Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 3 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng:

    Tồn tại đúng một điểm M(a,b) trên đường cong y = \frac{1}{x-1} sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.

  • Câu 2: Thông hiểu
    Tìm m thỏa mãn yêu cầu bài toán

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng
    Chọn đáp án đúng:

    Đường thẳng y = kx + m vừa là tiếp tuyến của đường cong y = \frac{x+2}{2x+3}, vừa cắt hai trục toạ độ A, B sao cho tam giác OAB cân tại gốc tạo độ O. Tính giá trị của biểu thức S = m + k

  • Câu 5: Thông hiểu
    Chọn đáp án chính xác

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D = \lbrack -
1;1brack\backslash\left\{ 0 ight\}

    Vì tập xác định của hàm số không chứa -
\infty+ \infty nên đồ thị hàm số không có đường tiệm cận ngang.

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  + \infty  \hfill \\ 
\end{gathered}  ight.. Vậy đồ thị hàm số có 1 đường tiệm cận đứng x = 0.

  • Câu 6: Vận dụng
    Tìm số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 7: Vận dụng
    Tìm m để đồ thị hàm số có tiệm cận ngang

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 8: Vận dụng
    Tính giá trị biểu thức S

    Biết rằng đồ thị hàm số y = \frac{(m - 2n
- 3)x + 5}{x - m - n} nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng S = m^{2} + n^{2} -
2.

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{(m - 2n - 3)x + 5}{x - m - n} = m -
2n - 3 \Rightarrow y = m - 2n -
3 là TCN;

    \left| \lim_{x ightarrow (n + m)^{+}}y
ight| = + \infty ightarrow x = m + n là TCĐ.

    Từ giả thiết, ta có

    \left\{ \begin{matrix}
m + n = 0 \\
m - 2n - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = - 1 \\
\end{matrix} ight.

    \Rightarrow S = m^{2} + n^{2} - 2 =
0

  • Câu 9: Vận dụng cao
    Chu vi tam giác IAB nhỏ nhất

    Cho hàm số y = \frac{{x + 2}}{{x - 2}} có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:

    Hướng dẫn:

    Đồ thị hàm số y = \frac{{x + 2}}{{x - 2}} có tiệm cận đứng là x = 2 và tiệm cận ngang là y = 1 => I(2; 1)

    Gọi M\left( {a;\frac{{a + 2}}{{a - 2}}} ight) \in \left( C ight),\left( {a e 2} ight) khi đó ta có phương trình tiếp tuyến tại M là y = \frac{{ - 4}}{{{{\left( {a - 2} ight)}^2}}}.\left( {x - a} ight) + \frac{{a + 2}}{{a - 2}},\left( d ight)

    Ta có:

    \begin{matrix}  d \cap x = 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = \dfrac{{ - 4}}{{{{\left( {a - 2} ight)}^2}\left( {x - a} ight)}} + \dfrac{{a + 2}}{{a - 2}}} \end{array}} ight. \Rightarrow A\left( {2;\dfrac{{a + 6}}{{a - 2}}} ight) \hfill \\  d \cap y = 1 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y = 1} \\   {y = \dfrac{{ - 4}}{{{{\left( {a - 2} ight)}^2}\left( {x - a} ight)}} + \dfrac{{a + 2}}{{a - 2}}} \end{array}} ight. \Rightarrow B\left( {2a - 2;1} ight) \hfill \\ \end{matrix}

    Khi đó \left\{ {\begin{array}{*{20}{c}}  {IA = \left| {\dfrac{{a + 6}}{{a - 2}} + 1} ight| = \dfrac{8}{{\left| {a - 2} ight|}}} \\   {IB = \left| {2a - 4} ight|} \end{array}} ight. \Rightarrow IA.IB = \dfrac{8}{{\left| {a - 2} ight|}}.\left| {2a - 4} ight| = 16

    Ta lại có tam giác IAB vuông tại I nên bán kính đường tròn ngoại tiếp tam giác IAB là R = \frac{{AB}}{2} = \frac{{\sqrt {I{A^2} + I{B^2}} }}{2}

    Mặt khác I{A^2} + I{B^2} \geqslant 2IA.IB = 32 \Rightarrow R \geqslant \frac{{\sqrt {32} }}{2} = 2\sqrt 2

    Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng: {C_{\min }} = 2\pi R = 4\pi \sqrt 2

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Xác định số đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x^{2} + 1}}{x + 1}?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    \lim_{x ightarrow - 1^{+}}f(x) = +
\infty nên đồ thị hàm số nhận đường thẳng x = - 1 làm đường tiệm cận đứng.

    \lim_{x ightarrow - \infty}f(x) =\lim_{x ightarrow - \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow - \infty}\dfrac{- \sqrt{1 + \dfrac{1}{x^{2}}}}{1 +\dfrac{1}{x}} = - 1 nên đồ thị hàm số nhận đường thẳng y = - 1 làm đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =\lim_{x ightarrow + \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow + \infty}\dfrac{\sqrt{1 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}}= 1 nên đồ thị hàm số nhận đường thẳng y = 1 làm đường tiệm cận ngang.

    vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.

  • Câu 11: Thông hiểu
    Tìm số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến như sau:

    Số đường tiệm cận của đồ thị hàm số là:

    Hướng dẫn:

    Từ bảng biến thiên của hàm số ta có:

    +\lim_{x ightarrow - \infty}y =
0;\lim_{x ightarrow + \infty}y = 0 \Rightarrowđồ thị hàm số nhận đường thẳng y = 0 là tiệm cận ngang.

    +\lim_{x ightarrow ( - 3)^{-}}y = +
\infty;\lim_{x ightarrow ( - 3)^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = - 3 là tiệm cận đứng.

    +\lim_{x ightarrow 3^{-}}y = +
\infty;\lim_{x ightarrow 3^{+}} = - \infty \Rightarrowđồ thị hàm số nhận đường thẳng x = 3là tiệm cận đứng.

    Vậy số đường tiệm cận của đồ thị hàm số là 3.

  • Câu 12: Thông hiểu
    Xác định tiệm cận đứng của đồ thị hàm số

    Tìm số tiệm cận đứng của đồ thị hàm số y
= \frac{x^{2} - 3x - 4}{x^{2} - 16}.

    Hướng dẫn:

    Xét phương trình x^{2} - 16 = 0\
\  \Leftrightarrow \ \ x = \pm 4.

    Ta có:

    \lim_{x ightarrow \  - 4}y = \lim_{x
ightarrow \  - 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x
ightarrow \  - 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x
ightarrow \  - 4}\frac{x + 1}{x + 4} = \infty ightarrow x = -
4 là TCĐ;

    \lim_{x ightarrow \ 4}y = \lim_{x
ightarrow \ 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x ightarrow
\ 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x ightarrow \
4}\frac{x + 1}{x + 4} = \frac{5}{8}ightarrow x = 4 không là TCĐ.

    Vậy đồ thị hàm số có duy nhất một tiệm cận đứng.

  • Câu 13: Vận dụng
    Tìm m để đồ thị hàm số không có tiệm cận đứng

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{2x^{2} - 3x + m}{x - m} không có tiệm cận đứng.

    Hướng dẫn:

    TXĐ: D\mathbb{= R}\backslash\left\{ m
ight\}.

    Ta có y = \frac{(x - m)(2x + 2m - 3) +
2m(m - 1)}{x - m} = 2x + 2m - 3 +
\frac{2m(m - 1)}{x - m}

    Để đồ thị hàm số không có tiệm cận đứng thì các giới hạn \lim_{x ightarrow m^{\pm}}y tồn tại hữu hạn \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 0 \\
\end{matrix} ight.\ .

    Cách 2. (Chỉ áp dụng cho mẫu thức là bậc nhất)

    Từ yêu cầu bài toán suy ra phương trình 2x^{2} - 3x + m = 0 có một nghiệm là x = m

    \Rightarrow 2m^{2} - 3m + m = 0 \Leftrightarrow 2m(m - 1) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 14: Vận dụng
    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} + 1}{x^{2}
- |x| - 2} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{x^{2} + 1}{x^{2} - |x| - 2} =
1\overset{}{ightarrow}y = 1 là TCN.

    Xét phương trình x^{2} - |x| - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
\lim_{x ightarrow 2^{+}}y = \lim_{x ightarrow 2^{+}}\frac{x^{2} +
1}{x^{2} - |x| - 2} = + \infty \\
\lim_{x ightarrow 2^{-}}y = \lim_{x ightarrow 2^{-}}\frac{x^{2} +
1}{x^{2} - |x| - 2} = - \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}x = 2 là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow - 2^{+}}y = \lim_{x ightarrow - 2^{+}}\frac{x^{2}
+ 1}{x^{2} - |x| - 2} = - \infty \\
\lim_{x ightarrow - 2^{-}}y = \lim_{x ightarrow - 2^{-}}\frac{x^{2}
+ 1}{x^{2} - |x| - 2} = + \infty \\
\end{matrix} ight.\ \overset{}{ightarrow}x = - 2 là TCĐ.

    Vậy đồ thị hàm số đã cho có ba đường tiệm cận.

  • Câu 15: Vận dụng
    Tìm m để đồ thị hàm số có 2 tiệm cận ngang

    Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = \frac{x + 1}{\sqrt{mx^{2} + 1}} có hai tiệm cận ngang.

    Hướng dẫn:

    Khi m > 0, ta có:

    \lim_{x ightarrow + \infty}\frac{x +
1}{\sqrt{mx^{2} + 1}} = \lim_{x ightarrow + \infty}\frac{1 +
\frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}} = \frac{1}{\sqrt{m}}ightarrow y = \frac{1}{\sqrt{m}} là TCN ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{m +
\frac{1}{x^{2}}}} = \frac{- 1 - \frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}}
= - \frac{1}{\sqrt{m}}ightarrow y = - \frac{1}{\sqrt{m}} là TCN.

    Với m = 0 suy y = \frac{x + 1}{1} suy ra đồ thị hàm số không có tiệm cận.

    Với m < 0 thì hàm số có TXĐ là một đoạn nên đồ thị hàm số không có TCN.

    Vậy với m > 0 thì đồ thị hàm số có hai tiệm cận ngang.

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Hướng dẫn:

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 17: Vận dụng
    Tìm các giá trị tham số m

    Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 3x + m} có đúng hai đường tiệm cận?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow +
\infty}\frac{x - 1}{x^{2} - 3x + m} = \lim_{x ightarrow -
\infty}\frac{x - 1}{x^{2} - 3x + m} = 0

    Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang y = 0. Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.

    Tam thức h(x) = x^{2} - 3x + m\Delta = 9 - 4m

    Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:

    \left[ \begin{gathered}
  \Delta  = 9 - 4m = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  = 9 - 4m > 0 \hfill \\
  h\left( 1 ight) = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy m \in \left\{ 2;\frac{9}{4}
ight\}.

  • Câu 18: Vận dụng
    Tìm m để đồ thị có 1 tiệm cận ngang

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x - 3}{x + \sqrt{mx^{2} + 4}} có đúng một tiệm cận ngang.

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{x - 3}{x + \sqrt{mx^{2} + 4}} = \frac{1}{1 +
\sqrt{m}} với m \geq
0;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x - 3}{x + \sqrt{mx^{2} + 4}} = \frac{1}{1 -
\sqrt{m}} với m \geq 0,m eq
1.

    Nếu m = 1 thì \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{(x - 3)\left( \sqrt{x^{2} + 4} - x
ight)}{4}= \lim_{x ightarrow - \infty}x^{2}.\frac{\left( 1 -
\frac{3}{x} ight)\left( - \sqrt{1 + \frac{4}{x^{2}}} - 1 ight)}{4} =
- \infty suy ra hàm số chỉ có đúng một TCN là y = \frac{1}{2} (Do\lim_{x ightarrow + \infty}y =
\frac{1}{2} khi m = 1)

    Do đó giá trị m = 1 thỏa yêu cầu bài toán.

    Nếu \left\{ \begin{matrix}
m \geq 0 \\
m eq 1 \\
\end{matrix} ight., để đồ thị hàm số có một tiệm cận ngang \Leftrightarrow \frac{1}{1 + \sqrt{m}} =
\frac{1}{1 - \sqrt{m}} \Leftrightarrow m = 0.

    Vậy m = 0,m = 1 thỏa mãn yêu cầu bài toán.

  • Câu 19: Vận dụng
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x + 2}{x^{2} - 4x + m} có tiệm cận ngang mà không có tiệm cận đứng.

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{x + 2}{x^{2} - 4x + m} = 0y = 0 là tiệm cận ngang với mọi m.

    Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì phương trình x^{2} - 4x + m = 0 vô nghiệm \Leftrightarrow \ \ \Delta'
< 0\ \  \Leftrightarrow \ \ m > 4.

    Nhận xét.

    Bạn đọc dễ nhầm lẫn mà xét thêm trường hợp mẫu thức x^{2} - 4x + m = 0 có nghiệm x = - 2 ightarrow m = - 12.Điều này là sai, vì với m = - 12 thì hàm số trở thành y = \frac{1}{x - 6}. Đồ thị này vẫn còn tiệm cận đứng là x =
6.

  • Câu 20: Vận dụng
    Chọn đáp án thích hợp

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x^{2} + 2}{\sqrt{mx^{4} + 3}} có đường tiệm cận ngang.

    Hướng dẫn:

    Đồ thị hàm số y = \frac{x^{2} +
2}{\sqrt{mx^{4} + 3}} có đường tiệm cận ngang khi và chỉ khi các giới hạn \lim_{x ightarrow +
\infty}y\lim_{x ightarrow -
\infty}y tồn tại hữu hạn.

    Ta có:

    Với m = 0\overset{}{ightarrow}y =
\frac{x^{2} + 2}{\sqrt{3}}.

    Khi đó \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}y = + \infty \\
\lim_{x ightarrow - \infty}y = + \infty \\
\end{matrix} ight. suy ra đồ thị không có tiệm cận ngang.

    Với m < 0, khi đó hàm số có tập xác định: D = \left( - \sqrt[4]{-
\frac{3}{m}};\sqrt[4]{- \frac{3}{m}} ight) nên ta không xét trường hợp x ightarrow + \infty hay x ightarrow - \infty được.

    Do đó hàm số không có tiệm cận ngang.

    Với m > 0, khi đó hàm số có tập xác định D\mathbb{= R}\lim_{x ightarrow \pm \infty}\frac{x^{2}\left( 1
+ \frac{2}{x^{2}} ight)}{x^{2}\sqrt{m + \frac{3}{x^{4}}}} = \lim_{x
ightarrow \pm \infty}\frac{1 + \frac{2}{x^{2}}}{\sqrt{m +
\frac{3}{x^{4}}}} = \frac{1}{\sqrt{m}}ightarrow y =
\frac{1}{\sqrt{m}} là TCN.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo