Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Hướng dẫn:

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 2: Thông hiểu
    Tìm phương trình tổng quát của mặt phẳng

    Viết phương trình tổng quát của mặt phẳng (P) song song và cách đều hai đường thẳng (D):x = 2 + 3t;\ \ \ y = 1 -
2t;\ \ \ z = 2t - 1(d):x = t -
4;\ \ \ y = 3 - t;\ \ \ z = 3t + 1\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua A(2,1, - 1) và vecto chỉ phương \overrightarrow{a} = (3, - 2,2)

    (d) qua B( - 4,3,1) và vecto chỉ phương \overrightarrow{b} = (1, - 1,3)

    Pháp vecto của (P):\overrightarrow{n} =
\left\lbrack \overrightarrow{a},\overrightarrow{b} \right\rbrack = -
(4,7,1)

    (P) qua trung điểm MN( - 1,2,0) của đoạn AB.

    \Rightarrow (P):4(x + 1) + 7(y - 2) + (z
- 0).1 = 0 \Leftrightarrow 4x + 7y
+ z - 10 = 0

  • Câu 3: Thông hiểu
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y}{3} = \frac{z +
1}{- 1}d_{2}:\left\{
\begin{matrix}
x = 1 + t \\
y = 3 - 2t \\
z = 5 - 2t \\
\end{matrix} \right.. Phương trình đường thẳng \Delta đi qua điểm A(2;3; - 1) và vuông góc với hai đường thẳng d_{1},\ d_{2}

    Hướng dẫn:

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2;3; - 1)

    d_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = (1; - 2; -
2)

    Gọi \overrightarrow{a_{\Delta}} là vectơ chỉ phương của \Delta

    \left\{ \begin{matrix}
\Delta\bot d_{1} \\
\Delta\bot d_{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{1}} \\
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{a_{1}};\overrightarrow{a_{2}} ightbrack
= ( - 8;3; - 7)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = 2 - 8t \\
y = 3 + 3t \\
z = - 1 - 7t \\
\end{matrix} ight.

  • Câu 4: Thông hiểu
    Tính khoảng cách giữa đường thẳng và mặt phẳng

    Trong không gian Oxyz, khoảng cách giữa đường thẳng d:\frac{x - 1}{1} =
\frac{y}{1} = \frac{z}{- 2} và mặt phẳng (P):x + y + z + 2 = 0 bằng:

    Hướng dẫn:

    Đường thẳng d qua M(1;0;0) và có vec-tơ chỉ phương \overrightarrow{a} = (1;1; - 2).

    Mặt phẳng (P) có vec-tơ pháp tuyến \overrightarrow{n} =
(1;1;1).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{n} = 1.1 + 1.1 - 2.1 = 0 \\
M \notin (P) \\
\end{matrix} \right.\  \Rightarrow d//(P)

    d\left( d;(P) \right) = d\left( M;(P)
\right) = \frac{|1 + 0 + 0 + 2|}{\sqrt{1^{2} + 1^{2} + 1^{2}}} =
\sqrt{3}

  • Câu 5: Vận dụng
    PTTQ của (d) khi là giao tuyến

    Cho hình hộp chữ nhật ABCD.EFGHAB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz  sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với  Ox,Oy,Oz . Gọi  M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)

    Hướng dẫn:

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight);\,\,\,P\left( {0,b,\frac{c}{2}} ight)

    Như vậy ta tính được vecto \overrightarrow {MN}\overrightarrow {MP} theo a, b, c.

    \overrightarrow {MN}  =  - \frac{1}{2}\left( {a,b, - 2c} ight);\,\,\,\overrightarrow {MP}  =  - \frac{1}{2}\left( {2a, - b, - c} ight)

    (MNP) có vecto pháp tuyến là tích có hướng của 2 vecto  \overrightarrow {MN}\overrightarrow {MP}

    =  > \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } ight] =  - 3\left( {bc,ca,ab} ight) = \overrightarrow {{n_P}}

    (MNP) có đi qua M và nhận \overrightarrow {{n_P}} làm 1 VTCP có phương trình là:

    \begin{array}{l}\left( {MNP} ight):bc\left( {x - a} ight) + ca\left( {y - \frac{b}{2}} ight) + ab.z = 0\\ =  > \left( {MNP} ight):2bcx + 2cay + 2abz - 3abc = 0\\ =  > (d):2bcx + 2cay + 2abz - 3abc = 0;\,\,\,z = 0\end{array}

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\frac{{x + 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{3}. Đường thẳng d đi qua điểm M và có vectơ chỉ phương \overrightarrow{a_{d}} có tọa độ là:

    Hướng dẫn:

    A(2;3;3) đi qua điểm \overrightarrow{AB} = (0; - 1; - 1) và có vectơ chỉ phương \Delta

  • Câu 7: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, đường thẳng đi qua điểm A(1;1;1) và vuông góc với mặt phẳng tọa độ (Oxy)có phương trình tham số là:

    Hướng dẫn:

    Đường thẳng d vuông góc với mặt phẳng tọa độ (Oxy) nên nhận \overrightarrow{k} = (0;0;1) làm vectơ chỉ phương. Mặt khác d đi qua A(1;1;1) nên:

    \Rightarrow Đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 + t \\
\end{matrix} \right..

  • Câu 8: Thông hiểu
    Tính khoảng cách giữa hai đường thẳng

    Trong không gian Oxyz,cho hai đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = t \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\left\{ \begin{matrix}
x = 2t' \\
y = - 1 + t' \\
z = t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Khoảng cách giữa hai đường thẳng dd' là:

    Hướng dẫn:

    Đường thẳng d đi qua điểm A(1;0;0) và có vectơ chỉ phương \overrightarrow{u_{d}} = ( - 1;1; -
1)

    Đường thẳng d' đi qua điểm B(0; - 1;0) và có vectơ chỉ phương \overrightarrow{u_{d'}} =
(2;1;1);\overrightarrow{AB} = ( - 1; - 1;0)

    \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack =
\left( \left| \begin{matrix}
1 & - 1 \\
1 & 1 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & - 1 \\
1 & 2 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & 1 \\
2 & 1 \\
\end{matrix} ight| ight) = (2; - 1; - 3)

    Khoảng cách giữa hai đường thẳng dd' là:

    d(d;d') = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}}
ightbrack.\overrightarrow{AB} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack
ight|} = \frac{1}{\sqrt{14}}

  • Câu 9: Nhận biết
    Đường thẳng song song với 2 mặt phẳng

    Cho hai mặt phẳng \left( P ight):x - 2y + 3z - 5 = 0;\,\,\left( Q ight):3x + 4y - z + 3 = 0. Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):

    Hướng dẫn:

     Vì (D) song song với (P) và (Q)

    => Một vectơ chỉ phương của (D) là:

    \overrightarrow {{a_P}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } ight] = 10\left( { - 1,1,1} ight) \Rightarrow \overrightarrow a  = \left( { - 1,1,1} ight)

    Xét vecto pháp tuyến của (R), có:

    \overrightarrow {{n_R}}  = \left( {3,1,2} ight) \Rightarrow \overrightarrow a .\overrightarrow {{n_R}}  =  - 3 + 1 + 2 = 0 \Rightarrow \left( D ight)//\left( R ight)

    Xét đáp án có điểm N

    \overrightarrow {NM}  = \left( { - 2,2,2} ight) = 2\left( { - 1,1,1} ight) = 2\overrightarrow a  \Rightarrow \left( D ight)qua\,\,N\left( {3, - 4,1} ight)

    \overrightarrow {{n_s}}  = \left( {2, - 2, - 2} ight) \Rightarrow \frac{2}{{ - 1}} = \frac{{ - 2}}{1} = \frac{{ - 2}}{1} =  - 2 \Rightarrow \overrightarrow acùng phương với \overrightarrow {{n_s}}

    => (D) vuông góc với (S).

  • Câu 10: Thông hiểu
    Tìm phương trình giao tuyến hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Hướng dẫn:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gianOxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(7; - 3; - 1) thuộc đường thẳng (d). Sai||Đúng

    b) Điểm N( - 1;1; - 5) thuộc đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = (4; - 2;3) là một vectơ chỉ phương. Đúng||Sai

    d) Đường thẳng (d) nhận \overrightarrow{v} = ( - 4;2; - 3) là một vectơ chỉ phương. Đúng||Sai

    Đáp án là:

    Trong không gianOxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(7; - 3; - 1) thuộc đường thẳng (d). Sai||Đúng

    b) Điểm N( - 1;1; - 5) thuộc đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = (4; - 2;3) là một vectơ chỉ phương. Đúng||Sai

    d) Đường thẳng (d) nhận \overrightarrow{v} = ( - 4;2; - 3) là một vectơ chỉ phương. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Phương án a) sai vì thay M(7; - 3; -
1) vào đường thẳng (d), ta có

    \left\{ \begin{matrix}
7 = 3 + 4t \\
- 3 = - 1 - 2t \\
- 1 = - 2 + 3t
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
t = 1 \\
t = 1 \\
t = \frac{1}{3}
\end{matrix} \right.\  \Rightarrow M(7; - 3; - 1) \notin
(d)

    Phương án b) đúng vì thay N( - 1;1; -
5) vào đường thẳng (d), ta có

    \left\{ \begin{matrix}
- 1 = 3 + 4t \\
1 = - 1 - 2t \\
- 5 = - 2 + 3t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 1 \\
t = - 1 \\
t = - 1
\end{matrix} \right.\  \Rightarrow N( - 1;1; - 5) \in (d)

    Phương án c) đúng vì một vectơ chỉ phương của đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)\overrightarrow{u} = (4; - 2;3).

    Phương án d) đúng vì \overrightarrow{v} =
( - 4;2; - 3) = - \overrightarrow{u} nên \overrightarrow{v} cũng là một vectơ chỉ phương của (d).

  • Câu 12: Thông hiểu
    Xác định vị trí tương đối hai đường thẳng

    Hai dường thẳng (D):x = 2t + 3;y = t +
1;z = 3t - 2;(d):x = 4t - 1;y = 2t - 5;z = 6t + 1;t\mathbb{\in
R}

    Hướng dẫn:

    Ta có: (D) qua M(3,1, - 2) và có vecto chỉ phương \overrightarrow{a} = (2,1,3)

    (d) qua M( - 1, - 5,1) và có vecto chỉ phương \overrightarrow{b} = (4,2,6) =
2(2,1,3)

    \Rightarrow \overrightarrow{a}\overrightarrow{b} cùng phương \Rightarrow (D)(d) cùng phương.

    \overrightarrow{MN} = ( - 4, -
6,3) không cùng phương với \overrightarrow{a} \Rightarrow
(D)//(d)

  • Câu 13: Vận dụng
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x + 1}{3} = \frac{y - 2}{1} =
\frac{z - 1}{2}\Delta_{2}:\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{3}. Phương trình đường thẳng song song với d:\left\{ \begin{matrix}
x = 3 \\
y = - 1 + t \\
z = 4 + t \\
\end{matrix} \right. và cắt hai đường thẳng \Delta_{1};\Delta_{2} là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi A = \Delta \cap \Delta_{1},B = \Delta
\cap \Delta_{2}

    A \in \Delta_{1} \Rightarrow A( - 1 +
3a;2 + a;1 + 2a)

    B \in \Delta_{2} \Rightarrow B(1 + b;2b;
- 1 + 3b)

    \overrightarrow{AB} = ( - 3a + b + 2; -
a + 2b - 2; - 2a + 3b - 2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (0;1;1)

    \Delta//d \Leftrightarrow
\overrightarrow{AB},\overrightarrow{a_{d}} cùng phương

    \Leftrightarrow có một số k thỏa \overrightarrow{AB} =
k\overrightarrow{a_{d}}

    \Leftrightarrow \left\{ \begin{matrix}
- 3a + b + 2 = 0 \\
- a + 2b - 2 = k \\
- 2a + 3b - 2 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3a + b = - 2 \\
- a + 2b - k = 2 \\
- 2a + 3b - k = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
k = - 1 \\
\end{matrix} ight.

    Ta có A(2;3;3);B(2;2;2)

    \Delta đi qua điểm A(2;3;3) và có vectơ chỉ phương \overrightarrow{AB} = (0; - 1; - 1)

    Vậy phương trình của \Delta\left\{ \begin{matrix}
x = 2 \\
y = 3 - t \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 14: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta có phương trình chính tắc \frac{x - 3}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}. Phương trình tham số của đường thẳng \Delta là?

    Hướng dẫn:

    Ta có:

    \frac{x}{2} = \frac{y - 6}{4} =
\frac{z}{- 1} đi qua điểm A(3; -
1;0) và có vectơ chỉ phương Oxyz

    Vậy phương trình tham số của \DeltaB(1;1;2)

  • Câu 15: Vận dụng
    Viết phương trình đường vuông góc chung

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y + 2}{1} = \frac{z- 3}{- 1},d_{2}:\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 6}{3} chéo nhau. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Hướng dẫn:

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1;1; -
1),\overrightarrow{u_{2}} = (1;2;3)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
A(1 + s; - 2 + s;3 - s) \\
B(t;1 + 2t;6 + 3t) \\
\end{matrix} ight., khi đó ta có \overrightarrow{AB} = ( - 1 - s + t;3 - s + 2t;3 +
s + 3t)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{AB} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{AB} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
1( - 1 - s + t) + 1(3 - s + 2t) - 1(3 + s + 3t) = 0 \\
1( - 1 - s + t) + 2(3 - s + 2t) + 3(3 + s + 3t) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 3s = 1 \\14t = - 14 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}s = - \dfrac{1}{3} \\t = - 1 \\\end{matrix} ight.

    Đường vuông góc chung của d_{1},d_{2} nhận \overrightarrow{AB} = \left( -
\frac{5}{3};\frac{4}{3}; - \frac{1}{3} ight) làm VTCP và đi qua điểm B( - 1; - 1;3)

    Vậy ta có phương trình đường thẳng: \frac{x + 1}{5} = \frac{y + 1}{- 1} = \frac{z -
3}{1}

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Viết phương trình tổng quát của đường thẳng (D) qua A(4,2,1) và song song với đường thẳng (d):x + 2y - z = 0;x - 3y + z - 6 =
0.

    Hướng dẫn:

    \overrightarrow{n_{1}} = (1,2, - 1);\ \
\overrightarrow{n_{2}} = (1, - 3,1)

    Một vecto chỉ phương của (d):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = -
(1,2,5)

    Phương trình chính tắc của (D):x - 4 =
\frac{y - 2}{2} = \frac{z - 1}{5}

    \Rightarrow (D)\left\{ \begin{matrix}
2x - y - 6 = 0 \\
5x - z - 19 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
2x - y - 6 = 0 \\
5y - 2z - 8 = 0 \\
\end{matrix} \right.

  • Câu 17: Thông hiểu
    Tìm khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} \right.bằng

    Hướng dẫn:

    Đường thẳng \Delta đi qua N(0;2;3), có véc tơ chỉ phương \overrightarrow{u} = (1; - 1;2)

    \overrightarrow{MN} = ( - 2;6;4);\
\left\lbrack \overrightarrow{MN},\overrightarrow{u} \right\rbrack =
(16;8; - 4).

    d(M,\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} \right\rbrack \right|}{\left|
\overrightarrow{u} \right|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}.

  • Câu 18: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian Oxyz, cho hai đường thẳng song song d:\left\{
\begin{matrix}
x = 2 - t \\
y = 1 + 2t \\
z = 4 - 2t \\
\end{matrix} ight.d':\frac{x - 4}{1} = \frac{y + 1}{- 2} =
\frac{z}{2}. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.

    Hướng dẫn:

    Lấy M(2;1;4) \in d,N(4; - 1;0) \in
d'.

    Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.

    Phương trình đường thẳng cần tìm là: \frac{x - 3}{1} = \frac{y}{- 2} = \frac{z -
2}{2}

  • Câu 19: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 4;0;0)và đường thẳng\Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 3t \\
z = - 2t \\
\end{matrix} \right.. Gọi H(a;b;c) là hình chiếu của M lên \Delta. Tính a+b+c.

    Hướng dẫn:

    Gọi H là hình chiếu của M lên \Deltanên tọa độ của H có dạng H(1 - t; - 2 + 3t; - 2t)\overrightarrow{MH}\bot\overrightarrow{u_{\Delta}}

    \overrightarrow{MH}.\overrightarrow{u_{\Delta}} =
0 \Leftrightarrow 14t - 11 = 0 \Leftrightarrow t =
\frac{11}{14}

    \Rightarrow
H(\frac{3}{14};\frac{5}{14};\frac{- 22}{14}) \Rightarrow a + b + c = -
1

  • Câu 20: Thông hiểu
    Vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):\frac{x - 1}{2} = y +
3 = \frac{z - 2}{3};\ \ \ \ \ (d):\frac{x + 2}{3} = \frac{y - 1}{2} =
\frac{z + 4}{4}.

    Hướng dẫn:

    A(1, - 3,2) \in (D)(D) có vecto chỉ phương \overrightarrow{a} = (2,1,3)

    B(-2,1,-4) \in (d)(d) có vecto chỉ phương \overrightarrow{b} = (3,2,4)

    \overrightarrow{AB} = ( - 3,4, - 6)\Rightarrow \left\lbrack \overrightarrow{a},\overrightarrow{b}
\right\rbrack.\overrightarrow{AB} = ( - 2,1,1).( - 3,4, - 6) = 4 \neq
0

    \Rightarrow (D)(d) chéo nhau.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo