Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, phương trình của đường thẳng đi qua điểm M(1; - 3;5) và có một vectơ chỉ phương \overrightarrow{u}(2; -
1;1) là:

    Hướng dẫn:

    Phương trình của đường thẳıg đi qua điểm M(1; - 3;5) và có một vectơ chỉ phương \overrightarrow{u}(2; - 1;1) là: \frac{x - 1}{2} = \frac{y + 3}{- 1} =
\frac{z - 5}{1}

  • Câu 2: Nhận biết
    Tìm phương trình chính tắc

    Trong không gian tọa độ Oxyz, phương trình nào dưới đây là phương trình chính tắc của đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3t \\
z = - 2 + t \\
\end{matrix} \right.\ ?

    Hướng dẫn:

    Do đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3t \\
z = - 2 + t \\
\end{matrix} \right. đi qua điểm M(1;0; - 2) và có véc tơ chỉ phương \overrightarrow{u}(2;3;1) nên có phương trình chính tắc là \frac{x - 1}{2} =\frac{y}{3} = \frac{ z + 2}{1}.

  • Câu 3: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, đường thẳng đi qua điểm A(1;1;1) và vuông góc với mặt phẳng tọa độ (Oxy)có phương trình tham số là:

    Hướng dẫn:

    Đường thẳng d vuông góc với mặt phẳng tọa độ (Oxy) nên nhận \overrightarrow{k} = (0;0;1) làm vectơ chỉ phương. Mặt khác d đi qua A(1;1;1) nên:

    \Rightarrow Đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 + t \\
\end{matrix} \right..

  • Câu 4: Thông hiểu
    Vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):\frac{x - 1}{2} = y +
3 = \frac{z - 2}{3};\ \ \ \ \ (d):\frac{x + 2}{3} = \frac{y - 1}{2} =
\frac{z + 4}{4}.

    Hướng dẫn:

    A(1, - 3,2) \in (D)(D) có vecto chỉ phương \overrightarrow{a} = (2,1,3)

    B(-2,1,-4) \in (d)(d) có vecto chỉ phương \overrightarrow{b} = (3,2,4)

    \overrightarrow{AB} = ( - 3,4, - 6)\Rightarrow \left\lbrack \overrightarrow{a},\overrightarrow{b}
\right\rbrack.\overrightarrow{AB} = ( - 2,1,1).( - 3,4, - 6) = 4 \neq
0

    \Rightarrow (D)(d) chéo nhau.

  • Câu 5: Thông hiểu
    Tính độ dài đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y - 2z + 1 = 0 đi qua điểm M(1; - 2;0) và cắt đường thẳng d:\left\{ \begin{matrix}
x = 11 + 2t \\
y = 2t \\
z = - 4t \\
\end{matrix}\ (t \in \mathbb{R}) ight. tại N. Tính độ dài đoạn MN.

    Hướng dẫn:

    Điểm N \in (d) \Rightarrow N(11 + 2t;2t;
- 4t). Mặt khác N \in
(\alpha) nên

    11 + 2t + 2t - 2( - 4t) + 1 = 0
\Leftrightarrow t = - 1

    Điểm N(9; - 2;4) \Rightarrow
\overrightarrow{MN} = (8;0;4) \Rightarrow MN = 4\sqrt{5}.

  • Câu 6: Thông hiểu
    Tìm tọa độ giao điểm hai đường thẳng

    Hai đường thẳng (d_{1}): \left\{ \begin{matrix}
x - y - z - 7 = 0 \\
3x - 4y - 11 = 0 \\
\end{matrix} \right.(d_{2}) : \left\{ \begin{matrix}
x + 2y - z + 1 = 0 \\
x + y + 1 = 0 \\
\end{matrix} \right. cắt nhau tại điểm. Tọa độ của A là:

    Hướng dẫn:

    Từ phương trình của (d_{1}) ,tính x, y theo z được \left\{
\begin{matrix}
x = 4z + 17 \\
y = 3z + 10 \\
\end{matrix} \right. .

    Thế vào phương trình của (d_{2}) , được z = - 4, từ đó x = 1,y = - 2 .

    Khi đó: A(1, -2, - 4).

  • Câu 7: Thông hiểu
    Xác định tọa độ hình chiếu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
2}{2}. Tìm tọa độ hình chiếu vuông góc của M lên đường thẳng d.

    Hướng dẫn:

    Gọi (P) là mặt phẳng đi qua M(2;0;1) và vuông góc với đường thẳng d.

    Suy ra (P) nhận \overrightarrow{u_{d}} =
(1;2;1) làm vectơ pháp tuyến.

    Phương trình mặt phẳng

    (P):(x - 2) + 2y + z - 1 =
0

    \Leftrightarrow x + 2y + z - 3 =
0.

    Gọi H là hình chiếu vuông góc của M lên đường thẳng d, suy ra H = d \cap (P).

    Tọa độ điểm H là nghiệm của hệ

    \left\{ \begin{matrix}\dfrac{x - 1}{1} = \dfrac{y}{2} = \dfrac{z - 2}{2} \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2x - y = 2 \\y - 2z = - 4 \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 1 \\y = 0 \\z = 2 \\\end{matrix} ight.

  • Câu 8: Thông hiểu
    Tìm phương trình d thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9. Phương trình đường thẳng d đi qua tâm của mặt cầu (S), song song với \left( \alpha  \right):2x + 2y - z - 4 = 0 và vuông góc với đường thẳng \frac{x - 1}{2} = \frac{y + 2}{5} = \frac{z - 1}{-
1} là.

    Hướng dẫn:

    Tâm của mặt cầu (S) là I(1;-2;3)

    \Delta có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \left( {3; - 1;1} ight)

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_a}}  = \left( {2;2; - 1} ight)

    d đi qua điểm I và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{a_\Delta }} ;\overrightarrow {{n_\alpha }} } ight] = \left( { - 1;5;8} ight)

    Vậy phương của d là \left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 5t \\
z = 3 + 8t \\
\end{matrix} ight.\ .

  • Câu 9: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d:\frac{x}{1} = \frac{y}{1} = \frac{z + 1}{-2},\Delta_{1}:\frac{x - 3}{2} = \frac{y}{1} = \frac{z -1}{1},\Delta_{2}:\frac{x - 1}{1} = \frac{y - 2}{2} =\frac{z}{1}. Đường thẳng \Delta vuông góc với d đồng thời cắt \Delta_{1};\Delta_{2} tương ứng tại H;K sao cho độ dài HK nhỏ nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (h;\ k;\ 1). Giá trị h - k bằng?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
H \in \Delta_{1} \Leftrightarrow H(3 + 2t;t;1 + t) \\
K \in \Delta_{2} \Leftrightarrow K(1 + m;2 + 2m;m) \\
\end{matrix} ight.

    Suy ra \overrightarrow{HK} = (m - 2t -
2;2m - t + 2;m - t - 1)

    Đường thẳng d có một VTCP là \overrightarrow{u_{d}} = (1;1; - 2)

    \Delta\bot d \Rightarrow
\overrightarrow{u_{d}}.\overrightarrow{HK} = 0

    \Leftrightarrow \ m - t + 2 = 0
\Leftrightarrow m = t - 2

    \Rightarrow \overrightarrow{HK} = ( - t
- 4;t - 2; - 3)

    Ta có: HK^{2} = ( - t - 4)^{2} + (t -
2)^{2} + ( - 3)^{2} = 2(t + 1)^{2} + 27 \geq 27;\forall t\mathbb{\in
R}

    \Rightarrow \min HK = \sqrt{27} khi và chỉ khi t = - 1

    \Rightarrow \overrightarrow{HK} = ( - 3;
- 3; - 3) \Rightarrow \overrightarrow{u} = (1;1;1)

    \Rightarrow h = k = 1 \Rightarrow h - k
= 0

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho tứ diện đều ABCDA(4;
- 1;2),B(1;2;2),C(1; - 1;5),D\left( x_{D};\ y_{D};z_{D} ight) với y_{D} > 0. Tính p = 2x_{D} + \ y_{D} - z_{D}?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 3;3;0) \\
\overrightarrow{AC} = ( - 3;0;3) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;\ 1;\ 1)

    AB = 3\sqrt{2}

    Đường thẳng đi qua G vuông góc với (ABC) có phương trình \left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đó D(2 + t;t;3 + t)

    AD = AB \Rightarrow (t - 2)^{2} + 2(t
+ 1)^{2} = 18 \Rightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 2 \\
\end{matrix} ight.

    y_{D} > 0 \Rightarrow y = 2
\Rightarrow P = 5

  • Câu 11: Nhận biết
    Tìm mặt phẳng (P)

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x + 3}{1} = \frac{y - 2}{- 1} = \frac{z -
1}{2}. Viết phương trình mặt phẳng (P) đi qua điểm M(2;0; - 1) và vuông góc với d.

    Hướng dẫn:

    Phương trình mặt phẳng (P):

    1(x - 2) - 1(y - 0) + 2(z + 1) =
0

    \Leftrightarrow x - y + 2z =
0

  • Câu 12: Vận dụng
    Vị trí tương đối của đường thẳng và mặt phẳng

    Mặt phẳng \left( P ight):2x - 2y + 4z + 5 = 0  và đường thẳng (d):\left\{ \begin{array}{l}x - y + 2z + 1 = 0\\y + 2z - 3 = 0\end{array} ight. :   

    Hướng dẫn:

    Theo đề bài, ta có vecto pháp tuyến của \left( P ight):\overrightarrow n  = \left( {2, - 2,4} ight)

    Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: x - y + 2z + 1 = 02x + y - z - 3 = 0 cũng có 2 VTPT lần lượt \overrightarrow {{n_1}}  = \left( {1, - 1,2} ight);\overrightarrow {{n_2}}  = \left( {2,1, - 1} ight)

    Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT: \left( d ight):\overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 1,5,3} ight)

    \Rightarrow \overrightarrow n .\overrightarrow a  =  - 2 - 10 + 12 = 0

    Cho\,\,\,\,\,z = 0 \Rightarrow \left\{ \begin{array}{l}x - y =  - 1\\2x + y = 3\end{array} ight. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{2}{3}\\y = \dfrac{5}{3}\end{array} ight.

    \Rightarrow A\left( {\frac{2}{3},\frac{5}{3},0} ight) \in \left( d ight) và tọa độ của A không thỏa mãn phương trình của (P).

    Vậy (d) // (P) .

  • Câu 13: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 3;4), đường thẳng d:\frac{x + 2}{3} = \frac{y - 5}{- 5} = \frac{z -
2}{- 1} và mặt phẳng (P):2x + z - 2
= 0. Viết phương trình đường thẳng \Delta qua M vuông góc với d và song song với (P).

    Hướng dẫn:

    Đường thẳng d:\frac{x + 2}{3} = \frac{y -
5}{- 5} = \frac{z - 2}{- 1} có vec tơ chỉ phương \overrightarrow{u_{d}} = (3; - 5; -
1).

    Mặt phẳng (P):2x + z - 2 = 0 có vec tơ pháp tuyến \overrightarrow{n_{(P)}} =
(2;0;1).

    Đường thẳng ∆ vuông góc với d nên vectơ chỉ phương \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Đường thẳng ∆ song song với (P) nên \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Ta có \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ightbrack = ( - 5; -
5;10)

    Suy ra vec tơ chỉ phương của đường thẳng ∆ là \overrightarrow{u_{\Delta}} = \frac{-
1}{5}.\left\lbrack \overrightarrow{u_{d}};\overrightarrow{n_{(P)}}
ightbrack = (1;1; - 2)

    Vậy phương trình đường thẳng ∆ là \Delta:\frac{x - 1}{1} = \frac{y + 3}{1} = \frac{z
- 4}{- 2}.

  • Câu 14: Thông hiểu
    Tìm tọa độ hình chiếu của M

    Trong không gian với hệ tọa độ Oxyz, xác định tọa độ điểm M' là hình chiếu vuông góc của điểm M(2;3;1)lên mặt phẳng M(2;3;1).

    Hướng dẫn:

    Gọi \Delta là đường thẳng qua M và vuông góc với.

    => Phương trình tham số của \Delta là: \left\{ \begin{matrix}
x = 2 + t \\
y = 3 - 2t \\
z = 1 + t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Ta có: M' = \Delta \cap (\alpha).

    Xét phương trình: 2 + t - 2(3 - 2t) + 1 +
t = 0 \Leftrightarrow t = \frac{1}{2}.

    Vậy M'\left(
\frac{5}{2};2;\frac{3}{2} \right).

  • Câu 15: Thông hiểu
    Xác định đường thẳng thích hợp

    Đường thẳng (D):x - 3y + 2z + 7 = 0;x- 2y + z - 5 = 0 vuông góc với đường thẳng nào sau đây?

    Hướng dẫn:

    Hai pháp vec-tơ của hai mặt phẳng x - 3y
+ 2z + 7 = 0;x - 2y + z - 5 = 0\overrightarrow{n_{1}} = (1, -
3,2);\overrightarrow{n_{2}} = (1, - 2,1) \Rightarrow \overrightarrow{a}
= \left\lbrack \overrightarrow{n_{1}},\overrightarrow{n_{2}}
\right\rbrack = (1,1,1)

    \left( d_{1} \right) có vec-tơ chỉ phương \overrightarrow{b} = (3, -
4,1)

    \Rightarrow
\overrightarrow{a}.\overrightarrow{b} = 3 - 4 + 1 = 0 \Rightarrow
(D)\bot\left( d_{1} \right)

    \left( d_{2} \right) có vec-tơ chỉ phương \overrightarrow{c} = ( - 2,1, -
2) \Rightarrow \overrightarrow{a}.\overrightarrow{c} = - 3 \neq
0

    \left( d_{3} \right) có vec-tơ chỉ phương \overrightarrow{d} = (1,2, - 3)
\Rightarrow \overrightarrow{a}.\overrightarrow{d} = 0 \Rightarrow
(D)\bot\left( d_{3} \right)

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Cho hai đường thẳng trong không gian Oxyz:(D):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}},(d):\ \frac{x\  - \ x_{2}}{b_{1}} = \frac{y\  - \
y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}}. Với a_{1},\ \ a_{2},\ \ a_{3},\ \ b_{1},\ \ b_{2},\ \
b_{3} \neq \ 0. Gọi \overrightarrow{a} = \left( \ a_{1},\ \ a_{2},\ \
a_{3} \right);\ \ \overrightarrow{b} = \left( \ b_{1},\ \ b_{2},\ \
b_{3} \right)\overrightarrow{AB} = \left( \ x_{2}\  - \ x_{1},\
\ y_{2}\  - \ y_{1},\ \ z_{2}\  - \ z_{1} \right). (D) và (d) chéo nhau khi và chỉ khi:

    Hướng dẫn:

    Ta có:

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
\neq 0 \Rightarrow (D)(d) chéo nhau.

  • Câu 17: Nhận biết
    Xác định tọa độ hình chiếu của A lên mặt phẳng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Hình chiếu vuông góc của điểm a trên mặt phẳng (Oyz) là điểm

    Hướng dẫn:

    Khi chiếu vuông góc một điểm trong không gian lên mặt phẳng (Oyz), ta giữ lại các thành phần tung độ và cao độ nên hình chiếu của A(3; -
1;1) lên (Oyz) là điểm N(0; - 1;1).

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}x =3 - 2t \\y = 1 + 2t \\x = - 5 + t\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):x + y - 5= 0.

    a) Vectơ \overrightarrow{u} = ( -
2;2;1) là một vectơ chỉ phương của \Delta. Đúng||Sai

    b) Góc giữa hai mặt phẳng (P)(Oyz) bằng 45^{0}. Đúng||Sai

    c) Đường thẳng đi qua N(2;3; -
4) và song song với \Delta có phương trình là \frac{x - 2}{- 2} =
\frac{y - 3}{2} = \frac{z + 4}{1}. Đúng||Sai

    d) Đường thẳng d vuông góc \Delta và tạo với (P) một góc 450 có một vectơ chỉ phương là  \overrightarrow{u_{1}} = (1; -
2;4) . Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}x =3 - 2t \\y = 1 + 2t \\x = - 5 + t\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):x + y - 5= 0.

    a) Vectơ \overrightarrow{u} = ( -
2;2;1) là một vectơ chỉ phương của \Delta. Đúng||Sai

    b) Góc giữa hai mặt phẳng (P)(Oyz) bằng 45^{0}. Đúng||Sai

    c) Đường thẳng đi qua N(2;3; -
4) và song song với \Delta có phương trình là \frac{x - 2}{- 2} =
\frac{y - 3}{2} = \frac{z + 4}{1}. Đúng||Sai

    d) Đường thẳng d vuông góc \Delta và tạo với (P) một góc 450 có một vectơ chỉ phương là  \overrightarrow{u_{1}} = (1; -
2;4) . Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) đúng: Từ phương trình của \Delta:\left\{ \begin{matrix}
x = 3 - 2t \\
y = 1 + 2t \\
x = - 5 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) ta có \overrightarrow{u} = ( - 2;2;1) là một vectơ chỉ phương của \Delta.

    Phương án b) đúng: (P):x + y - 5 =
0; (Oyz):x = 0 nên ta có \cos\left( (P);(Oyz) \right) =
\frac{1}{\sqrt{2}}.

    Suy ra \left( (P);(Oyz) \right) =45^0.

    Phương án c) đúng: Đường thẳng \Delta_{1}// \Delta nên \Delta_{1} nhận \overrightarrow{u} = ( - 2;2;1) làm VTCP. Hơn nữa \Delta_{1} đi qua N(2;3; - 4) nên có phương trình là \frac{x - 2}{- 2} = \frac{y - 3}{2} = \frac{z +
4}{1}.

    Phương án d) sai: Gọi \overrightarrow{u_{1}} = (a;b;c) (với a^{2} + b^{2} + c^2 > 0) là một VTCP của d. Do d\bot\Delta nên \overrightarrow{u_{1}}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{u_{1}}.\overrightarrow{u} = 0

    \Rightarrow - 2a + 2b + c = 0
\Rightarrow c = 2a - 2b(*)

    Hơn nữa \left( d;(P) \right) =45^0 nên \sin\left( d;(P) \right)= \frac{1}{\sqrt{2}}  = \frac{|a + b|}{\sqrt{2}.\sqrt{a^{2} + b^{2} +c^{2}}}

    \Leftrightarrow |a + b| = \sqrt{a^{2} +
b^{2} + c^{2}}

    \Leftrightarrow (a + b)^{2} = a^{2} +
b^{2} + c^{2} \Leftrightarrow 2ab = c^{2}

    . Thay (*) vào ta được: (2a - 2b)^{2} =
2ab \Leftrightarrow 2a^{2} - 5ab + 2b^{2} = 0(**)

    Nếu b = 0 \Rightarrow a = 0;c =
0 (không thỏa mãn).

    Nếu b \neq 0, ta có (**) \Leftrightarrow 2.\left( \frac{a}{b}
\right)^{2} - 5\left( \frac{a}{b} \right) + 2 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
\frac{a}{b} = 2 \\
\frac{a}{b} = \frac{1}{2}
\end{matrix} \right..

    Với \frac{a}{b} = 2 \Rightarrow a =
2b, thay vào (*) ta được c =
2b. Do đó \overrightarrow{u_{1}} =
(2b;b;2b);(b \neq 0)

    Với \frac{a}{b} = \frac{1}{2} \Rightarrow
b = 2a, thay vào (*) ta được c = -
2a. Do đó \overrightarrow{u_{1}} =
(a;2a; - 2a);(a \neq 0)

    Vậy \overrightarrow{u_{1}} = (1; -
2;4) không là một VTCP của d.

    Cách khác: Giả sử \overrightarrow{u_{1}}
= (1; - 2;4) là một VTCP của d. Khi đó \sin\left( d;(P) \right) = \frac{\left| 1.1 + ( -
2).1 + 4.0 \right|}{\sqrt{1^{2} + ( - 2)^{2} + 4^{2}}.\sqrt{1^{2} +
1^{2}}} = \frac{1}{\sqrt{42}} \Rightarrow \left( d;(P) \right) \neq
45^{0} (mâu thuẫn).

    Vậy \overrightarrow{u_{1}} = (1;2;-4) không là một VTCP của d.

  • Câu 19: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( \alpha  \right):2x - y + 2z - 3 = 0. Phương trình đường thẳng d đi qua điểm A(2;-3;-1), song song với hai mặt phẳng \left( \alpha  \right);\left( {Oyz} \right) là.

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {2; - 1;2} ight)

    (Oyz) có vectơ pháp tuyến \overrightarrow i  = \left( {1;0;0} ight)

    d đi qua điểm A và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{\alpha}},\overrightarrow{i} ightbrack =
(0;2;1)

    Vậy phương của d là \left\{ \begin{matrix}
x = 2 \\
y = - 3 + 2t \\
z = - 1 + t \\
\end{matrix} ight.

  • Câu 20: Thông hiểu
    Xác định phương trình tham số của d’

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1}, và mặt thẳng (P)\ :3x + 5y -
z - 2 = 0. Gọi d'là hình chiếu của d lên (P).Phương trình tham số của d'

    Hướng dẫn:

    Cách 1:

    Gọi A = d \cap (P)

    \begin{matrix}
A \in d \Rightarrow A(12 + 4a;9 + 3a;1 + a) \\
A \in (P) \Rightarrow a = - 3 \Rightarrow A(0;0; - 2) \\
\end{matrix}

    d đi qua điểm B(12;9;1)

    Gọi H là hình chiếu của B lên (P)

    (P)có vectơ pháp tuyến \overrightarrow{n_{P}} = (3;5; - 1)

    BH đi qua B(12;9;1) và có vectơ chỉ phương \overrightarrow{a_{BH}} = \overrightarrow{n_{P}} =
(3;5; - 1)

    \begin{matrix}
BH:\left\{ \begin{matrix}
x = 12 + 3t \\
y = 9 + 5t \\
z = 1 - t \\
\end{matrix} ight.\  \\
H \in BH \Rightarrow H(12 + 3t;9 + 5t;1 - t) \\
H \in (P) \Rightarrow t = - \frac{78}{35} \Rightarrow H\left(
\frac{186}{35}; - \frac{15}{7};\frac{113}{35} ight) \\
\overrightarrow{AH} = \left( \frac{186}{35}; -
\frac{15}{7};\frac{183}{35} ight) \\
\end{matrix}

    d' đi qua A(0;0; - 2) và có vectơ chỉ phương \overrightarrow{a_{d'}} = (62; -
25;61)

    Vậy phương trình tham số của d'\left\{ \begin{matrix}
x = 62t \\
y = - 25t \\
z = - 2 + 61t \\
\end{matrix} ight.

    Cách 2:

     

    • Gọi (Q) qua d và vuông góc với (P)

     

    d đi qua điểm B(12;9;1) và có vectơ chỉ phương \overrightarrow{a_{d}} = (4;3;1)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (3;5; - 1)

    (Q) qua B(12;9;1) có vectơ pháp tuyến \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{a_{d}},\overrightarrow{n_{P}} ightbrack = ( -
8;7;11)

    (Q):8x - 7y - 11z - 22 = 0

     

    • d' là giao tuyến của (Q)(P)

     

    Tìm một điểm thuộc d', bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
3x - z = 2 \\
8x - 11z = 22 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 0 \\
y = - 2 \\
\end{matrix} ight.\  \Rightarrow M(0;0; - 2) \in d'

    d' đi qua điểm M(0;0; - 2)và có vectơ chỉ phương \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{n_{Q}} ightbrack = (62; -
25;61)

    Vậy phương trình tham số của d'\left\{ \begin{matrix}
x = 62t \\
y = - 25t \\
z = - 2 + 61t \\
\end{matrix} ight.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo