Tìm GTLN, GTNN của hàm số lượng giác trên đoạn
Đặt
Vì
Ta có:
Tìm GTLN, GTNN của hàm số lượng giác trên đoạn
Đặt
Vì
Ta có:
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Giá trị lớn nhất của hàm số trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Cho hàm số với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Tìm giá trị nhỏ nhất của hàm số trên
?
Ta có:
. Khi đó:
Vậy .
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số đã cho nghịch biến trên khoảng
khi và chỉ khi
Xét hàm số trên
ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có:
Do đó
Vậy thỏa mãn yêu cầu bài toán.
Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1
Ta có:
Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3
Cho hàm số liên tục trên
và có đồ thị trên đoạn
như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
bằng
Từ đồ thị ta thấy:
Giá trị lớn nhất của hàm số trên đoạn
bằng
Ta có:
Suy ra hàm số nghịch biến trên đoạn .
Do đó
Cho hàm số liên tục trên
, có bảng biến thiên như hình sau:
Trong các mệnh đề sau, mệnh đề nào sai?
Dựa vào BBT ta thấy hàm số không có GTLN, GTNN.
Vậy khẳng định sai là: “Hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
.”
Cho hàm số xác định, liên tục trên
và có đồ thị là đường cong như hình vẽ.
Giá trị lớn nhất và giá trị nhỏ nhất
của hàm số
trên
là:
Dựa vào đồ thị .
Cho hàm số . Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Khi đó
bằng:
Ta có:

Giá trị nhỏ nhất của hàm số trên đoạn [0;2] là:
Giá trị trị lớn nhất của hàm số trên đoạn
bằng
Ta có .
Do đó ,
,
.
Vậy
Gọi là tập tất cả các số nguyên dương của tham số
để hàm số
đồng biến trên khoảng
. Tính tổng tất cả các phần tử của tập
?
Theo yêu cầu bài toán
Do đó
Vậy tổng tất cả các phần tử của tập bằng
.
Tìm giá trị lớn nhất của hàm số trên đoạn
Đạo hàm
Ta có
Cho hàm số . Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Xét hàm số xác định trên tập số thực có:
Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.
Tìm giá trị lớn nhất của hàm số trên khoảng
bằng:
Đặt
Khi đó:
So sánh và
ta thấy GTLN là
Cho hàm số trên đoạn
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức
.
Xét hàm số trên đoạn
ta có:
=> là hàm số nghịch biến trên
=>
Cho hàm số . Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Xác định giá trị lớn nhất của hàm số trên đoạn
?
Ta có:
Ta có:
Vậy đáp án cần tìm là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: