Viết phương trình mặt cầu (S) tâm tiếp xúc với mặt cầu (S’):
có tâm
, bán kính
Gọi R là bán kính của .
và
tiếp xúc trong khi và chỉ khi:
(loại)
Viết phương trình mặt cầu (S) tâm tiếp xúc với mặt cầu (S’):
có tâm
, bán kính
Gọi R là bán kính của .
và
tiếp xúc trong khi và chỉ khi:
(loại)
Cho hai mặt cầu (S) và (S’) lần lượt có tâm I và J, bán kính R và R’. Đặt . Câu nào sau đây sai?
I. và
trong nhau
II. và
ngoài nhau
III. và
tiếp xúc ngoài
IV. và
tiếp xúc trong
và
ngoài nhau
và
cắt nhau
và
tiếp xúc trong
và
tiếp xúc ngoài.
Vậy cả 4 mệnh đề đều sai.
Cho các phương trình sau:
Số phương trình là phương trình mặt cầu là:
Ta có:
là phương trình của một mặt cầu.
Có tất cả 3 phương trình mặt cầu
Trong không gian với hệ tọa độ , cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?
Mặt cầu tâm và bán kính R = 3 có phương trình:
Cho mặt cầu và mặt phẳng
. Biết khoảng cách từ O đến
bằng
. Khi đó thiết diện tạo bởi mặt phẳng
với
là một đường tròn có đường kính bằng:

Gọi H là hình chiếu của O xuống .
Ta có nên
cắt
theo đường tròn
.
Bán kính đường tròn là
Suy ra đường kính bằng .
Trong không gian , cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có:
Trong không gian , cho mặt cầu
. Xác định tọa độ tâm của mặt cầu
Mặt cầu có tâm là
.
Trong không gian với hệ tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Trong không gian , cho mặt cầu
có tọa độ tâm
là:
Tâm của có tọa độ là
.
Viết phương trình mặt cầu (S) tâm nhận đường thẳng (D):
làm tiếp tuyến.
qua
có vecto chỉ phương
Cho hai mặt phẳng
. Phương trình mặt cầu
tiếp xúc với mặt phẳng
tại điểm
và có tâm thuộc mặt phẳng
là:
Gọi đường thẳng đi qua
và vuông góc với
, ta có:
Tâm .
Bán kính mặt cầu là .
Phương trình mặt cầu .
Gọi I là tâm mặt cầu . Độ dài
(
là gốc tọa độ) bằng:
Mặt cầu có tâm
Cho mặt cầu tâm I bán kính . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng
. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:
Theo đề bài, mặt phẳng cắt mặt cầu theo một đường tròn
.
Vậy .
Trong hệ tọa độ , cho mặt cầu
có tâm
và có thể tích bằng
. Khi đó phương trình mặt cầu
là:
Thể tích mặt cầu là:
Vậy phương trình mặt cầu tâm có bán kính
là:
Trong không gian với hệ toạ độ , một trạm thu phát sóng điện thoại di động được đặt ở vị trí
được thiết kế với bán kính phủ sóng
, mỗi đơn vị trên trục ứng với
km. Xét sự đúng sai của các nhận định dưới đây:
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là .Đúng||Sai
c) Người dùng điện thoại ở vị trí có toạ độ
không thể sử dụng dịch vụ của trạm thu phát sóng đó. Sai||Đúng
d) Trong điều kiện giao thông thuận lợi, khoảng cách ngắn nhất để người ở toạ độ
di chuyển tới vùng phủ sóng là
km. Sai||Đúng
Trong không gian với hệ toạ độ , một trạm thu phát sóng điện thoại di động được đặt ở vị trí
được thiết kế với bán kính phủ sóng
, mỗi đơn vị trên trục ứng với
km. Xét sự đúng sai của các nhận định dưới đây:
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là .Đúng||Sai
c) Người dùng điện thoại ở vị trí có toạ độ
không thể sử dụng dịch vụ của trạm thu phát sóng đó. Sai||Đúng
d) Trong điều kiện giao thông thuận lợi, khoảng cách ngắn nhất để người ở toạ độ
di chuyển tới vùng phủ sóng là
km. Sai||Đúng
a) Sai.
Ta có, trạm thu phát sóng là tâm của vùng phủ sóng , bán kính phủ sóng là
nên phương trình mặt cầu
mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
b) Đúng.
Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là .
c) Sai.
Ta có: nên điểm
nằm trong mặt cầu hay người dùng điện thoại ở vị trí A có thể sử dụng dịch vụ của trạm thu phát sóng đó.
d) Sai.
Khoảng cách từ người đến trạm thu phát sóng là:
.
Khoảng cách ngắn nhất để người đó di chuyển đến vùng phủ sóng là:
(km).
Trong không gian với hệ tọa độ , cho hai điểm
. Mặt cầu đường kính
có phương trình là:
Gọi là trung điểm của
khi đó
là tâm mặt cầu
.
Bán kính
Vậy phương trình mặt cầu cần tìm là: .
Phương trình nào sau đây không phải là phương trình mặt cầu?
Phương trình mặt cầu có hai dạng là:
(1) ;
(2) với
.
Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.
Ở các đáp án ,
,
đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án
thì phương trình:
không đúng dạng phương trình mặt cầu.
Trong không gian với hệ tọa độ , phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Trong không gian với hệ tọa độ , cho mặt cầu
. Tâm mặt cầu
có tọa độ là:
Mặt cầu có tâm là
Mặt cầu có tâm
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: