Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1), B(3;0;1)C(2;2; - 2). Đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (2; -
2;2), \overrightarrow{AC} = (1;0; -
1).

    Mặt phẳng (ABC) có một véctơ pháp tuyến là \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(2;4;2).

    Đường thẳng vuông góc với mặt phẳng (ABC) có một véctơ chỉ phương là \overrightarrow{u} = (1;2;1).

    Đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là\frac{x - 1}{1} = \frac{y - 2}{2} =
\frac{z + 1}{1}.

  • Câu 2: Vận dụng
    Viết phương trình đường thẳng d

    Trong không gian với hệ tọa độ  Oxyz,  gọi d đi qua A( -
1;0; - 1), cắt \Delta_{1}:\frac{x -
1}{2} = \frac{y - 2}{1} = \frac{z + 2}{- 1}, sao cho góc giữa d\Delta_{2}:\frac{x - 3}{- 1} = \frac{y - 2}{2} =
\frac{z + 3}{2} là nhỏ nhất. Phương trình đường thẳng d

    Hướng dẫn:

    Gọi M = d \cap \Delta_{1} \Rightarrow M(1
+ 2t;2 + t; - 2 - t)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = \overrightarrow{AM} = (2t
+ 2;t + 2; - 1 - t)

    \Delta_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = ( -
1;2;2)

    \cos\left( d;\Delta_{2} ight) =
\frac{2}{3}\sqrt{\frac{t^{2}}{6t^{2} + 14t + 9}}

    Xét hàm số f(t) = \frac{t^{2}}{6t^{2} +
14t + 9}, ta suy ra được \min f(t)
= f(0) = 0 \Leftrightarrow t = 0

    Do đó \min\left\lbrack \cos(\Delta,d)
ightbrack = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow{AM}
= (2;2 - 1)

    Vậy phương trình đường thẳng d\frac{x + 1}{2} = \frac{y}{2} = \frac{z +
1}{- 1}

  • Câu 3: Thông hiểu
    Chọn phương án đúng

    Trong không gianOxyz, tọa độ hình chiếu vuông góc của M(1;0;1) lên đường thẳng (\Delta):\frac{x}{1} =
\frac{y}{2} = \frac{z}{3}

    Hướng dẫn:

    Đường thẳng (\Delta) có vtcp \overrightarrow{u} = (1;2;3)và có phương trình tham số là: \left\{
\begin{matrix}
x = t \\
y = 2t \\
z = 3t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Gọi N(t;2t;3t) \in \Delta là hình chiếu vuông góc của M lên \Delta, khi đó:

    \overrightarrow{MN}.\overrightarrow{u} =
0

    \Leftrightarrow (t - 1) + (2t - 0).2 +
(3t - 1).3 = 0

    \Leftrightarrow 14t - 4 = 0
\Leftrightarrow t = \frac{2}{7} \Rightarrow N\left(
\frac{2}{7};\frac{4}{7};\frac{6}{7} \right)

  • Câu 4: Thông hiểu
    Xác định phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng (D) qua I(1, - 3,2) và song song với đường thẳng (d):x = 3 + 4t;y = 2 - 2t;z = 3t - 1\left(
t\mathbb{\in R} \right)

    Hướng dẫn:

    Ta có:

    (D)//(d) nên một vectơ chỉ phương của (D):\overrightarrow{a} =
\overrightarrow{e_{1}} = (1,0,0)\ \ hay\ \ \overrightarrow{a} = - ( -
1,0,0)

    \left\{ \begin{matrix}
x = 1+4t \\
y = -3-2t \\
z = 2+3t \\
\end{matrix} \right.\ \ \ ;t\mathbb{\in R} hay (D)\left\{ \begin{matrix}
x = 1 - 4m \\
y = 2m - 3 \\
z = 2 - 3m \\
\end{matrix} \right.\ ;m\mathbb{\in R}

  • Câu 5: Thông hiểu
    Tìm phương trình giao tuyến hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Hướng dẫn:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 6: Vận dụng
    Tính khoảng cách từ O đến (P)

    Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y}{1} = \frac{z -
2}{2}. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ điểm A đến (P) là lớn nhất. Khoảng cách từ gốc tọa độ O đến (P) bằng:

    Hướng dẫn:

    Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.

    Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.

    Ta tìm được (P):x - 4y + z - 3 = 0
\Rightarrow d\left( O;(P) ight) = \frac{3}{\sqrt{18}} =
\frac{1}{\sqrt{2}}.

  • Câu 7: Thông hiểu
    Xác định vectơ chỉ phương

    Trong không gian Oxyz, cho tam giác ABC với A(1;1;1),B( - 1;1;0),C(1;3;2). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?

    Hướng dẫn:

    Gọi M là trung điểm của BC, suy ra tọa độ điểm M(0;2;1).

    Đường trung tuyến xuất phát từ đỉnh A có vectơ chỉ phương là \overrightarrow{AM} = ( - 1;1;0).

  • Câu 8: Thông hiểu
    Viết phương trình tham số của đườngthẳng

    Viết phương trình tham số của đường thẳng (D) qua F(2,3,1) và song song với đường thẳng: (d)\left\{ \begin{matrix}
2x - y + 2z - 7 = 0 \\
x + 3y - 2z + 3 = 0 \\
\end{matrix} \right.

    Hướng dẫn:

    Hai pháp vectơ của hai mặt phẳng (P):2x -
y + 2z - 7 = 0(Q):x + 3y - 2z +
3 = 0\overrightarrow{n_{1}} =
(2, - 1,2);\overrightarrow{n_{2}} = (1,3, - 2)

    (D)//(d) nên vectơ chỉ phương của (D):\overrightarrow{a} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( - 4,6,7)
= - (4, - 6, - 7)

    \Rightarrow (D)\left\{ \begin{matrix}
x = 2 - 4t \\
y = 3 + 6t \\
z = 1 + 7t \\
\end{matrix} \right.\ ;t\mathbb{\in R} hay  \left\{ \begin{matrix}
x = 2 + 4m \\
y = 3 - 6m \\
z = 1 - 7m \\
\end{matrix} \right.\ \ \ ;m\mathbb{\in R} 

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y - 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương có tọa độ là:

    Hướng dẫn:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 2; -
3).

    Do d\bot(P) nên vectơ \overrightarrow{n} = (1; - 2; - 3) cũng là một vectơ chỉ phương của d.

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;\ 1;\  -
1) trên trục Oz có tọa độ là

    Hướng dẫn:

    Hình chiếu vuông góc của điểm M(2;\
1;\  - 1) trên trục Oz có tọa độ là: (0;\ 0;\  - 1).

  • Câu 11: Thông hiểu
    Viết phương trình tham số

    Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:

    Hướng dẫn:

    Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là \overrightarrow {{e_1}}  = \left( {1,0,0} ight)

    Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP \overrightarrow {{e_1}}  = \left( {1,0,0} ight) có PTTS là:

    (d): \left\{ \begin{array}{l}x = t - 1\\y = 5\\z = 2\end{array} ight.\,\,\,;t \in \mathbb{R}

  • Câu 12: Thông hiểu
    Tìm phương trình đường thẳng theo yêu cầu

    Trong không gian với hệ tọa độ  Oxyz,  cho hai mặt phẳng \left( \alpha  \right):x - 2y + 2z + 3 = 0\left( \beta  \right):3x - 5y - 2z - 1 = 0. Phương trình đường thẳng d đi qua điểm M(1;3;-1), song song với hai mặt phẳng đã cho là

    Hướng dẫn:

    \left( \alpha  ight) có vectơ chỉ phương \overrightarrow {{n_\alpha }}  = \left( {1; - 2;2} ight)

     \left( \beta  ight) có vectơ chỉ phương \overrightarrow {{n_\beta }}  = \left( {3; - 5; - 2} ight)

    d đi qua M và có vecto chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {14;8;1} ight)

    Vậy phương trình tham số của d là \left\{ \begin{matrix}
x = 1 + 14t \\
y = 3 + 8t \\
z = - 1 + t \\
\end{matrix} ight.\ .

  • Câu 13: Thông hiểu
    Xét tính đúng sai của các nhận định sau

    Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{3}. Gọi \Delta là đường thẳng đi qua M, vuông góc với d và cắt Oz.

    a) Một vectơ chỉ phương của \Delta\overrightarrow{u} = ( - 3;0;1).Đúng||Sai

    b) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x - 1}{- 3} = y = \frac{z -
1}{1}.Sai||Đúng

    d) Đường thẳng \Delta đi qua điểm K(4; - 1;0).Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{3}. Gọi \Delta là đường thẳng đi qua M, vuông góc với d và cắt Oz.

    a) Một vectơ chỉ phương của \Delta\overrightarrow{u} = ( - 3;0;1).Đúng||Sai

    b) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x - 1}{- 3} = y = \frac{z -
1}{1}.Sai||Đúng

    d) Đường thẳng \Delta đi qua điểm K(4; - 1;0).Sai||Đúng

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

    Gọi N = \Delta \cap Oz \Rightarrow N \in
Oz \Rightarrow N(0;0;c).

    \Delta đi qua M và N nên \Delta có 1 vectơ chỉ phương là: \overrightarrow{MN} = ( - 1;0;c - 1).

    d có 1 vectơ chỉ phương \overrightarrow{u} = (1;2;3).

    \Delta vuông góc với d \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{u} = 0 \Leftrightarrow 1.( - 1) +
2.0 + 3(c - 1) = 0 \Leftrightarrow c = \frac{4}{3}.

    Suy ra \Delta có 1 vectơ chỉ phương \overrightarrow{u} =
3\overrightarrow{MN} = ( - 3;0;1).

    Vậy \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Khi đó ta có

    Phương án a): Đúng vì một vectơ chỉ phương của \overrightarrow{u} = ( -
3;0;1).

    Phương án b): Đúng vì đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 - 3t \\
y = 0 \\
z = 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Phương án c): Sai vì đường thẳng \Delta không tồn tại phương trình chính tắc do \overrightarrow{u} = ( -
3;0;1).

    Phương án d): Sai vì thay toạ độ điểm K(4; - 1;0) vào phương trình đường thẳng \Delta không thoả mãn.

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Phương án a) sai vì:

    Thay M(2;2; - 3) vào đường thẳng (d), ta có \left\{ \begin{matrix}
2 = 2 - 5t \\
2 = 2t \\
- 3 = - 3
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 1
\end{matrix} \right.\  \Leftrightarrow M(2;2; - 3) \notin
(d)

    Phương án b) đúng vì:

    Khi thay t = - 2 vào phương trình tham số của (d), ta được:

    \left\{ \begin{matrix}
x = 2 - 5.( - 2) \\
y = 2.( - 2) \\
z = - 3
\end{matrix} \right.

    Vậy \Leftrightarrow A(12, - 4, - 3) \in
(d)

    Phương án c) đúng vì từ phương trình tham số ta có \overrightarrow{v} = ( - 5;2;0) là một vectơ chỉ phương của (d)\overrightarrow{v} = ( - 5;2;0) = - ( - 5;2;0) = -
\overrightarrow{u} do đó \overrightarrow{u} = ( - 5;2;0) cũng là một vectơ chỉ phương của đường thẳng (d).

    Phương án d) đúng vì đường thẳng (d) luôn đi qua điểm có cao độ bằng -3, ta có z_{N} = 3 \Rightarrow N \notin
(d)

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{3 - y}{2} =
\frac{z + 4}{2} .

    a) Đường thẳng d qua điểm M(1;2;0).Sai||Đúng

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{v} =
(1;2;2).Sai||Đúng

    c) Đường thẳng d có phương trình tham số \left\{ \begin{matrix}
x = - 2 + t \\
y = 5 - 2t \\
z = - 6 + 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng d song song với đường thẳng \Delta:\frac{x - 2}{3} = \frac{y
+ 3}{- 6} = \frac{z - 2}{6}.Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{3 - y}{2} =
\frac{z + 4}{2} .

    a) Đường thẳng d qua điểm M(1;2;0).Sai||Đúng

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{v} =
(1;2;2).Sai||Đúng

    c) Đường thẳng d có phương trình tham số \left\{ \begin{matrix}
x = - 2 + t \\
y = 5 - 2t \\
z = - 6 + 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng d song song với đường thẳng \Delta:\frac{x - 2}{3} = \frac{y
+ 3}{- 6} = \frac{z - 2}{6}.Sai||Đúng

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

    Phương án a) sai vì:

    Thay M(1;2;0) vào đường thẳng d, ta có \frac{1 + 1}{1} \neq \frac{3 - 2}{2} \Rightarrow
M(1;2;0) \notin (d).

    Phương án b) sai vì d:\frac{x + 1}{1} =
\frac{3 - y}{2} = \frac{z + 4}{2} được viết lại d:\frac{x + 1}{1} = \frac{y - 3}{- 2} = \frac{z +
4}{2} do đó đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1; - 2;2). Dễ thấy \overrightarrow{u};\overrightarrow{v} không cùng phương.

    Phương án c) đúng vì d:\frac{x + 1}{1} =
\frac{y - 3}{- 2} = \frac{z + 4}{2} có một vectơ chỉ phương \overrightarrow{u} = (1; - 2;2) và đi qua điểm N( - 2;5; - 6) suy ra phương trình tham số \left\{ \begin{matrix}
x = - 2 + t \\
y = 5 - 2t \\
z = - 6 + 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Phương án d) sai vì đường thẳng d:\frac{x
+ 1}{1} = \frac{y - 3}{- 2} = \frac{z + 4}{2} có một vectơ chỉ phương \overrightarrow{u} = (1; -
2;2) và đi qua điểm A( - 1;3; -
4).

    Đường thẳng \Delta có vectơ chỉ phương \overrightarrow{v} = (3; - 6;6) = -
3\overrightarrow{u}.

    Thay tọa độ điểm N( - 2;5; - 6) vào phương trình của \Delta, ta được

    \frac{- 2 - 2}{3} = \frac{5 + 3}{- 6} =
\frac{- 6 - 2}{6} phương trình nghiệm đúng, suy ra A \in \Delta.

    Vậy d \equiv \Delta.

  • Câu 16: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = 1 + t \\
z = 3t \\
\end{matrix}\ (t \in \mathbb{R}) ight. và hai điểm A(5;0;2),B(2; - 5;3). Tìm điểm M thuộc \Delta sao cho \bigtriangleup ABM vuông tại A.

    Hướng dẫn:

    Điểm M thuộc đường thẳng \Delta nên M(
- 1 + 3t;1 + t;3t).

    Ta có \overrightarrow{AM} = (3t - 6;t +
1;3t - 2)\overrightarrow{AB} =
( - 3; - 5;1).

    Tam giác ABM vuông tại M khi và chỉ khi

    \overrightarrow{AB}\bot\overrightarrow{AM}
\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AM} =
0

    \Leftrightarrow - 3(3t - 6) - 5(t + 1) +
3t - 2 = 0 \Leftrightarrow t = 1

    Khi đó tọa độ điểm M(2;2;3).

  • Câu 17: Vận dụng
    Tính diện tích tam giác

    Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng (\alpha):x - z - 3 = 0 và điểm M(1;1;1). Gọi A là điểm thuộc tia Oz, gọi B là hình chiếu của A lên (\alpha). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:

    Hướng dẫn:

    Gọi A (0; 0; a).

    Đường thẳng AB qua A và vuông góc với (α) nên có phương trình \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = a - t \\
\end{matrix} ight.

    B là hình chiếu của A lên (α) nên tọa độ B thỏa mãn hệ \left\{ \begin{matrix}x = t \\y = 0 \\z = a - t \\x - z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{a + 3}{2} \\y = 0 \\z = \dfrac{a - 3}{2} \\\end{matrix} ight.

    Suy ra B\left( \frac{a + 3}{2};0;\frac{a
- 3}{2} ight)

    Tam giác MAB cân tại M nên MA =
MB

    \Leftrightarrow 1 + 1 + (1 - a)^{2} =
\left( \frac{a + 1}{2} ight)^{2} + 1 + \left( \frac{a - 5}{2}
ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 3 \\
a = - 3 \\
\end{matrix} ight.

    Nếu a = 3 thì tọa độ A (0; 0; 3), B (3; 0; 0). Diện tích tam giác MAB là S = \frac{1}{2}\left| \left\lbrack
\overrightarrow{MA};\overrightarrow{MB} ightbrack ight| =
\frac{3\sqrt{3}}{2}

    Nếu a = −3 thì tọa độ A (0; 0; −3) và B (0; 0; −3) trùng nhau nên không thỏa mãn.

    Vậy diện tích của tam giác MAB bằng: \frac{3\sqrt{3}}{2}.

  • Câu 18: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2),B(2; - 1;3). Viết phương trình đường thẳng AB?

    Hướng dẫn:

    Vectơ chỉ phương của đường thẳng AB\overrightarrow{AB} = (1; - 2;1). Suy ra phương trình đường thẳng AB là:

    AB:\frac{x - 1}{1} = \frac{y - 1}{- 2} =
\frac{z - 2}{1}

  • Câu 19: Nhận biết
    Xác định phương trình tham số

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + 3y - 5z + 6 = 0(\beta):x - y + 3z - 6 = 0. Phương trình tham số của d là:

    Hướng dẫn:

    Nhận thấy A(1;1;2),B(2; - 1;1) đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng d.

    Ta có \overrightarrow{AB} = (1; - 2; -
1) là một vectơ chỉ phương của d.

    Khi đó phương trình tham số của d là: \left\{
\begin{matrix}
x = 1 + t \\
y = 1 - 2t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 20: Thông hiểu
    Xác định vị trí tương đối của hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z- 9}{- 1};d_{2}:\frac{x - 3}{- 1} = \frac{y - 1}{2} = \frac{z -1}{3}?

    Hướng dẫn:

    Gọi \overrightarrow{u_{1}};\overrightarrow{u_{2}} lần lượt là vectơ chỉ phương của d1 và d2 ta chọn \overrightarrow{u_{1}} = (1;2; -
1);\overrightarrow{u_{2}} = ( - 1;2;3)

    Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn M_{1}(7;\ 3;\
9);M_{2}( - 1;2;3) suy ra \overrightarrow{M_{1}M_{2}} = ( - 8; - 1; -
6)

    Khi đó \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = (8; -
2;4)\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0. Do đó (d1) và (d2) chéo nhau.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo