Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng (\alpha):x - 3y + z = 0(\beta):x + y - z + 4 = 0 = 0. Phương trình tham số của đường thẳng d

    Hướng dẫn:

    Cách 1:

    Đặt y = t, ta có \left\{ \begin{matrix}
x + z = 3t \\
x - z = - 4 - t \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = - 2 + t \\
z = 2 + 2t \\
\end{matrix} ight.

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight.

    Cách 2:

    Tìm một điểm thuộc d, bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
x + z = 0 \\
x - z = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
x = - 2 \\
z = 2 \\
\end{matrix} ight.\  \Rightarrow M( - 2;0;2) \in d

    (\alpha) có vectơ pháp tuyến \overrightarrow{n_{\alpha}} = (1; -
3;1)

    (\beta) có vectơ pháp tuyến \overrightarrow{n_{\beta}} = (1;1; -
1)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {2;2;4} ight)

    d đi qua điểm M(-2;0;2) và có vectơ chỉ phương là \overrightarrow {{a_d}}

    Vậy phương trình tham số của d là  \left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight. 

  • Câu 2: Thông hiểu
    Chọn khẳng định đúng

    Cho hai đường thẳng (d_{1}) :\left\{ \begin{matrix}
x - y + z - 5 = 0 \\
x - 3y + 6 = 0 \\
\end{matrix} \right.(d_{2}):\left\{ \begin{matrix}
2y + z - 5 = 0 \\
4x - 2y + 5z - 4 = 0 \\
\end{matrix} \right.

    Tìm câu đúng?

    Hướng dẫn:

    Chuyển đường thẳng (d_{1})(d_{2}) về dạng tham số:

    (d_{1}):\left\{ \begin{matrix}
x = - 6 + 3t \\
y = t \\
z = 11 - 2t \\
\end{matrix} \right.\  \Rightarrow (d_{1}) có vectơ chỉ phương \overrightarrow{a} = (3,1, - 2) và qua A( - 6,0,11) .

    (d_{2}):\left\{ \begin{matrix}
x = \frac{15}{4} - 3t' \\
y = 3 - t' \\
z = - 1 + 2t' \\
\end{matrix} \right.\  \Rightarrow \left( d_{2} \right)có vectơ chỉ phương \overrightarrow{b} =
(\frac{15}{4},3, - 1)

    \overrightarrow{a} \nearrow \swarrow
\overrightarrow{b} và hệ phương trình \left\{ \begin{matrix}
- 6 + 3t = \frac{15}{4} - 3t' \\
t = 3 - t' \\
11 - 2t = - 1 + 2t' \\
\end{matrix} \right. vô nghiệm.

    \Rightarrow (d_{1}) //(d_{2})

  • Câu 3: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y + 2}{- 1} =
\frac{z - 3}{1}d_{2}:\frac{x -
1}{- 1} = \frac{y - 1}{2} = \frac{z + 1}{1}. Phương trình đường thẳng \Delta đi qua điểm A(1;2;3) vuông góc với d_{1} và cắt d_{2} là:

    Hướng dẫn:

    Gọi B = \Delta \cap d_{2}

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - t;1 + 2t; - 1 + t) \\
\overrightarrow{AB} = ( - t;2t - 1;t - 4) \\
\end{matrix}

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2; - 1;1)

    \begin{matrix}
\Delta\bot d_{1} \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{1}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{1}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = - 1 \\
\end{matrix}

    \Delta đi qua điểm A(1;2;3) và có vectơ chỉ phương \overrightarrow{AB} = (1; - 3; - 5)

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y - 2}{- 3} =
\frac{z - 3}{- 5}.

  • Câu 4: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, đường thẳng đi qua điểm A(1;1;1) và vuông góc với mặt phẳng tọa độ (Oxy)có phương trình tham số là:

    Hướng dẫn:

    Đường thẳng d vuông góc với mặt phẳng tọa độ (Oxy) nên nhận \overrightarrow{k} = (0;0;1) làm vectơ chỉ phương. Mặt khác d đi qua A(1;1;1) nên:

    \Rightarrow Đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 + t \\
\end{matrix} \right..

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0; - 1) và mặt phẳng (P):x + y - 1 = 0. Đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy) có phương trình là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}\overrightarrow{n_{(P)}} = (1;1;0) \\\overrightarrow{n_{(Oxy)}} = (0;0;1) \\\end{matrix} ight.. Gọi d là đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy).

    Khi đó: \left\{ \begin{matrix}\overrightarrow{u_{d}}\bot\overrightarrow{u_{(P)}} \\\overrightarrow{u_{d}}\bot\overrightarrow{u_{(Oxy)}} \\\end{matrix} ight.\  \Rightarrow \overrightarrow{u_{d}} = \left\lbrack\overrightarrow{n_{(P)}};\overrightarrow{n_{(Oxy)}} ightbrack = (1;- 1;0)

    Vậy \left\{ \begin{matrix}x = 2 + t \\y = - t \\z = - 1 \\\end{matrix} ight..

  • Câu 6: Thông hiểu
    Tìm phương trình đường thẳng theo yêu cầu

    Trong không gian với hệ tọa độ  Oxyz,  cho hai mặt phẳng \left( \alpha  \right):x - 2y + 2z + 3 = 0\left( \beta  \right):3x - 5y - 2z - 1 = 0. Phương trình đường thẳng d đi qua điểm M(1;3;-1), song song với hai mặt phẳng đã cho là

    Hướng dẫn:

    \left( \alpha  ight) có vectơ chỉ phương \overrightarrow {{n_\alpha }}  = \left( {1; - 2;2} ight)

     \left( \beta  ight) có vectơ chỉ phương \overrightarrow {{n_\beta }}  = \left( {3; - 5; - 2} ight)

    d đi qua M và có vecto chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {14;8;1} ight)

    Vậy phương trình tham số của d là \left\{ \begin{matrix}
x = 1 + 14t \\
y = 3 + 8t \\
z = - 1 + t \\
\end{matrix} ight.\ .

  • Câu 7: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Hướng dẫn:

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 8: Vận dụng
    Tính khoảng cách từ O đến (P)

    Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y}{1} = \frac{z -
2}{2}. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ điểm A đến (P) là lớn nhất. Khoảng cách từ gốc tọa độ O đến (P) bằng:

    Hướng dẫn:

    Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.

    Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.

    Ta tìm được (P):x - 4y + z - 3 = 0
\Rightarrow d\left( O;(P) ight) = \frac{3}{\sqrt{18}} =
\frac{1}{\sqrt{2}}.

  • Câu 9: Nhận biết
    Tìm hình chiếu vuôn góc của M

    Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2\ ;\  - 2\ ;\
1) trên mặt phẳng (Oxy) có tọa độ là

    Hướng dẫn:

    Ta có hình chiếu của điểm M\left( x_{0}\
;\ y_{0}\ ;\ z_{0} \right) trên mặt phẳng (Oxy) là điểm M'\left( x_{0}\ ;\ y_{0}\ ;\ 0
\right).

    Do đó hình chiếu của điểm M(2\ ;\  - 2\
;\ 1) trên mặt phẳng (Oxy) là điểm M'(2\ ;\  - 2\ ;\
0).

  • Câu 10: Thông hiểu
    Tìm phương trình d thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9. Phương trình đường thẳng d đi qua tâm của mặt cầu (S), song song với \left( \alpha  \right):2x + 2y - z - 4 = 0 và vuông góc với đường thẳng \frac{x - 1}{2} = \frac{y + 2}{5} = \frac{z - 1}{-
1} là.

    Hướng dẫn:

    Tâm của mặt cầu (S) là I(1;-2;3)

    \Delta có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \left( {3; - 1;1} ight)

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_a}}  = \left( {2;2; - 1} ight)

    d đi qua điểm I và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{a_\Delta }} ;\overrightarrow {{n_\alpha }} } ight] = \left( { - 1;5;8} ight)

    Vậy phương của d là \left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 5t \\
z = 3 + 8t \\
\end{matrix} ight.\ .

  • Câu 11: Nhận biết
    Vecto chỉ phương của đường thẳng

    Cho đường thẳng \left( D ight):\left\{ \begin{array}{l}2x - y + 4z - 1 = 0\\2x + 4y - z + 5 = 0\end{array} ight. có một vec-tơ chỉ phương là:

    Hướng dẫn:

     Ta có vectơ pháp tuyến của hai mặt phẳng

    \left( P ight):2x - y + 4z - 1 = 0\left( Q ight):2x + 4y - z + 5 = 0 lần lượt là  \overrightarrow {{n_1}}  = \left( {2, - 1,4} ight);\overrightarrow {{n_2}}  = \left( {2,4, - 1} ight).

    Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:

    \overrightarrow {{a_D}}  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] =  - 5\left( {3, - 2, - 2} ight) = 5\left( { - 3,2,2} ight)

    \Rightarrow \overrightarrow a  = \left( {3, - 2, - 2} ight) \vee \overrightarrow a  = \left( { - 3,2,2} ight)

  • Câu 12: Thông hiểu
    Xác định tọa độ điểm đối xứng

    Trong không gian tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y
+ 3}{2} = \frac{z + 2}{2} và điểm A(3;2;0). Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là:

    Hướng dẫn:

    Gọi M( - 1 + t; - 3 + 2t; - 2 + 2t) \in
d

    \Rightarrow AH = (t - 4;2t - 5;2t -
2)

    Vectơ chỉ phương của d là \overrightarrow{u} = (1;2;2)

    \overrightarrow{u}\bot\overrightarrow{AH}
\Rightarrow \overrightarrow{u}.\overrightarrow{AH} = 0

    \Leftrightarrow 1(t - 4) + 2(2t - 5) +
2(2t - 2) = 0 \Leftrightarrow t = 2

    Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì: \left\{ \begin{matrix}
x = 2.1 - 3 = - 1 \\
y = 2.1 - 2 = 0 \\
z = 2.2 - 0 = 4 \\
\end{matrix} ight.

    Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là: ( - 1;0;4).

  • Câu 13: Nhận biết
    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình chính tắc \Delta của đường thẳng đi qua hai điểm A(1; - 2;5) B(3;1;1)?

    Hướng dẫn:

    \Deltađi qua hai điểm A B nên có vectơ chỉ phương \overrightarrow{AB} = (2;3; - 4)

    Vậy phương trình chính tắc của d là \frac{x - 1}{2} = \frac{y + 2}{3} =
\frac{z - 5}{- 4}.

  • Câu 14: Vận dụng
    Chọn khẳng định đúng

    Trong hệ tọa độ Oxyz, cho mặt phẳng (\alpha):2x + y - 2z + 9 = 0 và ba điểm A(2; 1; 0), B(0; 2; 1), C(1; 3;-1). Điểm M ∈ (α) sao cho \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Xét điểm I(a; b; c) thỏa mãn: 2\overrightarrow{IA} + 3\overrightarrow{IB} -
4\overrightarrow{IC} = \overrightarrow{0}

    Khi đó

    \left\{ \begin{matrix}
2(2 - a) - 3a - 4(1 - a) = 0\  \\
2(1 - b) + 3(2 - b) - 4(3 - b) = 0\  \\
- 2c + 3(1 - c) - 4( - 1 - c) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 0\  \\
b = - 4\  \\
c = 7 \\
\end{matrix} ight.\  \Rightarrow I(0; - 4;7)

    Khi đó:

    \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| = \left|
2\overrightarrow{MI} + 3\overrightarrow{MI} - 4\overrightarrow{MI} +
2\overrightarrow{IA} + 3\overrightarrow{IB} - 4\overrightarrow{IC}
ight| = IM

    Do đó \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| đạt giá trị nhỏ nhất thì M là hình chiếu của I trên mặt phẳng (\alpha).

    Do M(x;y;z) là hình chiếu của I trên mặt phẳng (\alpha) nên ta có:

    \left\{ \begin{matrix}
\overrightarrow{IM} = k.\overrightarrow{n} \\
M \in (\alpha) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2k\  \\
y + 4 = k\  \\
z - 7 = - 2k\  \\
2x + y - 2z + 9 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 1 \\
x = 2\  \\
y = - 3\  \\
z = 5 \\
\end{matrix} ight.

    Vậy M = (2; - 3;5) \Rightarrow x_{M} +
y_{M} + z_{M} = 4.

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Vectơ \overrightarrow{u} = (2;3; -
1) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    b) Vectơ \overrightarrow{u_{1}} = ( - 4;
- 6;2) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) cắt mặt phẳng (Oxy) tại điểm A(9;10;0). Đúng||Sai

    d) Phương trình chính tắc của đường thẳng (d) là: \frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z + 4}{-
1}. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Vectơ \overrightarrow{u} = (2;3; -
1) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    b) Vectơ \overrightarrow{u_{1}} = ( - 4;
- 6;2) là một vectơ chỉ phương của đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) cắt mặt phẳng (Oxy) tại điểm A(9;10;0). Đúng||Sai

    d) Phương trình chính tắc của đường thẳng (d) là: \frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z + 4}{-
1}. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) đúng: từ phương trình (d) ta có \overrightarrow{u} = (2;3; - 1) là một vectơ chỉ phương của (d).

    Phương án b): đúng: \overrightarrow{u_{1}} = ( - 4; - 6;2) = - 2(2;3;
- 1) = - 2\overrightarrow{u} nên \overrightarrow{u_{1}} cũng là một vectơ chỉ phương của (d).

    Phương án c) đúng: (Oxy):z = 0, từ phương trình của (d) ta có 4 - t = 0 \Leftrightarrow t = 4, thay vào (d) ta được A(9;10;0).

    Phương án d) sai: từ phương trình tham số của (d) ta suy ra phương trình chính tắc của (d)\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z - 4}{-
1}.

  • Câu 16: Thông hiểu
    Tính khoảng cách từ d đến (P)

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 8 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight.. Khoảng cách giữa đưởng thẳng d và mặt phẳng (P) bằng:

    Hướng dẫn:

    Đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. đi qua A(1;2;3) và có vectơ chỉ phương \overrightarrow{u} = (2; - 1;1)

    Mặt phẳng (P):x + 2y - 8 = 0 có vectơ pháp tuyến \overrightarrow{n} =
(1;2;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{u}.\overrightarrow{n} = 2 - 2 + 0 = 0 \\
A otin (P) \\
\end{matrix} ight., nên đường thằng d song song với mặt phẳng (P).

    Vậy khoảng cách giữa đường thẳng d và mặt phẳng (P) bằng khoảng cách từ A đến mặt phẳng (P):

    d\left( d;(P) ight) = d\left( A;(P)
ight) = \frac{|1 + 4 - 8|}{\sqrt{1^{2} + 2^{2}}} =
\frac{3}{\sqrt{5}}

  • Câu 17: Thông hiểu
    Phương trình tổng quát

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    Gợi ý:

    Để dễ dàng viết phương trình tổng quát của (AC) như yêu cầu bài toán, ta sẽ viết phương trình chính tắc của AC.

    Hướng dẫn:

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

  • Câu 18: Vận dụng
    Chọn phương án đúng

    Cho hai điểm A(3;3;1),B(0;2;1) và mặt phẳng (P):x + y + z - 7 = 0. Đường thẳng d nằm trên (P) sao cho mọi điểm của d và cách đều hai điểm A, B có phương trình là

    Hướng dẫn:

    Gọi K là điểm bất kì trên (d). Theo giả thiết: KA = KB tức là tam giác KAB cân, điều này chỉ xảy ra khi (d) nằm trên mặt phẳng (Q) là mặt phẳng trung trực của AB. Ta đi xác định (Q):

    Gọi M là trung điểm AB thì:

    M\left( \frac{3 + 0}{2};\frac{3 +2}{2};\frac{1 +1}{2} \right) \Rightarrow M\left(\frac{3}{2};\frac{5}{2};1 \right)

    Mặt phẳng (Q) đi qua M và vuông góc với AB tức là nhận \overrightarrow{AB} = ( - 3; - 1;0) là vectơ pháp tuyến. Dó đó:

    (Q): - 3\left( x - \frac{3}{2} \right) -
1\left( y - \frac{5}{2} \right) + 0(z - 1) = 0

    \Leftrightarrow (Q):3x + y - 7 =
0

    Do đó, (d) là giao tuyến của (P)(Q) nên là nghiệm của hệ:

    \left\{ \begin{matrix}
x + y + z - 7 = 0 \\
3x + y - 7 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = t \\
y = 7 - 3t \\
z = 2t \\
\end{matrix} \right.\ \left( t\mathbb{\in R} \right).

  • Câu 19: Thông hiểu
    Tìm phương trình giao tuyến hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Hướng dẫn:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 20: Thông hiểu
    Tìm tọa độ hình chiếu A’ của A

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;1) và đường thẳng (d):\left\{ \begin{matrix}
x = 6 - 4t \\
y = - 2 - t \\
z = - 1 + 2t \\
\end{matrix} \right.. Tìm tọa độ hình chiếu A’ của A trên (d)

    Hướng dẫn:

    Ta có A' \in (d) nên gọi A'(6 - 4t; - 2 - t; - 1 + 2t); \overrightarrow{AA'} = (5 - 4t; - 3 - t;
- 2 + 2t);

    đường thẳng (d) có vectơ chỉ phương \overrightarrow{u}( - 4; -
1;2)

    AA'\bot(d) \Rightarrow
\overrightarrow{AA'}\bot\overrightarrow{u} \Leftrightarrow
\overrightarrow{AA'}.\overrightarrow{u} = 0

    \Leftrightarrow (5 - 4t).( - 4) + ( - 3
- t).( - 1) + ( - 2 + 2t).2 = 0

    \Leftrightarrow t = 1

    \Rightarrow A'(2; -
3;1).

    Vậy A'(2; - 3;1).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo