Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Giá trị lớn nhất của hàm số
Điều kiện xác định
Xét hàm số trên
ta có:
Phương trình
Ta có:
Cho hàm số có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số
trên
bằng:
Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số trên
bằng
.
Cho hàm số liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy: tại
.
Suy ra .
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1
Ta có:
Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3
Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:
Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]
Ta có: f(x) ∈ [-2; 3] với =>
Cho hàm số . Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Tìm giá trị thực của tham số để hàm số
có giá trị lớn nhất trên đoạn
bằng
?
Xét hàm số trên đoạn
ta có:
Phương trình
Cho hàm số (với
là tham số thực) thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
TH1: loại
TH2: khi đó
Suy ra đáp án cần tìm là .
Gọi là giá trị cực tiểu của hàm số
trên
. Mệnh đề nào sau đây là đúng?
Ta có:
Qua điểm thì hàm số đổi dấu từ
sang
trong khoảng
.
Suy ra trên khoảng hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.
Vậy
Cho hàm số y = f(x) xác định, liên tục trên và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng
Tìm giá trị lớn nhất của hàm số trên
?
Ta có:
Cho hàm số liên tục trên đoạn
có đồ thị như hình vẽ:
Tìm giá trị nhỏ nhất của hàm số trên đoạn ?
Trên đoạn ta có:
và
Vậy .
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Giá trị lớn nhất của hàm số trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Cho hàm số xác định, liên tục trên
và có đồ thị như hình vẽ
Giá trị lớn nhất của hàm số trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Giá trị nhỏ nhất của hàm số trên
là:
Ta có: nên hàm đồng biến trên
Do đó
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Ta có:
tại
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
bằng:
Ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn bằng
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: