Cho hàm số . Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Cho hàm số . Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Cho hàm số có bảng biến thiên như hình dưới đây.

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

Giá trị nhỏ nhất của hàm số trên đoạn [0;1] là:
Biết giá trị lớn nhất của hàm số trên đoạn
bằng
. Tìm giá trị của tham số
?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có:
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
Đạo hàm.
Suy ra hàm số đồng biến trên
Theo bài ra:
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn ?
Từ đồ thị hàm số ta có:
Khi đó .
Tìm giá trị lớn nhất của hàm số trên đoạn
?
Ta có:
.
Tìm tất cả các giá trị thực của tham số để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho hàm số xác định và liên tục trên
, có đồ thị như hình vẽ bên:

Xét tính đúng sai của các nhận định dưới đây?
a) Giá trị lớn nhất của hàm số trên đoạn là
. Đúng||Sai
b) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
c) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên là 2. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất trên đoạn tại điểm
. Đúng||Sai
Cho hàm số xác định và liên tục trên
, có đồ thị như hình vẽ bên:

Xét tính đúng sai của các nhận định dưới đây?
a) Giá trị lớn nhất của hàm số trên đoạn là
. Đúng||Sai
b) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
c) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên là 2. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất trên đoạn tại điểm
. Đúng||Sai
a. Đúng
b. Đúng
c. Sai
d. Đúng
Cho hàm số với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Giá trị lớn nhất của hàm số trên đoạn
bằng:
Ta có:
Khi đó:

Giá trị lớn nhất của hàm số trên đoạn [0;1] là:
Hàm số liên tục trên đoạn
và có bảng biến thiên như sau.
Gọi và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a) Sai|| Đúng
b) Sai|| Đúng
c) Đúng||Sai
d) Đúng||Sai
Hàm số liên tục trên đoạn
và có bảng biến thiên như sau.
Gọi và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a) Sai|| Đúng
b) Sai|| Đúng
c) Đúng||Sai
d) Đúng||Sai
Dựa vào bảng biến thiên trên ta có:
Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:
Tập xác định
Ta có bảng biến thiên

Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.
Tìm giá trị thực của tham số để hàm số
có giá trị nhỏ nhất trên đoạn
bằng
Đạo hàm
Ta có
Theo bài ra:
Giá trị nhỏ nhất của hàm số trên đoạn
bằng:
Ta có:
. Khi đó
.
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Giá trị lớn nhất của hàm số trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Gọi giá trị nhỏ nhất của hàm số trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn ?
Từ đồ thị hàm số ta có:
Khi đó .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: