Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Ứng dụng hình học của Tích phân CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính thể tích chi tiết máy

    Một chi tiết máy được thiết kế như hình vẽ bên.

    Các tứ giác ABCD,CDPQ là các hình vuông cạnh 2,5\ cm. Tứ giác ABEF là hình chữ nhật có BE = 3,5\ cm. Mặt bên PQEF được mài nhẵn theo đường parabol (P) có đỉnh parabol nằm trên cạnh EF. Tính thể tích của chi tiết máy gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Gọi hình chiếu của P,\ Q trên AFBERS.

    Vật thể được chia thành hình lập phương ABCD.PQRS có cạnh 2,5\ cm, thể tích V_{1} = \frac{125}{8}\ cm^{3} và phần còn lại có thể tích V_{2}.

    Khi đó thể tích vật thể V = V_{1} + V_{2}
= \frac{125}{8} + V_{2}.

    Đặt hệ trục Oxyz sao cho O trùng vớiF, Ox trùng với FA, Oy trùng với tia Fy song song với AD.

    Khi đó Parabol (P) có phương trình dạng y = ax^{2}, đi qua điểm P\left( 1;\frac{5}{2} \right) do đó a = \frac{5}{2} \Rightarrow y =
\frac{5}{2}x^{2}.

    Cắt vật thể bởi mặt phẳng vuông góc với Ox và đi qua điểm M(x;0;0),\ 0 \leq x \leq 1 ta được thiết diện là hình chữ nhật MNHK có cạnh là MN = \frac{5}{2}x^{2}MK = \frac{5}{2}

    Do đó diện tích S(x) =
\frac{25}{4}x^{2}

    Áp dụng công thức thể tích vật thể ta có V_{2} = \int_{0}^{1}{\frac{25}{4}x^{2}dx} =
\frac{25}{12}.

    Từ đó V = \frac{125}{8} + \frac{25}{12} =
\frac{425}{24}cm^{3}

  • Câu 2: Thông hiểu
    Tính thể tích chiếc lu

    Một khối cầu có bán kính 5dm, người ta cắt bỏ 2 phần bằng 2 mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu 3dm để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình x^{2} + y^{2} =
25 \Leftrightarrow y^{2} = 25 - x^{2} quay quanh trục Ox.

    Thể tích cái lu bằng;

    V = \pi\int_{- 3}^{3}{\left( 25 - x^{2}
ight)dx} = \pi\left. \ \left( 25x - \frac{x^{3}}{3} ight) ight|_{-
3}^{3} = 132\pi\left( dm^{3} ight)

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng
    Tính thể tích quả bóng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Gợi ý:

    Sử dụng phương trình chính tắc của Elip: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với 2a là độ dài trục lớn, 2b là độ dài trục nhỏ.

    Hướng dẫn:

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 5: Vận dụng cao
    Tính giá trị biểu thức

    Cho hàm số y = \frac{1}{2}x^{2} có đồ thị (P). Xét các điểm A;B \in (P) sao cho tiếp tuyến tại AB của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \frac{9}{4}. Gọi x_{1};x_{2} lần lượt là hoành độ của AB. Giá trị của \left( x_{1} + x_{2} ight)^{2} bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:y = \frac{1}{2}x^{2} có TXĐ: D\mathbb{= R}

    y' = x

    Giả sử A\left(
x_{1};\frac{1}{2}{x_{1}}^{2} ight),B\left(
x_{2};\frac{1}{2}{x_{2}}^{2} ight) \in (P)x_{1} eq x_{2}

    Phương trình tiếp tuyến tại điểm A của (P) là y = x_{1}\left( x - x_{1} ight) +
\frac{1}{2}{x_{1}}^{2}

    \Rightarrow y = x_{1}x -
\frac{1}{2}{x_{1}}^{2}\ \ \ \left( d_{1} ight)

    Phương trình tiếp tuyến tại điểm B của (P) là y = x_{2}\left( x - x_{2} ight) +
\frac{1}{2}{x_{2}}^{2}

    \Rightarrow y = x_{2}x -
\frac{1}{2}{x_{2}}^{2}\ \ \ \left( d_{2} ight)

    \left( d_{1} ight)\bot\left( d_{2}
ight) nên ta có: x_{1}x_{2} = - 1
\Leftrightarrow x_{2} = - \frac{1}{x_{1}}

    Phương trình đường thẳng AB

    \dfrac{x - x_{1}}{x_{2} - x_{1}} =\dfrac{y - \dfrac{1}{2}{x_{1}}^{2}}{\dfrac{1}{2}{x_{2}}^{2} -\dfrac{1}{2}{x_{1}}^{2}}

    \Leftrightarrow \frac{1}{2}\left( x -
x_{1} ight)\left( {x_{2}}^{2} - {x_{1}}^{2} ight) = \left( y -
\frac{1}{2}{x_{1}}^{2} ight)\left( x_{2} - x_{1} ight)

    \Leftrightarrow \left( x - x_{1}
ight)\left( x_{2} + x_{1} ight) = 2y - {x_{1}}^{2}

    \Leftrightarrow \left( x_{2} + x_{1}
ight)x - 2y - x_{1}x_{2} = 0

    \Leftrightarrow y =
\frac{1}{2}\left\lbrack \left( x_{2} + x_{1} ight)x - x_{1}x_{2}
ightbrack = \frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)x +
1 ightbrack

    Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

    S =
\frac{1}{2}\int_{x_{1}}^{x_{2}}{\left\lbrack \left( x_{1} + x_{2}
ight)x + 1 - x^{2} ightbrack dx}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left. \ \left\lbrack \left( x_{1} + x_{2}
ight)\frac{x^{2}}{2} + x - \frac{x^{3}}{3} ightbrack
ight|_{x_{1}}^{x_{2}}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)\left(
\frac{{x_{2}}^{2}}{2} - \frac{{x_{1}}^{2}}{2} ight) + \left( x_{2} -
x_{1} ight) - \frac{{x_{2}}^{3} - {x_{1}}^{3}}{3}
ightbrack

    \Leftrightarrow 27 = - 3\left(
x_{1}{x_{2}}^{2} - {x_{1}}^{3} + {x_{2}}^{3} - {x_{1}}^{2}x_{2} ight)
+ 6\left( x_{2} - x_{1} ight) - 2{x_{2}}^{3} +
2{x_{1}}^{3}

    \Leftrightarrow 27 = - 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight) + 6\left( x_{2} - x_{1} ight)

    \Leftrightarrow 27 = 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( {x_{1}}^{2} + {x_{2}}^{2} + 2 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( x_{2} - x_{1} ight)^{2}

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)^{3} \Leftrightarrow x_{2} - x_{1} = 3

    Thay x_{2} = - \frac{1}{x_{1}} ta có:

    - \frac{1}{x_{1}} - x_{1} = 3
\Leftrightarrow - 1 - {x_{1}}^{2} - 3x_{1} = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = \dfrac{- 3 - \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{2}{3 +\sqrt{5}} \\x_{1} = \dfrac{- 3 + \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{- 2}{- 3 +\sqrt{5}} \\\end{matrix} ight.

    \Rightarrow \left( x_{1} + x_{2}
ight)^{2} = 5

  • Câu 6: Vận dụng cao
    Tính thể tích V1

    Cho một vật thể bằng gỗ có dạng hình trụ với chiều cao và bán kính đáy cùng bằngR. Cắt khối gỗ đó bởi một mặt phẳng đi qua đường kính của một mặt đáy của khối gỗ và tạo với mặt phẳng đáy của khối gỗ một góc 30^{0} ta thu được hai khối gỗ có thể tích là V_{1}V_{2}, với V_{1} < V_{2}. Tính thể tích V_{1}.

    Hướng dẫn:

    Khi cắt khối gỗ hình trụ ta được một hình nêm có thể tích V_{1} như hình vẽ.

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Nửa đường tròn đường kính AB có phương trình là y = \sqrt{R^{2} -
x^{2}},x \in \lbrack -
R;R\rbrack.

    Một mặt phẳng vuông góc với trục Ox tại điểm M có hoành độ x, cắt hình nêm theo thiết diện là \Delta MNP vuông tại N và có \widehat{PMN} = 30^{0}.

    Ta có NM = y = \sqrt{R^{2} - x^{2}}
\Rightarrow NP = MN.tan30^{0} = \frac{\sqrt{R^{2} -
x^{2}}}{\sqrt{3}}.

    \Delta MNP có diện tích S(x) = \frac{1}{2}NM.NP = \frac{1}{2}.\frac{R^{2}
- x^{2}}{\sqrt{3}}.

    Thể tích hình nêm là

    V_{1} = \int_{-R}^{R}{S(x)}dx = \frac{1}{2}\int_{- R}^{R}\frac{R^{2} -x^{2}}{\sqrt{3}}dx= \frac{1}{2\sqrt{3}}\left. \ \left( R^{2}x -\frac{1}{3}x^{3} \right) \right|_{- R}^{R} =\frac{2\sqrt{3}R^{3}}{9}.

  • Câu 7: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho đường thẳng y = \frac{3}{4}x và parabol y = \frac{1}{2}x^{2} +
a, (a là tham số thực dương). Gọi S_{1}, S_{2} lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì giá trị biểu thức 128a + 3 bằng bao nhiêu?

    Đáp án: 30

    Đáp án là:

    Cho đường thẳng y = \frac{3}{4}x và parabol y = \frac{1}{2}x^{2} +
a, (a là tham số thực dương). Gọi S_{1}, S_{2} lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì giá trị biểu thức 128a + 3 bằng bao nhiêu?

    Đáp án: 30

    Ta có phương trình hoành độ giao điểm \frac{1}{2}x^{2} - \frac{3}{4}x + a = 0 \Leftrightarrow 2x^{2} - 3x + 4a =
0.

    Theo đề bài phương trình có hai nghiệm 0
< x_{1} < x_{2} thỏa mãn \left\{ \begin{matrix}
x_{1} + x_{2} = \frac{3}{2}\ \ \ \ (*) \\
x_{1}x_{2} = 2a\ \ \ \ \ \ (**) \\
\end{matrix} ight..

    S_{1} - S_{2} = 0

    \Leftrightarrow \int_{0}^{x_{1}}{\left|
\frac{1}{2}x^{2} - \frac{3}{4}x + a ight|dx} +
\int_{x_{1}}^{x_{2}}{\left| \frac{1}{2}x^{2} - \frac{3}{4}x + a
ight|dx} = 0

    \Leftrightarrow \int_{0}^{x_{2}}{\left|
\frac{1}{2}x^{2} - \frac{3}{4}x + a ight|dx} = 0

    \Leftrightarrow \left. \ \left|
\frac{1}{6}x^{3} - \frac{3}{8}x^{2} + ax ight| ight|_{0}^{x_{2}} =
0 \Leftrightarrow \left|
\frac{1}{6}x_{2}^{3} - \frac{3}{8}x_{2}^{2} + ax_{2} ight| =
0 \Rightarrow a = -
\frac{x_{2}^{2}}{6} + \frac{3x_{2}}{8} (***).

    Từ (*) \Rightarrow x_{1} = \frac{3}{2} -
x_{2}, thay vào (**)

    \Rightarrow \left( \frac{3}{2} - x_{2}
ight)x_{2} = - \frac{x_{2}^{2}}{3} + \frac{3x_{2}}{4}

    \Leftrightarrow \frac{2x_{2}^{2}}{3} -
\frac{3x_{2}}{4} = 0 \Rightarrow
x_{2} = \frac{9}{8} \overset{(***)}{ightarrow}a =
\frac{27}{128}.

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Đáp án là:

    Kiến trúc sư thiết kế một khu sinh hoạt cộng đồng có dạng hình chữ nhật với chiều rộng và chiều dài lần lượt là 60 m và 80 m. Trong đó, phần được tô màu đậm là sân chơi, phần còn lại để trồng hoa. Mỗi phần trồng hoa có đường biên cong là một phần của parabol với đỉnh thuộc một trục đối xứng của hình chữ nhật và khoảng cách từ đỉnh đó đến trung điểm cạnh tương ứng của hình chữ nhật bằng 20 m (xem hình minh họa). Diện tích của phần sân chơi là bao nhiêu mét vuông?

    Đáp án: 3200 m^{2}

    Gắn hệ trục tọa độ Oxy như hình vẽ:

    Ta có: A(30;0),B(0;20)

    \Rightarrow (P):y = \frac{- 1}{45}x^{2}
+ 20

    Khi đó diện tích phần parabol là:

    4\int_{0}^{30}{\left( \frac{-
1}{45}x^{2} + 20 ight)dx} = 1600\left( m^{2} ight)

    Vậy diện tích toàn phần của sân chơi là: 60.80 - 1600 = 3200\left( m^{2}
ight)

  • Câu 9: Vận dụng cao
    Ghi đáp án vào ô trống

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Đáp án là:

    Một cổng chào có dạng hình Parabol chiều cao 18\ \ m, chiều rộng chân đế 12\ \ m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \frac{AB}{CD} =
\frac{1}{\sqrt[n]{a}} , tính n +
a?

    Đáp án: 5

    Chọn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình Parabol có dạng y = a.x^{2}\
\ \ (P).

    Do (P) đi qua điểm có tọa độ ( - 6; - 18) suy ra: - 18 = a.( - 6)^{2} \Leftrightarrow a = -
\frac{1}{2} \Rightarrow (P):y = -
\frac{1}{2}x^{2}.

    Từ hình vẽ ta có: \frac{AB}{CD} =
\frac{b}{d}.

    Diện tích hình phẳng giới bạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng AB:y = - \frac{1}{2}b^{2} là:

    S_{1} = 2\int_{0}^{b}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}b^{2} ight) ightbrack
dx}\left.= 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}b^{2}x
ight) ight|_{0}^{b} = \frac{2}{3}b^{3}.

    Diện tích hình phẳng giới hạn bởi Parabol (P):y = - \frac{1}{2}x^{2} và đường thẳng CD :y =
- \frac{1}{2}d^{2} là :

    S_{2} = 2\int_{0}^{d}{\left\lbrack -
\frac{1}{2}x^{2} - \left( - \frac{1}{2}d^{2} ight) ightbrack
dx}\left. \  = 2\left( - \frac{1}{2}.\frac{x^{3}}{3} + \frac{1}{2}d^{2}x
ight) ight|_{0}^{d} = \frac{2}{3}d^{3}

    Từ giả thiết suy ra S_{2} = 2S_{1}
\Leftrightarrow d^{3} = 2b^{3} \Leftrightarrow \frac{b}{d} =
\frac{1}{\sqrt[3]{2}}.

    Do đó \frac{AB}{CD} = \frac{b}{d} =
\frac{1}{\sqrt[3]{2}} \Rightarrow n = 3;a = 2 nên n + a = 5.

  • Câu 10: Vận dụng
    Ghi đáp án chính xác vào ô trống

    Chuẩn bị cho lễ Giáng Sinh, bạn Lan đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. Biết rằng OO' =
7cm, OA = 8cm, OB = 16 cm, đường cong AB là một phần của parabol có đỉnh là điểmA. Thể tích của chiếc mũ. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 1944.

    Đáp án là:

    Chuẩn bị cho lễ Giáng Sinh, bạn Lan đã làm một chiếc mũ “cách điệu” cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trục của chiếc mũ như hình vẽ bên dưới. Biết rằng OO' =
7cm, OA = 8cm, OB = 16 cm, đường cong AB là một phần của parabol có đỉnh là điểmA. Thể tích của chiếc mũ. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 1944.

    Kí hiệu tọa độ các điểm như hình vẽ:

    Ta gọi thể tích của chiếc mũ là V.

    Thể tích của khối trụ có bán kính đáy bằng OA = 8 cm và đường cao OO' = 7 cm là V_{1}.

    Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong ABvà hai trục tọa độ quanh trục OyV_{2}.

    Ta có V = V_{1} + V_{2}

    V_{1} = 7.8^{2}\pi = 448\pi \left( cm^{3} ight).

    Chọn hệ trục tọa độ như hình vẽ.

    Do parabol có đỉnh A nên nó có phương trình dạng (P):y = a(x -
8)^{2}.

    (P) qua điểm B(0;16) nên a
= \frac{1}{4}.

    Do đó, (P):y = \frac{1}{4}(x -
8)^{2}.

    Từ đó suy ra x = 8 -
2\sqrt{y} (do x <
8).

    Suy ra V_{2} = \pi\int_{0}^{16}{\left( 8
- 2\sqrt{y} ight)^{2}dy} = \frac{512}{3}\pi \left( cm^{3} ight).

    Do đó V = V_{1} + V_{2} =
\frac{512}{3}\pi + 448\pi = \frac{1856}{3}\pi \approx 1944 \left( cm^{3} ight).

  • Câu 11: Vận dụng cao
    Tính giá trị thể tích nhỏ nhất

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Một họa tiết hình cánh bướm như hình vẽ bên.

    Phần tô đậm được đính đá với giá thành 500.000đ/m^{2}. Phần còn lại được tô màu với giá thành 250.000đ/m^{2}.

    Cho AB = 4dm;BC = 8dm. Hỏi để trang trí 1000 họa tiết như vậy cần số tiền bỏ ra là bao nhiêu?

    Hướng dẫn:

    Vì AB = 4dm;BC = 8dm. \Rightarrow A( -
2;4),B(2;4),C(2; - 4),D( - 2; - 4).

    Parabol là: y = x^{2} hoặc y = - x^{2}

    Diện tích phần tô đậm là S_{1} =
4\int_{0}^{2}{x^{2}dx = \frac{32}{3}\begin{matrix}
\\
\end{matrix}(dm^{2})}

    Diện tích hình chữ nhật là S = 4.8 =
32\begin{matrix}
\\
\end{matrix}(m^{2})

    Diện tích phần trắng là S_{2} = S - S_{1}
= 32 - \frac{32}{3} = \frac{64}{3}\begin{matrix}
\\
\end{matrix}(dm^{2})

    Tổng chi phí trang chí là: T = \left(
\frac{32}{3}.5000 + \frac{64}{3}.2500 \right).1000 \approx
106666667đ

  • Câu 13: Vận dụng
    Ghi đáp án đúng vào ô trống

    Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là 660 \times 380mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).

    Đáp án: 18,8

    Đáp án là:

    Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là 660 \times 380mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).

    Đáp án: 18,8

    Chọn hệ trục tọa độ Oxy thích hợp với đơn vị trên trục là decimet.

    Phương trình elip lọt lòng: (E):\frac{x^{2}}{3,1^{2}} + \frac{y^{2}}{1,7^{2}}
= 1 \Leftrightarrow y = \pm 1,7\sqrt{1 -
\frac{x^{2}}{3,1^{2}}}.

    Thể tích chứa nước của bồn rửa: V =
\frac{1}{2}.\pi\int_{- 3,1}^{3,1}{1,7^{2}\left( 1 -
\frac{x^{2}}{3,1^{2}} ight)dx} \approx 18,8 lít.

  • Câu 14: Thông hiểu
    Tính thể tích V

    Tính thể tích V của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = x^{2} + 1;y = x^{3} + 1 quay quanh Ox.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm:

    x^{2} + 1 = x^{3} + 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Thể tích khối tròn xoay cần tính là:

    V = \pi\int_{0}^{1}{\left| \left( x^{2}
+ 1 ight)^{2} - \left( x^{3} + 1 ight)^{2} ight|dx}

    = \pi\left| \int_{0}^{1}{\left\lbrack
\left( x^{2} + 1 ight)^{2} - \left( x^{3} + 1 ight)^{2}
ightbrack dx} ight|

    = \pi\left| \int_{0}^{1}{\left( - x^{6}
+ x^{4} - 2x^{3} + 2x^{2} ight)dx} ight|

    = \pi\left| \left. \ \left( -
\frac{1}{7}x^{7} + \frac{1}{5}x^{5} - \frac{1}{2}x^{4} +
\frac{2}{3}x^{3} ight) ight|_{0}^{1} ight| =
\frac{47\pi}{210}

  • Câu 15: Thông hiểu
    Tính diện tích hình phẳng

    Cho hàm số y = x^{2} - 2x có đồ thị (P). Các tiếp tuyến với đồ thị tại O(0;0) và tại A(3;3) cắt nhau tại B. Tính diện tích hình phẳng giới hạn bởi cung OA của (P) và hai tiếp tuyến BO;BA?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    y' = 2x - 2

    Tiếp tuyến tại O(0; 0) là OB: y =
y'(0)(x - 0) + 0 \Leftrightarrow y = - 2x

    Tiếp tuyến tại A(3; 3) là AB: y =
y'(3)(x - 3) + 3 \Leftrightarrow y = 4x - 9

    Suy ra OA \cap OB = B\left( \frac{3}{2};
- 3 ight)

    Diện tích hình giới hạn là

    S = \int_{0}^{\frac{3}{2}}{x^{2}dx} +
\int_{\frac{3}{2}}^{3}{\left( x^{2} - 6x + 9 ight)dx} = \frac{9}{8} +
\frac{9}{8} = \frac{9}{4}

  • Câu 16: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Người ta thiết kế một mẫu gạch lát nền nhà có dạng hình vuông cạnh 4dm. Bốn góc viên gạch màu trắng, phần ở giữa màu đen (Hình vẽ tham khảo).

    Đường viền của phần màu đen bao gồm bốn đoạn thẳng nằm trên các cạnh hình vuông và bốn đường cong có tính chất: Tích khoảng cách từ một điểm bất kì thuộc đường cong đó đến hai trục đối xứng của viên gạch (hai đường thẳng đi qua tâm viên gạch và lần lượt song song với hai cạnh vuông góc) bằng 2dm^{2}. Hãy cho biết phần màu đen có diện tích bằng bao nhiêu decimét vuông (làm tròn kết quả đến hàng phần mười)?

    Đáp án: 13,5

    Đáp án là:

    Người ta thiết kế một mẫu gạch lát nền nhà có dạng hình vuông cạnh 4dm. Bốn góc viên gạch màu trắng, phần ở giữa màu đen (Hình vẽ tham khảo).

    Đường viền của phần màu đen bao gồm bốn đoạn thẳng nằm trên các cạnh hình vuông và bốn đường cong có tính chất: Tích khoảng cách từ một điểm bất kì thuộc đường cong đó đến hai trục đối xứng của viên gạch (hai đường thẳng đi qua tâm viên gạch và lần lượt song song với hai cạnh vuông góc) bằng 2dm^{2}. Hãy cho biết phần màu đen có diện tích bằng bao nhiêu decimét vuông (làm tròn kết quả đến hàng phần mười)?

    Đáp án: 13,5

    Gắn trục toạ độ Oxy vào viên gạch sao cho hai trục trùng với hai đường đối xứng, gốc O ở tâm hình vuông như hình dưới.

    Giả sử toạ độ một điểm nằm trên đường viền cong là (x;y).

    Theo giả thiết, ta có: |xy| =
2.

    Suy ra y = \frac{2}{x} hoặc y = \frac{- 2}{x}.

    Ứng với hình bên, ta có các đường viền cong AK,DE là một phần của đồ thị hàm số y = \frac{- 2}{x}; các đường viền cong BC,GH là một phần của đồ thị hàm số y = \frac{2}{x}.

    Khi đó, diện tích phần màu đen bằng:

    \int_{- 2}^{- 1}\left| \frac{- 2}{x} -
\frac{2}{x} ight|dx + \int_{1}^{2}\left| \frac{2}{x} - \frac{- 2}{x}
ight|dx + S_{ABEG}

    = \int_{- 2}^{- 1}\left( \frac{- 2}{x} -
\frac{2}{x} ight)dx + \int_{1}^{2}\left( \frac{2}{x} - \frac{- 2}{x}
ight)dx + 4.2

    = \left. \  - 4\ln|x| ight|_{- 2}^{- 1}
+ \left. \ 4\ln|x| ight|_{1}^{2} + 8 \approx 13,5\left( dm^{2}
ight)

  • Câu 17: Thông hiểu
    Tính thời gian bơm nước theo yêu cầu

    Người ta thay nước mới cho một bể bơi có dạng hình hộp chữ nhật có độ sâu là 280cm. Giả sử h(t)là chiều cao (tính bằng cm) của mực nước bơm được tại thời điểm t giây, biết rằng tốc độ tăng của chiều cao mực nước tại giây thứ th'(t) = \frac{1}{500}\sqrt[3]{t} và lúc đầu hồ bơi không có nước. Hỏi sau bao lâu thì bơm được số nước bằng \frac{3}{4} độ sâu của hồ bơi?

    Hướng dẫn:

    Gọi x là thời điểm bơm được số nước bằng \frac{3}{4} độ sâu của bể (x tính bằng giây).

    Ta có: \int_{0}^{x}{\frac{1}{500}\sqrt[3]{t}dt} =
\frac{3}{4}.280\left. \  \Rightarrow \frac{3}{4}t^{\frac{4}{3}}
\right|_{0}^{x} = 105000

    \Rightarrow x\sqrt[3]{x} =
140000

    \Rightarrow \sqrt[3]{x^{4}} = 140000
\Rightarrow x \approx 7237,6242 giây

    Vậy sau 7237,6242 giây thì bơm được số nước bằng \frac{3}{4} độ sâu của hồ bơi.

  • Câu 18: Vận dụng
    Tính thể tích của vật thể

    Cho một mô hình 3 - D mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài 5\ (cm); khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thứcy = 3 -
\frac{2}{5}x (cm), với x(cm) là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị cm^{3}) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )

    Hướng dẫn:

    Xét một thiết diện parabol có chiều cao là h và độ dài đáy 2h và chọn hệ trục Oxy như hình vẽ trên.

    Parabol (P) có phương trình (P):y = ax^{2} + h,(a < 0)

    B(h;0) \in (P) \Leftrightarrow 0 = ah^{2} + h \Leftrightarrow a = - \frac{1}{h}(do\ h >
0)

    Diện tích S của thiết diện: S = \int_{- h}^{h}{\left( - \frac{1}{h}x^{2}
+ h \right)dx} = \frac{4h^{2}}{3}, h = 3 - \frac{2}{5}x

    \Rightarrow S(x) = \frac{4}{3}\left( 3 -
\frac{2}{5}x \right)^{2}

    Suy ra thể tích không gian bên trong của đường hầm mô hình: V = \int_{0}^{5}{S(x)dx} =
\int_{0}^{5}{\frac{4}{3}\left( 3 - \frac{2}{5}x \right)^{2}dx} \approx
28,888

    \Rightarrow V \approx 29\ \ \left(
cm^{3} \right)

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng
    Tính tích phân

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo