Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y - 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương có tọa độ là:

    Hướng dẫn:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 2; -
3).

    Do d\bot(P) nên vectơ \overrightarrow{n} = (1; - 2; - 3) cũng là một vectơ chỉ phương của d.

  • Câu 2: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng (\alpha):x - 3y + z = 0(\beta):x + y - z + 4 = 0 = 0. Phương trình tham số của đường thẳng d

    Hướng dẫn:

    Cách 1:

    Đặt y = t, ta có \left\{ \begin{matrix}
x + z = 3t \\
x - z = - 4 - t \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = - 2 + t \\
z = 2 + 2t \\
\end{matrix} ight.

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight.

    Cách 2:

    Tìm một điểm thuộc d, bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
x + z = 0 \\
x - z = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
x = - 2 \\
z = 2 \\
\end{matrix} ight.\  \Rightarrow M( - 2;0;2) \in d

    (\alpha) có vectơ pháp tuyến \overrightarrow{n_{\alpha}} = (1; -
3;1)

    (\beta) có vectơ pháp tuyến \overrightarrow{n_{\beta}} = (1;1; -
1)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {2;2;4} ight)

    d đi qua điểm M(-2;0;2) và có vectơ chỉ phương là \overrightarrow {{a_d}}

    Vậy phương trình tham số của d là  \left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight. 

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, trục Oxcó phương trình tham số

    Hướng dẫn:

    Trục Oxđi qua O(0;0;0) và có véctơ chỉ phương \overrightarrow{i}(1;0;0)nên có phương trình tham số là: \left\{ \begin{matrix}
x = 0 + 1.t \\
y = 0 + 0.t \\
z = 0 + 0.t \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} \right.\ .

  • Câu 4: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 1;1;2) và hai đường thẳng d:\frac{x - 2}{3} = \frac{y + 3}{2} = \frac{z -
1}{1},d^{'}:\frac{x + 1}{1} = \frac{y}{3} = \frac{z}{- 2}. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.

    Hướng dẫn:

    Gọi \Delta là đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.
    Giả sử \Delta \cap d = A \Rightarrow A(2 +
3t; - 3 + 2t;1 + t).

    \overrightarrow{AM} = (3 + 3t; - 4 + 2t;
- 1 + t)

    \Delta\bot d^{'} \Rightarrow
\overrightarrow{AM} \cdot \overrightarrow{u_{d^{'}}} = 0
\Leftrightarrow 3 + 3t + 3( - 4 + 2t) - 2( - 1 + t) = 0

    \Leftrightarrow 7t = 7 \Leftrightarrow t
= 1

    \Rightarrow A(5; -
1;2),\overrightarrow{AM} = (6; - 2;0) = 2(3; - 1;0).

    \Delta:\left\{ \begin{matrix}x = - 1 + 3t \\y = 1 - t \\z = 2 \\\end{matrix} ight.

  • Câu 5: Thông hiểu
    Định tham số để hai đường thẳng cắt nhau

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{2} = \frac{y - m}{1} = \frac{z
+ 2}{- 1}, (với m là tham số). Tìm m để hai đường thẳng d_{1}d_{2} cắt nhau

    Hướng dẫn:

    Ta có:

    d_{1} đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(1; - 1;2)

    d_{2} đi qua điểm M2(1; m; −2) và có vectơ chỉ phương \overrightarrow{u_{2}} = (2;1; - 1)

    Ta có: \left\{ \begin{matrix}
\left\lbrack \overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack
= ( - 1;5;3) \\
\overrightarrow{M_{1}M_{2}} = (0;m - 2; - 5) \\
\end{matrix} ight.

    d_{1}d_{2} cắt nhau \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0

    \Leftrightarrow - 1\ .0 + 5(m - 2) - 15
= 0 \Leftrightarrow m = 5

  • Câu 6: Thông hiểu
    Tính góc giữa hai mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho (P):x - 2y + 2z - 5 = 0,A( - 3;0;1),B(1; -
1;3). Viết phương trình đường thẳng d qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.

    Hướng dẫn:

    Hình vẽ minh họa

    ( - 3 - 2\ .0 + 2\ .1 - 5).\left( 1 -
2.( - 1) + 2.3 - 5 ight) < 0 nên hai điểm A, B khác phía so với (P).

    Gọi H là hình chiếu của B lên d.

    Ta có: BH ≤ BA nên khoảng cách BH từ B đến d lớn nhất khi và chỉ khi H trùng A.

    Khi đó AB ⊥ d.

    VTPT của (P) là \overrightarrow{n} = (1;
- 2;2),\overrightarrow{AB} = (4; - 1;2)

    VTCP của d là \overrightarrow{u} =
\left\lbrack \overrightarrow{n};\overrightarrow{AB} ightbrack = ( -
2;6;7)

    Mà d qua A(−3; 0; 1) nên phương trình đường thẳng d là: \frac{x + 3}{2} = \frac{y}{- 6} = \frac{z - 1}{-
7}

  • Câu 7: Vận dụng
    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y + 1}{1} =
\frac{z}{1} , d_{2}:\frac{x - 1}{1}
= \frac{y - 2}{2} = \frac{z}{1} và mặt phẳng (P):x + y - 2z + 3 = 0. Gọi \Delta là đường thẳng song song với (P) và cắt d_{1},\ d_{2} lần lượt tại hai điểm A,B sao cho AB = \sqrt{29}. Phương trình tham số của đường thẳng \Delta

    Hướng dẫn:

    Ta có:

    A \in d_{1} \Rightarrow A(1 + 2a; - 1 +
a;a)

    B \in d_{2} \Rightarrow B(1 + b;2 +
2b;b)

    \Delta có vectơ chỉ phương \overrightarrow{AB} = (b - 2a;3 + 2b - a;b -
a)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1;1; - 2)

    \Delta//(P) nên \overrightarrow{AB}\bot\overrightarrow{n_{P}}
\Leftrightarrow b = a - 3.Khi đó \overrightarrow{AB} = ( - a - 3;a - 3; -
3)

    Theo đề bài: AB = \sqrt{29}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 1 \\
a = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
A(3;0;1),\overrightarrow{AB} = ( - 4; - 2; - 3) \\
A( - 1; - 2; - 1),\overrightarrow{AB} = ( - 2; - 4; - 3) \\
\end{matrix} ight.

    Vậy phương trình đường thẳng  \Delta  là \left\{
\begin{matrix}
x = 3 + 4t \\
y = 2t \\
z = 1 + 3t \\
\end{matrix} ight.\left\{
\begin{matrix}
x = - 1 + 2t \\
y = - 2 + 4t \\
z = - 1 + 3t \\
\end{matrix} ight.

  • Câu 8: Vận dụng
    Tính khoảng cách

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.

    Hướng dẫn:

    Ta biểu diễn các điểm N, P, C, G theo a, b, c được:

    N\left( {\frac{a}{2},0,c} ight);P\left( {0,b,\frac{c}{2}} ight);\,C\left( {a,b,0} ight);\,\,\,G\left( {a,b,c} ight)

    Từ đó, ta tính được các vecto tương ứng:

    \overrightarrow {NP}  = \left( { - \frac{a}{2},b, - \frac{c}{2}} ight);\,\,\,\overrightarrow {CG}  = \left( {0,0,c} ight);\,\,\overrightarrow {PC}  = \left( {a,0, - \frac{c}{2}} ight)

    Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:

    \begin{array}{l}\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight] = \left( { - bc, - \dfrac{{ac}}{2},0} ight) =  > \left| {\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight]} ight| = \dfrac{c}{2}\sqrt {{a^2} + 4{b^2}} \\\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight].\overrightarrow {PC}  =  - abc =  > d\left( {NP,CG} ight) = \dfrac{{2ab\sqrt {{a^2} + 4{b^2}} }}{{{a^2} + 4{b^2}}}\end{array}

  • Câu 9: Thông hiểu
    Tìm phương trình tổng quát của mặt phẳng

    Viết phương trình tổng quát của mặt phẳng (P) song song và cách đều hai đường thẳng (D):x = 2 + 3t;\ \ \ y = 1 -
2t;\ \ \ z = 2t - 1(d):x = t -
4;\ \ \ y = 3 - t;\ \ \ z = 3t + 1\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua A(2,1, - 1) và vecto chỉ phương \overrightarrow{a} = (3, - 2,2)

    (d) qua B( - 4,3,1) và vecto chỉ phương \overrightarrow{b} = (1, - 1,3)

    Pháp vecto của (P):\overrightarrow{n} =
\left\lbrack \overrightarrow{a},\overrightarrow{b} \right\rbrack = -
(4,7,1)

    (P) qua trung điểm MN( - 1,2,0) của đoạn AB.

    \Rightarrow (P):4(x + 1) + 7(y - 2) + (z
- 0).1 = 0 \Leftrightarrow 4x + 7y
+ z - 10 = 0

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm M(1;1; - 2) và đường thẳng \Delta: \frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 2}{-
1}.

    a) Điểm N( - 1; - 2;2) thuộc đường thẳng \Delta. Sai||Đúng

    b) Đường thẳng đi qua M, N có một vectơ chỉ phương là: \overrightarrow{u} = (2;3; - 4). Đúng||Sai

    c) Đường thẳng d đi qua điểm M và song song với đường thẳng \Delta là: \frac{x - 1}{1} = \frac{y - 1}{2} = \frac{z + 2}{-
1}. Đúng||Sai

    d) Hình chiếu vuông góc của điểm M lên đường thẳng \Delta là: H(a;b;c), khi đó a + b + c = - \frac{1}{3}. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;1; - 2) và đường thẳng \Delta: \frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 2}{-
1}.

    a) Điểm N( - 1; - 2;2) thuộc đường thẳng \Delta. Sai||Đúng

    b) Đường thẳng đi qua M, N có một vectơ chỉ phương là: \overrightarrow{u} = (2;3; - 4). Đúng||Sai

    c) Đường thẳng d đi qua điểm M và song song với đường thẳng \Delta là: \frac{x - 1}{1} = \frac{y - 1}{2} = \frac{z + 2}{-
1}. Đúng||Sai

    d) Hình chiếu vuông góc của điểm M lên đường thẳng \Delta là: H(a;b;c), khi đó a + b + c = - \frac{1}{3}. Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) sai: Thay tọa độ điểm N( -
1; - 2;2) vào phương trình đường thẳng \Delta ta được: \frac{- 1 - 1}{1} = \frac{- 2 - 2}{2} \neq \frac{2
+ 2}{- 1} \Rightarrow N \notin \Delta

    Phương án b) đúng: Ta có: \overrightarrow{MN} = ( - 2; - 3;4) = - (2;3; -
4). Đường thẳng qua M, N có một vectơ chỉ phương \overrightarrow{u} = (2;3; - 4).

    Phương án c) đúng: Đường thẳng d qua M và song song với đường thẳng \Delta nên có một vectơ chỉ phương \overrightarrow{u_{d}} =
\overrightarrow{u_{\Delta}} = (1;2; - 1). Suy ra phương trình đường thẳng d: \frac{x - 1}{1} = \frac{y -
1}{2} = \frac{z + 2}{- 1}.

    Phương án d) sai: Hlà hình chiếu vuông góc của M lên \Delta. Phương trình tham số của đường thẳng \Delta là: \left\{ \begin{matrix}
x = 1 + t \\
y = 2 + 2t \\
z = - 2 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    H \in \Delta \Rightarrow H(1 + t;2 +
2t; - 2 - t).

    Ta có: \overrightarrow{MH} = (t;1 + 2t; -
t)

    MH\bot d \Rightarrow
\overrightarrow{MH}.\overrightarrow{u_{d}} = 0

    \Leftrightarrow 1.t + 2(1 + 2t) - 1.( -
t) = 0 \Leftrightarrow t = - \frac{1}{3}.

    Do đó H\left(
\frac{2}{3};\frac{4}{3};\frac{- 5}{3} \right).

    Vậy a + b + c = \frac{1}{3}.

  • Câu 11: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình x - 3y - z + 8 = 0. Vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Ta có:

    (P):x–3y–z + 8 = 0 nên (P) có một vectơ pháp tuyến là \overrightarrow{n} =
(1; - 3; - 1)

  • Câu 12: Thông hiểu
    Chọn đáp án thích hợp

    Cho hai đường thẳng trong không gian Oxyz:(D):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}},(d):\ \frac{x\  - \ x_{2}}{b_{1}} = \frac{y\  - \
y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}}. Với a_{1},\ \ a_{2},\ \ a_{3},\ \ b_{1},\ \ b_{2},\ \
b_{3} \neq \ 0. Gọi \overrightarrow{a} = \left( \ a_{1},\ \ a_{2},\ \
a_{3} \right);\ \ \overrightarrow{b} = \left( \ b_{1},\ \ b_{2},\ \
b_{3} \right)\overrightarrow{AB} = \left( \ x_{2}\  - \ x_{1},\
\ y_{2}\  - \ y_{1},\ \ z_{2}\  - \ z_{1} \right). (D) và (d) cắt nhau khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= 0 \Rightarrow (D)(d) cùng nằm trong một mặt phẳng a_{1}:a_{2}:a_{3} \neq b_{1}:b_{2}:b_{3}
\Leftrightarrow \frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}} \neq
\frac{a_{3}}{b_{3}} \Rightarrow (D)(d) cắt nhau.

  • Câu 13: Vận dụng
    Viết phương trình đường thẳng d

    Trong không gian với hệ tọa độ  Oxyz,  gọi d đi qua A( -
1;0; - 1), cắt \Delta_{1}:\frac{x -
1}{2} = \frac{y - 2}{1} = \frac{z + 2}{- 1}, sao cho góc giữa d\Delta_{2}:\frac{x - 3}{- 1} = \frac{y - 2}{2} =
\frac{z + 3}{2} là nhỏ nhất. Phương trình đường thẳng d

    Hướng dẫn:

    Gọi M = d \cap \Delta_{1} \Rightarrow M(1
+ 2t;2 + t; - 2 - t)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = \overrightarrow{AM} = (2t
+ 2;t + 2; - 1 - t)

    \Delta_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = ( -
1;2;2)

    \cos\left( d;\Delta_{2} ight) =
\frac{2}{3}\sqrt{\frac{t^{2}}{6t^{2} + 14t + 9}}

    Xét hàm số f(t) = \frac{t^{2}}{6t^{2} +
14t + 9}, ta suy ra được \min f(t)
= f(0) = 0 \Leftrightarrow t = 0

    Do đó \min\left\lbrack \cos(\Delta,d)
ightbrack = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow{AM}
= (2;2 - 1)

    Vậy phương trình đường thẳng d\frac{x + 1}{2} = \frac{y}{2} = \frac{z +
1}{- 1}

  • Câu 14: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):x = 8t - 1;\ \ y = -
1 - 14t;\ \ z = - 12t(d):x - 2y
+ 3z - 1 = 0;\ \ \ 2x + 2y - z + 4 = 0\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua E( - 1, - 1,0) có vecto chỉ phương \overrightarrow{a} = (8, - 14, - 12)

    Hai pháp vecto của hai mặt phẳng x - 2y +
3z - 1 = 02x + 2y - z + 1 =
0\overrightarrow{n_{1}} = (1, -
2,3);\overrightarrow{n_{2}} = (2,2, - 1)

    Vecto chỉ phương của (d):\overrightarrow{b} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( -
4,7,6)

    Ta có: \frac{8}{- 4} = \frac{- 14}{7} =
\frac{- 12}{6} = - 2 và tọa độ E( -1, - 1,0) thỏa man phương trình của (d) \Rightarrow (D) \equiv (d)

  • Câu 15: Nhận biết
    Tìm phương trình (P) vuông góc với d

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 2}
= \frac{z + 2}{1}. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng d.

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = (1; -
2;1)

    Mặt phẳng vuông góc với d nhận vectơ \overrightarrow{u} làm vectơ pháp tuyến.

    Do đó (P):x - 2y + z + 1 = 0 là mặt phẳng thỏa mãn.

  • Câu 16: Thông hiểu
    Tìm khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} \right.bằng

    Hướng dẫn:

    Đường thẳng \Delta đi qua N(0;2;3), có véc tơ chỉ phương \overrightarrow{u} = (1; - 1;2)

    \overrightarrow{MN} = ( - 2;6;4);\
\left\lbrack \overrightarrow{MN},\overrightarrow{u} \right\rbrack =
(16;8; - 4).

    d(M,\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} \right\rbrack \right|}{\left|
\overrightarrow{u} \right|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}.

  • Câu 17: Thông hiểu
    Tìm tham số m để hai đường thẳng cắt nhau

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + mt \\
y = t \\
z = - 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\left\{ \begin{matrix}
x = 1 - t' \\
y = 2 + 2t' \\
z = 3 - t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Giá trị của m để hai đường thẳng d_{1}d_{2} cắt nhau là

    Hướng dẫn:

    Đường thẳng d_{1} đi qua A(1; 0; −1), có vectơ chỉ phương \overrightarrow{u_{1}} = (m;1;2)

    Đường thẳng d_{2} đi qua B(1; 2; 3), có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 1;2; -
1)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 5;m -
2;2m + 1)\overrightarrow{AB} =
(0;2;4)

    Hai đường thẳng d và d 0 cắt nhau \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{AB} = 0 \Leftrightarrow m = 0

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 2}{3}
= \frac{z - 4}{1} và đường thẳng (\Delta):\frac{x + 1}{2} = \frac{y}{- 1} = \frac{z
+ 2}{- 1}.

    a) Đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow u  = \left( {2;3;1} \right).Đúng||Sai

    b) Đường thẳng qua điểm N( - 5;2; - 2) và có một vectơ chỉ phương  \overrightarrow{v} = (2; - 1; -
1) .Sai||Đúng

    c) Đường thẳng (d) có phương trình tham số \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và đường thẳng \Delta có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng (d) và đường thẳng \Delta vuông góc và cắt nhau.Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 2}{3}
= \frac{z - 4}{1} và đường thẳng (\Delta):\frac{x + 1}{2} = \frac{y}{- 1} = \frac{z
+ 2}{- 1}.

    a) Đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow u  = \left( {2;3;1} \right).Đúng||Sai

    b) Đường thẳng qua điểm N( - 5;2; - 2) và có một vectơ chỉ phương  \overrightarrow{v} = (2; - 1; -
1) .Sai||Đúng

    c) Đường thẳng (d) có phương trình tham số \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và đường thẳng \Delta có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng (d) và đường thẳng \Delta vuông góc và cắt nhau.Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    Phương án a) đúng vì dựa vào phương trình chính tắc ta thấy đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow{u} = (2;3;1).

    Phương án b) sai vì: \frac{- 5 + 1}{2} =
\frac{2}{- 1} \neq \frac{- 2 + 2}{- 1} do đó điểm N không thuộc đường thẳng \Delta.

    Phương án c) đúng vì từ phương trình d:\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z -
4}{1} = t suy ra \left\{
\begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Và từ phương trình \Delta:\frac{x + 1}{2}
= \frac{y}{- 1} = \frac{z + 2}{- 1} = t' suy ra \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right)

    Phương án d) sai vì

    Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u} = (2;3;1) và đường thẳng \Delta có một vectơ chỉ phương \overrightarrow{v} = (2; - 1; -
1)

    Ta có \overrightarrow{u}.\overrightarrow{v} = 2.2 + 3.(
- 1) + 1.( - 1) = 0 do đó d\bot\Delta.

    Gọi A là giao điểm (nếu có) của d và \Delta, tọa độ A là nghiệm hệ phương trình \left\{ \begin{matrix}
1 + 2t = - 1 + 2t' \\
- 2 + 3t = - t' \\
4 + t = - 2 - t'
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
2t - 2t' = - 2\ \ \ (1) \\
3t + t' = 2\ \ \ (2) \\
t + t' = - 6\ \ \ (3)
\end{matrix} \right.

    (1);(2) \Leftrightarrow \left\{
\begin{matrix}
t = \frac{1}{4} \\
t' = \frac{5}{4}
\end{matrix} \right.

    Khi đó t + t' = \frac{3}{2} không thỏa mãn (3). Vậy hai đường thẳng (d)\Delta vuông góc nhưng không cắt nhau.

  • Câu 19: Thông hiểu
    Tìm độ dài đoạn vuông góc chung hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz độ dài đoạn vuông góc chung của hai đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 \\
z = - t \\
\end{matrix} \right.d:\left\{
\begin{matrix}
x = 3 - t \\
y = 4 + t \\
z = 4 \\
\end{matrix} \right. bằng

    Hướng dẫn:

    Ta tìm được \left\{ \begin{matrix}
M(1;2;0) \in \Delta \\
N(3;4;4) \in d \\
\end{matrix} \right.

    Áp dụng công thức d(\Delta;d) =
\frac{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}}
\right\rbrack.\overrightarrow{MN} \right|}{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}} \right\rbrack
\right|} = 2\sqrt{6}.

  • Câu 20: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1), B(3;0;1)C(2;2; - 2). Đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (2; -
2;2), \overrightarrow{AC} = (1;0; -
1).

    Mặt phẳng (ABC) có một véctơ pháp tuyến là \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(2;4;2).

    Đường thẳng vuông góc với mặt phẳng (ABC) có một véctơ chỉ phương là \overrightarrow{u} = (1;2;1).

    Đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là\frac{x - 1}{1} = \frac{y - 2}{2} =
\frac{z + 1}{1}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo