Trong không gian , cho hai điểm
và
. Phương trình mặt cầu có tâm
và đi qua
là:
Ta có:
Vậy phương trình mặt cầu tâm và đi qua điểm
có phương trình là:
.
Trong không gian , cho hai điểm
và
. Phương trình mặt cầu có tâm
và đi qua
là:
Ta có:
Vậy phương trình mặt cầu tâm và đi qua điểm
có phương trình là:
.
Trong không gian với hệ tọa độ , cho mặt cầu
và mặt phẳng
. Mặt phẳng
song song với
và tiếp xúc với
là
Ta có:
(S) có tâm , bán kính
. (P) song song với (α)
⇒, với
Do mặt phẳng (P) tiếp xúc với (S) nên , so với điều kiện ta nhận
.
Vậy .
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Cho các phương trình sau:
Số phương trình là phương trình mặt cầu là:
Ta có:
là phương trình của một mặt cầu.
Có tất cả 3 phương trình mặt cầu
Cho mặt cầu và mặt phẳng
. Gọi
là đường tròn giao tuyến của
và
. Viết phương trình mặt cầu cầu
chứa
và điểm
Phương trình của
qua
Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
. Tìm tất cả các giá trị của m để
tiếp xúc với mặt cầu
?
Ta có mặt cầu có tâm I(1; −1; 1) và bán kính R = 3.
Mặt phẳng tiếp xúc với
khi và chỉ khi:
.
Cho mặt cầu và một điểm A, biết
. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho
. Khi đó khoảng cách từ O đến BC bằng:
Gọi H là hình chiếu của O lên BC.
Ta có , suy ra H là trung điểm của BC nên
Suy ra
Trong không gian với hệ tọa độ , cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Mặt cầu có phương trình nào sau đây có tâm là
Phương trình mặt cầu có dạng
với
, có tâm
, bán kính
.
Vậy phương trình mặt cầu thích hợp là:
Mặt cầu có tâm là:
Phương trình mặt cầu có dạng
với
, có tâm
, bán kính
.
Mặt cầu có tâm là
Trong không gian với hệ tọa độ , phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Cho đường thẳng và mặt cầu
:
. Giao điểm của
và
là các điểm có tọa độ:
Tọa độ giao điểm là nghiệm hệ phương trình:
Cho mặt cầu tâm I bán kính . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng
. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:
Theo đề bài, mặt phẳng cắt mặt cầu theo một đường tròn
.
Vậy .
Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
. Khẳng định nào sau đây đúng?
Mặt cầu (S) có tâm , bán kính
Ta có:
Do đó (P) cắt mặt cầu (S).
Trong không gian tọa độ , mặt cầu tâm
bán kính
có phương trình là
Mặt cầu tâm và bán kính
có phương trình là:
Trong không gian với hệ tọa độ , cho mặt cầu
. Tìm tọa độ tâm
và tính bán kính
của
Mặt cầu có tâm
và bán kính
.
Mặt cầu tâm
và đi qua
có phương trình:
Bán kính mặt cầu là:
Vậy phương trình của mặt cầu là: .
Trong hệ tọa độ , cho mặt cầu
có tâm
và có thể tích bằng
. Khi đó phương trình mặt cầu
là:
Thể tích mặt cầu là:
Vậy phương trình mặt cầu tâm có bán kính
là:
Cho hai mặt phẳng
. Phương trình mặt cầu
tiếp xúc với mặt phẳng
tại điểm
và có tâm thuộc mặt phẳng
là:
Gọi đường thẳng đi qua
và vuông góc với
, ta có:
Tâm .
Bán kính mặt cầu là .
Phương trình mặt cầu .
Trong không gian , cho mặt cầu
. Xác định tọa độ tâm của mặt cầu
Mặt cầu có tâm là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: