Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow + \infty}f(x) = 0\lim_{x ightarrow - \infty}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Ta có \lim_{x ightarrow + \infty}f(x) =
0\overset{}{ightarrow}y = 0 là tiệm cận ngang.

    Đáp án “Đồ thị hàm số nằm phía trên trục hoành.“ sai vì chọn hàm y = \left\{ \begin{matrix}
\left( \dfrac{1}{2} ight)^{x} & ;x \leq - 1 \\
- \left( \dfrac{1}{2} ight)^{x} & ;x \geq 1 \\
\end{matrix} ight..

    Vậy ta chỉ có đáp án “Đồ thị hàm số có một tiệm cận ngang là trục hoành” đúng.

  • Câu 2: Thông hiểu
    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} + 2x +
3}{\sqrt{x^{4} - 3x^{2} + 2}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = \left( - \infty; - \sqrt{2}
ight) \cup ( - 1;1) \cup \left( \sqrt{2}; + \infty ight). Ta có:

    \lim_{x ightarrow \pm \infty}y = 1
ightarrow y = 1 là TCN;

    \lim_{x ightarrow \ \left( - \sqrt{2}
ight)^{-}}y = + \infty ightarrow x = - \sqrt{2} là TCĐ;

    \lim_{x ightarrow \ ( - 1)^{+}}y = +
\infty ightarrow x = - 1 là TCĐ;

    \lim_{x ightarrow \ 1^{-}}y = + \infty
ightarrow x = 1 là TCĐ;

    \lim_{x ightarrow \ {\sqrt{2}}^{+}}y =
+ \infty ightarrow x = \sqrt{2} là TCĐ.

    Vậy hàm số đã cho có tất cả năm đường tiệm cận.

  • Câu 3: Vận dụng
    Tìm m để đồ thị hàm số có 1 tiệm cận đứng

    Tìm tất cả các giá trị thực của tham số a để đồ thị hàm số y = \frac{x^{2} + 1}{3x^{2} - 2ax + a} có đúng một tiệm cận đứng.

    Hướng dẫn:

    Để đồ thị hàm số y = \frac{x^{2} +
1}{3x^{2} - 2ax + a} có đúng một tiệm cận đứng \Leftrightarrow 3x^{2} - 2ax + a = 0 có nghiệm duy nhất

    \Leftrightarrow \Delta' = a^{2} - 3a
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 3 \\
\end{matrix} ight..

  • Câu 4: Thông hiểu
    Tìm tổng số đường tiệm cận

    Cho hàm số có bảng biến thiên như hình sau

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số 0

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =4,\lim_{x ightarrow + \infty}y = - 1 \RightarrowĐồ thị hàm số có hai tiệm cận ngang là y = - 1y = 4.

    \lim_{x ightarrow - 1^{-}}y = +\infty;\lim_{x ightarrow - 1^{+}}y = - \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = -
1.

    \lim_{x ightarrow 1^{-}}y = -
\infty,\lim_{x ightarrow 1^{+}}y = + \infty \Rightarrow Đồ thị hàm số có tiệm cận đứng x =
1.

    Nên đồ thị hàm số có 4 đường tiệm cận.

  • Câu 5: Thông hiểu
    Xác định số tiệm cận của hàm số

    Số tiệm cận của hàm số y = \frac{{\sqrt {{x^2} + 1}  - x}}{{\sqrt {{x^2} - 9}  - 4}} là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định: \left\{ {\begin{array}{*{20}{c}}  {{x^2} - 9 \geqslant 0} \\   {\sqrt {{x^2} - 9}  e 4} \end{array}} ight. \Rightarrow x \in \left( { - \infty ; - 3} ight] \cup \left[ {3; + \infty } ight)\backslash \left\{ { \pm 5} ight\}

    Khi đó \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = 0;\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 2

    => Đồ thị hàm số có hai tiệm cận ngang

    Mặt khác \mathop {\lim }\limits_{x \to  \pm {5^ + }} f\left( x ight) =  \mp \infty ;\mathop {\lim }\limits_{x \to  \pm {5^ - }} f\left( x ight) =  \pm \infty

    => Đồ thị hàm số có hai tiệm cận đứng

    Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.

  • Câu 6: Thông hiểu
    Tìm số tiệm cận ngang của đồ thị hàm số

    Đồ thị hàm số y = \frac{2x + 1}{3x -
\sqrt{x - 1}} có bao nhiêu đường tiệm cận ngang?

    Hướng dẫn:

    TXĐ: D = \lbrack 1\ ; + \infty)\
.

    Do đó ta chỉ xét 1 trường hợp như sau:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{2x + 1}{3x - \sqrt{x - 1}}= \lim_{x
ightarrow + \infty}\frac{2 + \frac{1}{x}}{3 - \sqrt{\frac{1}{x} -\frac{1}{x^{2}}}} = \frac{2}{3} ightarrow y = \frac{2}{3} là TCN.

    Vậy đồ thị hàm số có đúng một TCN.

  • Câu 7: Thông hiểu
    Chọn đáp án chính xác

    Đồ thị hàm số y = \frac{x^{3} - 4x}{x^{3}
- 3x - 2} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có: y = \frac{x^{3} - 4x}{x^{3} - 3x -
2} = \frac{(x - 2)\left( x^{2} + 2x ight)}{(x - 2)\left( x^{2} + 2x +
1 ight)} = \frac{x^{2} + 2x}{x^{2} + 2x + 1}

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x^{2} + 2x}{x^{2} + 2x + 1} =
\lim_{x ightarrow ( - 1)^{+}}\frac{x(x + 2)}{(x + 1)^{2}} = -
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x^{2} + 2x}{x^{2} + 2x + 1}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{1 + \dfrac{2}{x}}{1+ \dfrac{2}{x} + \dfrac{1}{x^{2}}} ight) = 1 suy ra đồ thị hàm số có tiệm cận ngang là y = 1.

    Vậy đồ thị hàm số có hai đường tiệm cận.

  • Câu 8: Thông hiểu
    Chọn câu đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Hướng dẫn:

    “Đồ thị hàm số y = f(x) có tiệm cận ngang y = 1 khi và chỉ khi \lim_{x ightarrow + \infty}f(x) =
1\lim_{x ightarrow -
\infty}f(x) = 1“ sai vì chỉ cần một trong hai giới hạn \lim_{x ightarrow - \infty}f(x) = 1 hoặc \lim_{x ightarrow + \infty}f(x) =
1 tồn tại thì đã suy ra được tiệm cận ngang là y = 1.

    “Nếu hàm số y = f(x) không xác định tại x_{0} thì đồ thị hàm số y = f(x) có tiệm cận đứng x = x_{0}“ sai, ví dụ hàm số y = \sqrt{x^{3} - 1} không xác định tại x = - 2 nhưng \lim_{x ightarrow \ ( - 2)^{-}}f(x)\lim_{x ightarrow \ ( -
2)^{+}}f(x) không tiến đến vô cùng nên x = - 2 không phải là tiệm cận đứng của đồ thị hàm số.

    “Đồ thị hàm số y = f(x) có tiệm cận đứng x = 2 khi và chỉ khi \lim_{x ightarrow 2^{+}}f(x) = + \infty\lim_{x ightarrow 2^{-}}f(x) = +
\infty“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:

    \lim_{x ightarrow 2^{-}}f(x) = -
\infty,\lim_{x ightarrow 2^{-}}f(x) = + \infty,\lim_{x ightarrow \
2^{+}}f(x) = - \infty,\lim_{x ightarrow \ 2^{+}}f(x) = +
\infty.

    “Đồ thị hàm số y = f(x) bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn \lim_{x ightarrow - \infty}f(x),\ \
\lim_{x ightarrow + \infty}f(x).

  • Câu 9: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Hướng dẫn:

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 10: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    a) Sai. Hàm số đồng biến trên (−2; −1), (−1; 0) và nghịch biến trên (−∞; −2), (0; +∞).

    b) Sai. Hàm số đạt cực tiểu tại x = −2.

    c) Đúng.

    d) Đúng.

  • Câu 11: Thông hiểu
    Tìm số phần tử của tập hợp S

    Gọi S là tập tất cả các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{x - 3}{x^{2} - 2mx + 2m^{2} -
9} có đúng ba đường tiệm cận. Tìm số phần tử của tập hợp S?

    Hướng dẫn:

    y = \frac{x - 3}{x^{2} - 2mx + 2m^{2} -
9} có một đường tiệm cận ngang là y
= 0

    Để có ba đường tiệm cận thì x^{2} - 2mx +
2m^{2} - 9 = 0 phải có hai nghiệm phân biệt khác 3.

    Tức là \left\{ \begin{gathered}
  \Delta ' =  - {m^2} - 2{m^2} - 9 > 0 \hfill \\
  {3^2} - 6m + 2{m^2} - 9 e 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
   - 3 < m < 3 \hfill \\
  m e 0;m e 3 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow S = \left\{ { \pm 2; \pm 1} ight\}

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    + Tiệm cận ngang y = - 5

    + Tiệm cận đứng x = 2.

  • Câu 13: Vận dụng
    Tìm m để hàm số có tiệm cận đứng

    Tìm tập hợp các giá trị thực của m để đồ thị hàm số y = \frac{{x - 1}}{{mx - 1}} có tiệm cận đứng là:

    Gợi ý:

    Để tồn tại các đường tiệm cận của đồ thị hàm số y = \frac{{ax + b}}{{cx + d}} thì \left\{ {\begin{array}{*{20}{c}}  {c e 0} \\   {ad - bc e 0} \end{array}} ight.

    Khi đó phương trình đường tiệm cận đứng là y =  - \frac{d}{c}

    Hướng dẫn:

     Điều kiện để đồ thị hàm số có tiệm cận là \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   { - 1 + m e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   {m e 1} \end{array}} ight.

  • Câu 14: Thông hiểu
    Xác định các đường tiệm cận

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} - 3x + 2}{4 - x^{2}} là:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên y = -
1 là tiện cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2}y = \lim_{x
ightarrow 2}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = \lim_{x
ightarrow 2}\frac{1 - x}{x + 2} = - \frac{1}{4}

    \lim_{x ightarrow ( - 2)^{+}}y =
\lim_{x ightarrow ( - 2)^{+}}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = -
\infty suy ra x = - 2 là tiệm cận đứng của đồ thị hàm số.

    Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = \frac{ax + b}{cx + d};(ad
- bc eq 0;ac eq 0) có đồ thị như hình vẽ:

    Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?

    Hướng dẫn:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = 1 và đường tiệm cận ngang là y = 1

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Đồ thị của hàm số y = \frac{x - 1}{x^{2}
+ 2x - 3} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3;1 ight\}

    \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}y = 0 \\
\lim_{x ightarrow - \infty}y = 0 \\
\end{matrix} ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = 1 không là đường tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = - 3 là đường tiệm cận đứng của đồ thị hàm số đã cho.

    Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.

  • Câu 17: Nhận biết
    Xác định đường tiệm cận đứng của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận đứng là:

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow - 1^{-}}f(x) = +
\infty;\lim_{x ightarrow - 1^{+}}f(x) = - \infty

    Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng x = - 1

  • Câu 18: Thông hiểu
    Định tổng số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Dựa vào bảng biến thiên của hàm số ta có:

    \underset{\mathbf{x ightarrow \pm
\infty}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=}\mathbf{2}\mathbf{\Rightarrow
y =}\mathbf{2}là một tiệm cận ngang

    \underset{\mathbf{x
ightarrow}\mathbf{1}^{\mathbf{+}}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=
- \infty \Rightarrow x =}\mathbf{1}là một tiệm cận đứng

    Vậy đồ thị hàm số có tổng số đường tiệm cận là2.

  • Câu 19: Nhận biết
    Xác định đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y = - 2.

  • Câu 20: Thông hiểu
    Tìm tất cả tiệm cận đứng và tiệm cận ngang

    Tính tổng số đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x - 3}(x + 4)}{\left( 2x^{2} - 5x
+ 2 ight)\sqrt{x^{2} - 16}}?

    Hướng dẫn:

    Tập xác định D = (4; +
\infty)

    Ta có:

    \lim_{x ightarrow +\infty}\frac{\sqrt{x - 3}(x + 4)}{\left( 2x^{2} - 5x + 2ight)\sqrt{x^{2} - 16}}= \lim_{x ightarrow + \infty}\dfrac{\sqrt{x -3}(x + 4)}{\left( 2x^{2} - 5x + 2 ight).x\sqrt{1 - \dfrac{16}{x^{2}}}}= 0

    Suy ra đồ thị hàm số có tiệm cận ngang y
= 0

    Mặt khác \lim_{x ightarrow
4^{+}}\frac{\sqrt{x - 3}(x + 4)}{\left( 2x^{2} - 5x + 2
ight)\sqrt{x^{2} - 16}} = + \infty suy ra x = 4 là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có hai đường tiệm cận.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo