Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = 1 + t \\
z = 3t \\
\end{matrix}\ (t \in \mathbb{R}) ight. và hai điểm A(5;0;2),B(2; - 5;3). Tìm điểm M thuộc \Delta sao cho \bigtriangleup ABM vuông tại A.

    Hướng dẫn:

    Điểm M thuộc đường thẳng \Delta nên M(
- 1 + 3t;1 + t;3t).

    Ta có \overrightarrow{AM} = (3t - 6;t +
1;3t - 2)\overrightarrow{AB} =
( - 3; - 5;1).

    Tam giác ABM vuông tại M khi và chỉ khi

    \overrightarrow{AB}\bot\overrightarrow{AM}
\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AM} =
0

    \Leftrightarrow - 3(3t - 6) - 5(t + 1) +
3t - 2 = 0 \Leftrightarrow t = 1

    Khi đó tọa độ điểm M(2;2;3).

  • Câu 2: Thông hiểu
    Tìm tọa độ giao điểm hai đường thẳng

    Hai đường thẳng (d_{1}): \left\{ \begin{matrix}
x - y - z - 7 = 0 \\
3x - 4y - 11 = 0 \\
\end{matrix} \right.(d_{2}) : \left\{ \begin{matrix}
x + 2y - z + 1 = 0 \\
x + y + 1 = 0 \\
\end{matrix} \right. cắt nhau tại điểm. Tọa độ của A là:

    Hướng dẫn:

    Từ phương trình của (d_{1}) ,tính x, y theo z được \left\{
\begin{matrix}
x = 4z + 17 \\
y = 3z + 10 \\
\end{matrix} \right. .

    Thế vào phương trình của (d_{2}) , được z = - 4, từ đó x = 1,y = - 2 .

    Khi đó: A(1, -2, - 4).

  • Câu 3: Nhận biết
    Tìm vectơ chỉ phương

    Trong không gian Oxyz, cho đường thẳng \Delta vuông góc với mặt phẳng (\alpha):x + 2z + 3 = 0. Một vectơ chỉ phương của \Delta là:

    Hướng dẫn:

    Mặt phẳng (α) có một vectơ pháp tuyến là \overrightarrow{n} = (1;0;2).

    Đường thẳng \Delta vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là \overrightarrow{a} = \overrightarrow{n} =
(1;0;2).

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho tứ diện đều ABCDA(4;
- 1;2),B(1;2;2),C(1; - 1;5),D\left( x_{D};\ y_{D};z_{D} ight) với y_{D} > 0. Tính p = 2x_{D} + \ y_{D} - z_{D}?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 3;3;0) \\
\overrightarrow{AC} = ( - 3;0;3) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;\ 1;\ 1)

    AB = 3\sqrt{2}

    Đường thẳng đi qua G vuông góc với (ABC) có phương trình \left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đó D(2 + t;t;3 + t)

    AD = AB \Rightarrow (t - 2)^{2} + 2(t
+ 1)^{2} = 18 \Rightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 2 \\
\end{matrix} ight.

    y_{D} > 0 \Rightarrow y = 2
\Rightarrow P = 5

  • Câu 5: Vận dụng
    Tính khoảng cách

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.

    Hướng dẫn:

    Ta biểu diễn các điểm N, P, C, G theo a, b, c được:

    N\left( {\frac{a}{2},0,c} ight);P\left( {0,b,\frac{c}{2}} ight);\,C\left( {a,b,0} ight);\,\,\,G\left( {a,b,c} ight)

    Từ đó, ta tính được các vecto tương ứng:

    \overrightarrow {NP}  = \left( { - \frac{a}{2},b, - \frac{c}{2}} ight);\,\,\,\overrightarrow {CG}  = \left( {0,0,c} ight);\,\,\overrightarrow {PC}  = \left( {a,0, - \frac{c}{2}} ight)

    Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:

    \begin{array}{l}\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight] = \left( { - bc, - \dfrac{{ac}}{2},0} ight) =  > \left| {\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight]} ight| = \dfrac{c}{2}\sqrt {{a^2} + 4{b^2}} \\\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight].\overrightarrow {PC}  =  - abc =  > d\left( {NP,CG} ight) = \dfrac{{2ab\sqrt {{a^2} + 4{b^2}} }}{{{a^2} + 4{b^2}}}\end{array}

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hai điểm M(3;0;2),N(2;2025;2026) và đường thẳng (d) có phương trình chính tắc là: \frac{x - 1}{1} = \frac{y -
2024}{1} = \frac{z - 2024}{2}.

    a) Điểm M và N cùng thuộc đường thẳng (d). Sai||Đúng

    b) Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{a} =
(1;2024;2024). Sai||Đúng

    c) Đường thẳng d' đi qua điểm M và N có phương trình là: \frac{x -
3}{1} = \frac{y}{1} = \frac{z + 2}{2}. Sai||Đúng

    d) Đường thẳng qua M, đồng thời vuông góc và cắt (d) có phương trình là: \left\{ \begin{matrix}
x = 2 - t \\
y = t \\
z = 2
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm M(3;0;2),N(2;2025;2026) và đường thẳng (d) có phương trình chính tắc là: \frac{x - 1}{1} = \frac{y -
2024}{1} = \frac{z - 2024}{2}.

    a) Điểm M và N cùng thuộc đường thẳng (d). Sai||Đúng

    b) Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{a} =
(1;2024;2024). Sai||Đúng

    c) Đường thẳng d' đi qua điểm M và N có phương trình là: \frac{x -
3}{1} = \frac{y}{1} = \frac{z + 2}{2}. Sai||Đúng

    d) Đường thẳng qua M, đồng thời vuông góc và cắt (d) có phương trình là: \left\{ \begin{matrix}
x = 2 - t \\
y = t \\
z = 2
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Đúng||Sai

    a) Sai

    b) Sai

    c) Sai

    d) Đúng

    Phương án a) sai: Thay tọa độ điểm M(3;0;2) vào phương trình đường thẳng (d) ta được: \frac{3 - 1}{1} \neq \frac{0 - 2024}{1} \neq
\frac{2 - 2024}{2} \Rightarrow M \notin d.

    Thay tọa độ điểm N vào phương trình đường thẳng (d) ta được: \frac{2 - 1}{1} = \frac{2025 - 2024}{1} =
\frac{2026 - 2024}{2} \Rightarrow N \in d.

    Phương án b) sai: Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u_{d}} = (1;1;2). Dễ thấy \overrightarrow{u_{d}};\overrightarrow{a} không cùng phương.

    Phương án c) sai: Ta có: \overrightarrow{MN} = ( - 1;2025;2024). Đường thẳng d' qua M, N nên có một vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
1;2025;2024).

    Suy ra phương trình đường thẳng d':\frac{x - 3}{- 1} = \frac{y}{2025} =
\frac{z - 2}{2024}.

    Phương án d) đúng: Phương trình tham số của đường thẳng (d) là: \left\{ \begin{matrix}
x = 1 + t \\
y = 2024 + t \\
z = 2024 + 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Gọi \Delta là đường thẳng qua M, đồng thời vuông góc và cắt đường thẳng (d).

    Gọi H = d \cap \Delta \Rightarrow H \in
d nên H(1 + t;2024 + t;2024 +
2t).

    Ta có: \overrightarrow{MH} = ( - t -
2;2024 + t;2022 + 2t), MH\bot d
\Rightarrow \overrightarrow{MH}.\overrightarrow{u_{d}} = 0. \Leftrightarrow 1.(t - 2) + 1.(2024 + t) +
2(2022 + 2t) = 0

    \Leftrightarrow t = 1011 \Rightarrow
\overrightarrow{MH} = ( - 1013;1013;0)

    Chọn \overrightarrow{u_{\Delta}} = ( -
1;1;0) là một vectơ chỉ phương của đường thẳng \Delta nên phương trình tham số của đường thẳng \Delta là: \left\{ \begin{matrix}
x = 3 - t \\
y = t \\
z = 2
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm A(4; - 1;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z -
3}{1}.

    a) Hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4). Đúng||Sai

    b) Gọi H là hình chiếu vuông góc của A xuống đường thẳng d khi đó: AH
= \sqrt{29}. Sai||Đúng

    c) Điểm đối xứng với điểm A qua đường thẳng d có toạ độ là: M(2; - 3;5). Đúng||Sai

    d) Gọi M là điểm đối xứng với điểm A qua đường thẳng d khi đó: OM =
\sqrt{30} với O là gốc toạ độ. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm A(4; - 1;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z -
3}{1}.

    a) Hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4). Đúng||Sai

    b) Gọi H là hình chiếu vuông góc của A xuống đường thẳng d khi đó: AH
= \sqrt{29}. Sai||Đúng

    c) Điểm đối xứng với điểm A qua đường thẳng d có toạ độ là: M(2; - 3;5). Đúng||Sai

    d) Gọi M là điểm đối xứng với điểm A qua đường thẳng d khi đó: OM =
\sqrt{30} với O là gốc toạ độ. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    Gọi H là hình chiếu của A lên đường thẳng d ta có H(1 + 2t; - 1 - t;3 + t).

    \Rightarrow \overrightarrow{AH} = ( - 3
+ 2t; - t;t)

    d có một vectơ chỉ phương \overrightarrow{u} = (2; - 1;1).

    Ta có: \overrightarrow{AH}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Leftrightarrow 2.( - 3 + 2t) + t + t = 0
\Leftrightarrow t = 1 \Rightarrow H(3; - 2;4).

    Gọi M là điểm đối xứng của A qua d thì M là điểm đối xứng của A qua H.

    \Leftrightarrow \left\{ \begin{matrix}
x_{M} = 2x_{B} - x_{A} = 2 \\
y_{M} = 2y_{B} - y_{A} = - 3 \\
z_{M} = 2z_{B} - z_{A} = 5
\end{matrix} \right.\  \Rightarrow M(2; - 3;5).

    Khi đó ta có

    Phương án a): Đúng vì hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4).

    Phương án b): Sai vì hình chiếu vuông góc của A xuống đường thẳng d có toạ độ là: H(3; - 2;4) \Rightarrow
\overrightarrow{AH} = (1;1;1) \Rightarrow AH = \sqrt{3}.

    Phương án c): Đúng vì điểm đối xứng với điểm A qua đường thẳng d có toạ độ là: M(2; - 3;5).

    Phương án d): Sai vì điểm đối xứng với điểm A qua đường thẳng d có toạ độ là:

    M(2; - 3;5) \Rightarrow
\overrightarrow{OM} = (2; - 3;5) \Rightarrow OM =
\sqrt{38}.

  • Câu 8: Thông hiểu
    Tìm phương trình giao tuyến hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Hướng dẫn:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 9: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình đường thẳng \Delta đi qua điểm A(1;2;0) và vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0?

    Hướng dẫn:

    Đường thẳng \Delta vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0 nên \Delta có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n_{P}} = (2;1; - 3).

    Phương trình \Delta\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)\ \ \
(*)

    Kiểm tra được điểm M(3;3; - 3) thỏa mãn hệ (*).

    Vậy phương trình: \left\{ \begin{matrix}
x = 3 + 2t \\
y = 3 + t \\
z = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) cũng là phương trình của \Delta.

  • Câu 10: Vận dụng
    Viết phương trình đường thẳng theo yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 2}{1} = \frac{y - 1}{2} = \frac{z -
1}{- 1}, mặt cầu (S):(x - 1)^{2} +
(y + 3)^{2} + (z + 1)^{2} = 29A(1; - 2;1). Đường thẳng \Delta cắt d(S) lần lượt tại MN sao cho A là trung điểm của đoạn thẳng MN. Phương trình đường thẳng \Delta

    Hướng dẫn:

    M \in d \Rightarrow M(2 + t;1 + 2t;1 -
t)

    A là trung điểm MN \Rightarrow N( - t; - 5 - 2t;1 +
t)

    N \in (S) \Rightarrow 6t^{2} + 14t - 20
= 0

    \Rightarrow \left\lbrack \begin{matrix}
t = 1 \Rightarrow \overrightarrow{MN} = ( - 4; - 10;2) = - 2(2;5; - 1)
\\
t = - \frac{10}{3} \Rightarrow \overrightarrow{MN} = \left(
\frac{14}{3};\frac{22}{3}; - \frac{20}{3} ight) = \frac{2}{3}(7;11; -
10) \\
\end{matrix} ight.

    \Delta đi qua điểm A(1; - 2;1) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{MN}

    Vậy phương trình của \Delta\frac{x - 1}{2} = \frac{y + 2}{5} = \frac{z
- 1}{- 1}\frac{x - 1}{7} =
\frac{y + 2}{11} = \frac{z - 1}{- 10}

  • Câu 11: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta có phương trình chính tắc \frac{x - 3}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}. Phương trình tham số của đường thẳng \Delta là?

    Hướng dẫn:

    Ta có:

    \frac{x}{2} = \frac{y - 6}{4} =
\frac{z}{- 1} đi qua điểm A(3; -
1;0) và có vectơ chỉ phương Oxyz

    Vậy phương trình tham số của \DeltaB(1;1;2)

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gianOxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(7; - 3; - 1) thuộc đường thẳng (d). Sai||Đúng

    b) Điểm N( - 1;1; - 5) thuộc đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = (4; - 2;3) là một vectơ chỉ phương. Đúng||Sai

    d) Đường thẳng (d) nhận \overrightarrow{v} = ( - 4;2; - 3) là một vectơ chỉ phương. Đúng||Sai

    Đáp án là:

    Trong không gianOxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(7; - 3; - 1) thuộc đường thẳng (d). Sai||Đúng

    b) Điểm N( - 1;1; - 5) thuộc đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = (4; - 2;3) là một vectơ chỉ phương. Đúng||Sai

    d) Đường thẳng (d) nhận \overrightarrow{v} = ( - 4;2; - 3) là một vectơ chỉ phương. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Phương án a) sai vì thay M(7; - 3; -
1) vào đường thẳng (d), ta có

    \left\{ \begin{matrix}
7 = 3 + 4t \\
- 3 = - 1 - 2t \\
- 1 = - 2 + 3t
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
t = 1 \\
t = 1 \\
t = \frac{1}{3}
\end{matrix} \right.\  \Rightarrow M(7; - 3; - 1) \notin
(d)

    Phương án b) đúng vì thay N( - 1;1; -
5) vào đường thẳng (d), ta có

    \left\{ \begin{matrix}
- 1 = 3 + 4t \\
1 = - 1 - 2t \\
- 5 = - 2 + 3t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 1 \\
t = - 1 \\
t = - 1
\end{matrix} \right.\  \Rightarrow N( - 1;1; - 5) \in (d)

    Phương án c) đúng vì một vectơ chỉ phương của đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)\overrightarrow{u} = (4; - 2;3).

    Phương án d) đúng vì \overrightarrow{v} =
( - 4;2; - 3) = - \overrightarrow{u} nên \overrightarrow{v} cũng là một vectơ chỉ phương của (d).

  • Câu 13: Thông hiểu
    Xác định tọa độ điểm đối xứng

    Trong không gian tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y
+ 3}{2} = \frac{z + 2}{2} và điểm A(3;2;0). Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là:

    Hướng dẫn:

    Gọi M( - 1 + t; - 3 + 2t; - 2 + 2t) \in
d

    \Rightarrow AH = (t - 4;2t - 5;2t -
2)

    Vectơ chỉ phương của d là \overrightarrow{u} = (1;2;2)

    \overrightarrow{u}\bot\overrightarrow{AH}
\Rightarrow \overrightarrow{u}.\overrightarrow{AH} = 0

    \Leftrightarrow 1(t - 4) + 2(2t - 5) +
2(2t - 2) = 0 \Leftrightarrow t = 2

    Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì: \left\{ \begin{matrix}
x = 2.1 - 3 = - 1 \\
y = 2.1 - 2 = 0 \\
z = 2.2 - 0 = 4 \\
\end{matrix} ight.

    Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là: ( - 1;0;4).

  • Câu 14: Thông hiểu
    Tìm phương trình đường thẳng

    Đường thẳng \Delta là giao tuyến của 2 mặt phẳng: x + z - 5 = 0x - 2y - z + 3 = 0 thì có phương trình là

    Hướng dẫn:

    Ta có:

    (P):x + z - 5 = 0 có 1 vtpt \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y - z + 3 = 0 có 1 vtpt \overrightarrow{n_{2}} = (1; - 2; -
1)

    Gọi \Delta là giao tuyến của 2 mặt phẳng thì \Delta có 1 vtcp \overrightarrow{u} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = (2;2; -
2).

    Vậy đáp án cần tìm là: \frac{x - 2}{1} =
\frac{y - 1}{1} = \frac{z - 3}{- 1}

  • Câu 15: Thông hiểu
    Xác định vị trí tương đối của hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z- 9}{- 1};d_{2}:\frac{x - 3}{- 1} = \frac{y - 1}{2} = \frac{z -1}{3}?

    Hướng dẫn:

    Gọi \overrightarrow{u_{1}};\overrightarrow{u_{2}} lần lượt là vectơ chỉ phương của d1 và d2 ta chọn \overrightarrow{u_{1}} = (1;2; -
1);\overrightarrow{u_{2}} = ( - 1;2;3)

    Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn M_{1}(7;\ 3;\
9);M_{2}( - 1;2;3) suy ra \overrightarrow{M_{1}M_{2}} = ( - 8; - 1; -
6)

    Khi đó \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = (8; -
2;4)\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0. Do đó (d1) và (d2) chéo nhau.

  • Câu 16: Thông hiểu
    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1} và mặt phẳng (P):3x + 5y - z
- 2 = 0?

    Hướng dẫn:

    Gọi I là giao điểm của d và (P).

    Ta có I \in d \Leftrightarrow I(4t +
12;3t + 9;t + 1)

    I \in (P) \Leftrightarrow 3(4t + 12) +
5(3t + 9) - (t + 1) - 2 = 0

    \Leftrightarrow 26t = - 78
\Leftrightarrow t = - 3

    Suy ra I(0;0; - 2)

  • Câu 17: Nhận biết
    Vecto chỉ phương của đường thẳng

    Trong không gian Oxyz, một đường thẳng (d) có:

    Hướng dẫn:

     Trong không gian Oxyz, một đường thẳng (d) có vô số vecto chỉ phương.

  • Câu 18: Thông hiểu
    Tìm đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 5z - 4 = 0. Phương trình đường thẳng \Delta đi qua điểm A song song với (P) và vuông góc với trục tung là

    Hướng dẫn:

    Oy có vectơ chỉ phương \overrightarrow j  = \left( {0;1;0} ight)

    (P) có vectơ pháp tuyến \overrightarrow {{n_P}}  = \left( {2; - 3;5} ight)

     \Delta  đi qua điểm A(1; -
2;1) và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{n_P}} } ight] = \left( {5;0; - 2} ight)

    Vậy phương của d\left\{ \begin{matrix}
x = - 2 + 5t \\
y = 1 \\
y = - 3 - 2t \\
\end{matrix} ight.\ .

  • Câu 19: Thông hiểu
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = - 3 + 2t \\
y = 1 - t \\
z = - 1 + 4t \\
\end{matrix} \right. . Phương trình chính tắc của đường thẳng đi qua điểm A( - 4; - 2;4), cắt và vuông góc với d là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi B = \Delta \cap d

    \begin{matrix}
B \in d \Rightarrow B( - 3 + 2t;1 - t; - 1 + 4t) \\
\overrightarrow{AB} = (1 + 2t;3 - t; - 5 + 4t) \\
\end{matrix}

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (2; - 1;4)

    \begin{matrix}
\Delta\bot d \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{d}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{d}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = 1 \\
\end{matrix}

    \Delta đi qua điểm A( - 4; - 2;4) và có vectơ chỉ phương \overrightarrow{AB} = (3;2; -
1)

    Vậy phương trình của \Delta\frac{x + 4}{3} = \frac{y + 2}{2} = \frac{z
- 4}{- 1}

  • Câu 20: Thông hiểu
    Phương trình đường trung tuyến

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

    Hướng dẫn:

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo