Đồ thị hàm số có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Đồ thị hàm số có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Biết rằng đồ thị hàm số nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng
Ta có:
là TCN;
là TCĐ.
Từ giả thiết, ta có
Cho hàm số có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số là:
Đường thẳng là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số
nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?
Nhận thấy các đáp án ;
;
là các hàm số có TXĐ:
nên không có TCĐ.
Dùng phương pháp loại trừ thì đúng.
(Thật vậy; hàm số có
là TCĐ)
Cho hàm số xác định trên
, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Mệnh đề nào sau đây là đúng?
Dựa vào bảng biến thiên, ta có nhận xét như sau:
“Đồ thị hàm số có một đường tiệm cận đứng” đúng vì là tiệm cận đứng của đồ thị hàm số.
“Hàm số đạt cực tiểu tại ” sai vì tại
hàm số không xác định.
“Giá trị lớn nhất của hàm số là 2” sai vì hàm số đạt giá trị lớn nhất bằng trên khoảng
mà không đạt giá trị lớn nhất trên khoảng
.
“Hàm số không có cực trị” sai vì đạo hàm đổi dấu từ
sang
khi đi qua điểm
là điểm cực đại của hàm số.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Tập xác định
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận ngang là đường thẳng
.
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Tập hợp tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Tìm giá trị thực của tham số để đồ thị hàm sô
có đường tiệm cận đứng đi qua điểm
TXĐ: .
Ta có là TCĐ.
Do đó yêu cầu bài toán .
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đường tiệm cận ngang.
Đồ thị hàm số có đường tiệm cận ngang khi và chỉ khi các giới hạn
và
tồn tại hữu hạn.
Ta có:
Với .
Khi đó suy ra đồ thị không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định:
nên ta không xét trường hợp
hay
được.
Do đó hàm số không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định
và
là TCN.
Cho hàm số y = f(x) liên tục trên tập số thực và . Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số
có tiệm cận ngang nằm bên dưới đường thẳng y = -1.
Điều kiện
Do
Từ đó
Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng
Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì
Vì
Tìm trên đồ thị hàm số những điểm
sao cho khoảng cách từ
đến tiệm cận đứng bằng ba lần khoảng cách từ
đến tiệm cận ngang của đồ thị.
Gọi với
là điểm thuộc đồ thị.
Đường tiệm cận đứng đường tiệm cận ngang
.
Ycbt
.
Áp dụng công thức giải nhanh.
Với .
Suy ra .
Tập hợp tất cả các giá trị của tham số để đồ thị hàm số
có đúng hai đường tiệm cận?
Ta có:
Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang . Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.
Tam thức có
Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:
Vậy .
Cho hàm số có bảng biến thiên như sau:
Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Từ bảng biến thiên, ta có:
đồ thị hàm số không có tiệm cận ngang;
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số đã cho có đúng hai đường tiệm cận.
Cho hàm số . Biết đồ thị hàm số đã cho đi qua điểm
và có đường tiệm cận ngang là
. Giá trị
bằng:
Để tồn tại các đường tiệm cận của đồ thị hàm số thì
Khi đó phương trình đường tiệm cận ngang là
Điều kiện để đồ thị hàm số có tiệm cận là
=> Đồ thị hàm số đi qua điểm nên
Đồ thị hàm số có đường tiệm cận ngang là (thỏa mãn)
Vậy
Biết đồ thị hàm số nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:
Điều kiện để đồ thị hàm số có tiệm cận ngang là bậc f(x) không lớn hơn bậc của g(x).
Điều kiện để đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số là x0 là nghiệm của g(x) nhưng không là nghiệm của f(x) hoặc x0 là nghiệm bội n của g(x) đồng thời là nghiệm bội m của f(x) và m < n
Điều kiện
Phương trình đường tiệm cận ngang của đồ thị hàm số là
=>
Đặt
Nhận thấy với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0
=> n – 6 = 0 => n = 6
Kết hợp với (*) => m = 3
Vậy m + n = 9
Tồn tại đúng một điểm M(a,b) trên đường cong sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng một tiệm cận ngang và đúng một tiệm cận đứng.
Ta có là tiệm cận ngang với mọi
Để đồ thị hàm số có đúng một tiệm cận ngang và đúng một tiệm cận đứng
Phương trình
có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có một nghiệm bằng
Tìm tập hợp các giá trị thực của m để đồ thị hàm số có tiệm cận đứng là:
Để tồn tại các đường tiệm cận của đồ thị hàm số thì
Khi đó phương trình đường tiệm cận đứng là
Điều kiện để đồ thị hàm số có tiệm cận là
Cho hàm số xác định và liên tục trên
, có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng?
Từ bảng biến thiên, ta có:
là TCĐ.
là TCN.
Vậy đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: