đề sai

    Cho hàm số y = f(x) liên tục trên \mathbb{R}, có bảng biến thiên như hình sau:

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hướng dẫn:

    Dựa vào BBT ta thấy hàm số không có GTLN, GTNN.

    Vậy khẳng định sai là: “Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng - 3.”

  • Câu 10: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x) xác định, liên tục trên\left\lbrack - 1,\frac{5}{2}
\right\rbrackvà có đồ thị là đường cong như hình vẽ.

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) trên \left\lbrack - 1,\frac{5}{2}
\right\rbrack là:

    Hướng dẫn:

    Dựa vào đồ thị M = 4,\ \ m = -
1.

  • Câu 11: Nhận biết
    Tìm giá trị biểu thức

    Cho hàm số y = x^{3} - 3x^{2} +
2. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;3brack lần lượt là P;Q. Khi đó P - Q bằng:

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 1) = - 2;f(0) = 2 \\
f(2) = - 2;f(3) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
P = 2 \\
Q = - 2 \\
\end{matrix} ight.\  \Rightarrow P - Q = 4

  • Câu 12: Nhận biết
    Cho hàm số y = f(x) có đồ thị sau:

    Toán 12 bài 2

    Giá trị nhỏ nhất của hàm số trên đoạn [0;2] là:

  • Câu 13: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Giá trị trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack 0;4brack bằng

    Hướng dẫn:

    Ta có f'(x) = 3x^{2} - 6x -
9.

    f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 3(tm) \\
\end{matrix} ight.

    Do đó f(0) = 10, f(3) = - 17, f(4) = - 10.

    Vậy \max_{\lbrack 0;4brack}f(x) = f(0)
= 10

  • Câu 14: Thông hiểu
    Tính tổng các phần tử của tập P

    Gọi P là tập tất cả các số nguyên dương của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 đồng biến trên khoảng (3; + \infty). Tính tổng tất cả các phần tử của tập P?

    Hướng dẫn:

    Theo yêu cầu bài toán \Leftrightarrow
y' = 4x^{3} - 4mx \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow 4x\left( x^{2} - m
ight) \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow m \leq x^{2};\forall x
\in (3; + \infty)

    Do đó m \leq 9 \Rightarrow P = \left\{
1;2;3;...;9 ight\}

    Vậy tổng tất cả các phần tử của tập P bằng 45.

  • Câu 15: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{4} - 2x^{2} + 5 trên đoạn \lbrack - 2;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 4x^3 -4x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 2;2brack \\
x = 1 \in \lbrack - 2;2brack \\
x = - 1 \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = f(2) = 13 \\
f( - 1) = f(1) = 4 \\
f(0) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;2brack}f(x) =
13

  • Câu 16: Nhận biết
    Xác định minf(x) trên đoạn

    Cho hàm số f(x) = x^{3} - 3x. Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;1brack?

    Hướng dẫn:

    Xét hàm số f(x) = x^{3} - 3x xác định trên tập số thực có:

    f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 2) = - 2 \\
f(1) = - 2 \\
f( - 1) = 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;1brack}f(x) = -
2

    Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.

  • Câu 17: Nhận biết
    Xác định GTLN của hàm số y = f(x)

    Tìm giá trị lớn nhất của hàm số y = 3\sin x - 4{\sin ^3}x trên khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) bằng:

    Hướng dẫn:

    Đặt \sin x = t \Rightarrow t \in \left( { - 1;1} ight)

    Khi đó:

    \begin{matrix}  f'\left( t ight) =  - 12{t^2} + 3 \hfill \\  f'\left( t ight) = 0 \Leftrightarrow t =  \pm \dfrac{1}{2} \hfill \\ \end{matrix}

    So sánh f\left( {\frac{1}{2}} ight)f\left( { - \frac{1}{2}} ight) ta thấy GTLN là f\left( {\frac{1}{2}} ight) = 1

  • Câu 18: Thông hiểu
    Tính giá trị biểu thức 3M + m

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 19: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số y = \frac{2x + 3}{x -
2}. Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 0;1brack. Khi đó giá trị của biểu thức S = M + m là:

    Hướng dẫn:

    Ta có: y' = \frac{- 7}{(x - 2)^{2}}
< 0;\forall x \in \lbrack 0;1brack

    Vậy \left\{ \begin{matrix}M = y(0) = - \dfrac{3}{2} \\m = y(1) = - 5 \\\end{matrix} ight.\  \Rightarrow S = M + m = -\dfrac{13}{2}

  • Câu 20: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Xác định giá trị lớn nhất của hàm số f(x)
= x^{3} - 3x + 2 trên đoạn \lbrack
- 1;3brack?

    Hướng dẫn:

    Ta có: f'(x) = 3x^{2} -
3

    \Rightarrow f'(x) = 0
\Leftrightarrow 3x^{2} - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \in \lbrack - 1;3brack \\
x = - 1 \in \lbrack - 1;3brack \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \underset{\lbrack - 1;3brack}{\max
f(x)} = 20 \Leftrightarrow x = 3

    Vậy đáp án cần tìm là 20.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo