Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Đồ thị hàm số y = \frac{\left( m^{2} - 3m
ight)x - 1}{x - 2} có đường tiệm cận ngang qua điểm A(1; - 2) khi:

    Hướng dẫn:

    Để đồ thị hàm số y = \frac{\left( m^{2} -
3m ight)x - 1}{x - 2} có đường tiệm cận ngang là y = m^{2} - 3m

    Đường tiệm cận ngang đi qua A(1; -
2) nên ta có:

    m^{2} - 3m = - 2 \Leftrightarrow m^{2} -
3m + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Vậy đáp án đúng là \left\lbrack
\begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 2: Thông hiểu
    Xác định hàm số tương ứng

    Cho đồ thị hàm số như hình vẽ dưới đây:

    Xác định hàm số tương ứng

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1

    => Loại A và B

    Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C

  • Câu 3: Nhận biết
    Tìm tổng các đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
2;\lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có tiệm cận ngang là y = 2 và tiệm cận đứng là x = 0.

  • Câu 4: Thông hiểu
    Xác định các đường tiệm cận

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} - 3x + 2}{4 - x^{2}} là:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên y = -
1 là tiện cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2}y = \lim_{x
ightarrow 2}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = \lim_{x
ightarrow 2}\frac{1 - x}{x + 2} = - \frac{1}{4}

    \lim_{x ightarrow ( - 2)^{+}}y =
\lim_{x ightarrow ( - 2)^{+}}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = -
\infty suy ra x = - 2 là tiệm cận đứng của đồ thị hàm số.

    Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

  • Câu 5: Nhận biết
    Chọn đáp án chính xác

    Tìm tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{\sqrt{9x^{2} + 6x + 4}}{x +
2}?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - 2^{+}}y = +
\infty suy ra x = - 2 là tiệm cận ngang của hàm số.

    \lim_{x ightarrow + \infty}y =
3;\lim_{x ightarrow - \infty}y = - 3 suy ra y = 3;y = - 3 là hai tiệm cận ngang của hàm số.

  • Câu 6: Vận dụng
    Chọn đáp án đúng:

    Tồn tại đúng một điểm M(a,b) trên đường cong y = \frac{1}{x-1} sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.

  • Câu 7: Thông hiểu
    Tìm số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x - 2}{x^{2} -
9} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}\backslash\left\{ \pm 3
ight\}. Ta có:

    \lim_{x ightarrow 3^{-}}y = \lim_{x
ightarrow 3^{-}}\frac{x - 2}{x^{2} - 9} = - \infty;\lim_{x
ightarrow 3^{+}}y = \lim_{x ightarrow 3^{+}}\frac{x - 2}{x^2 - 9}
= + \infty\overset{}{ightarrow}x = 3 là TCĐ;

    \lim_{x ightarrow - 3^{-}}y = \lim_{x
ightarrow - 3^{-}}\frac{x - 2}{x^{2} - 9} = + \infty;\lim_{x
ightarrow - 3^{+}}y = \lim_{x ightarrow - 3^{+}}\frac{x - 2}{x^{2} -
9} = - \infty\overset{}{ightarrow}x = - 3 TCĐ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\frac{1}{x} - \frac{2}{x^{2}}}{1 -
\frac{9}{x^{2}}} = 0;\lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\frac{1}{x} - \frac{2}{x^{2}}}{1 -
\frac{9}{x^{2}}} = 0\overset{}{ightarrow}y = 0 là TCN.

    Vậy đồ thị hàm số có đúng ba tiệm cận

  • Câu 8: Thông hiểu
    Chọn phương án thíchhợp

    Cho hàm số y\  = f(x) có bảng biến thiên như hình sau

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y\  = \ f(x)

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - \infty}y =
4,\lim_{x ightarrow + \infty}y = - 1 \RightarrowĐồ thị hàm số có hai tiệm cận ngang là y = - 1y = 4.

    \lim_{x ightarrow - 1^{-}}y = +
\infty,\lim_{x ightarrow - 1^{+}}y = - \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = -
1.

    \lim_{x ightarrow 1^{-}}y = -
\infty,\lim_{x ightarrow 1^{+}}y = + \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = 1.

    Nên đồ thị hàm số có 4 đường tiệm cận.

  • Câu 9: Thông hiểu
    Ghi đáp án vào ô trống

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Đáp án là:

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Ta có

    y = \frac{2x^{2} + x}{x + 1} =
\frac{2x^{2} + 2x - x - 1 + 1}{x + 1}

    = \frac{2x(x + 1) - (x + 1) + 1}{x + 1} =
2x - 1 + \frac{1}{x + 1}.

    Do đó tiện cận xiên của đồ thị hàm số đã cho là y = 2x - 1.

    Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là A\left( \frac{1}{2};0 ight)\ ,B(0; -
1).

    Xét tam giác OAB vuông tại O, có:

    OA = \frac{1}{2};\ OB = 1

    => Diện tích của tam giác OAB

    S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}.\frac{1}{2}.1 = \frac{1}{4} = 0,25

  • Câu 10: Nhận biết
    Tổng số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{{1 - 3x}}{{x + 2}} có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có: \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \frac{{1 - 3x}}{{x + 2}} =  + \infty ;\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \frac{{1 - 3x}}{{x + 2}} =  - \infty => Đồ thị hàm số có tiệm cận đứng là x = -2

    Ta có: \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - 3x}}{{x + 2}} =  - 3 => y = -3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 11: Nhận biết
    Tìm tâm đối xứng

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào sau đây?

    Hướng dẫn:

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} có tiệm cận đứng x = -
2, tiệm cận ngang y =
3

    Suy ra tâm đối xứng là ( -
2;3).

  • Câu 12: Thông hiểu
    Xác định số tiệm cận của hàm số

    Đồ thị hàm số f(x) = \frac{x + 1}{\sqrt{2
- x}.\sqrt{3 - x}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Hàm số xác định \left\{ \begin{matrix}
2 - x > 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 2 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow x < 2

    Tập xác định D = ( -
\infty;2)

    Ta có: \lim_{x ightarrow 2^{-}}f(x) = +
\infty suy ra x = 2 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{x + 1}{\sqrt{2 - x}.\sqrt{3 - x}} =
\lim_{x ightarrow - \infty}\frac{x + 1}{\sqrt{x^{2} - 5x +
6}}

    = \lim_{x ightarrow -\infty}\dfrac{x\left( 1 + \dfrac{1}{x} ight)}{- x\sqrt{1 - \dfrac{5}{x} +\dfrac{6}{x^{2}}}} = \lim_{x ightarrow - \infty}\dfrac{1 +\dfrac{1}{x}}{- \sqrt{1 - \dfrac{5}{x} + \dfrac{6}{x^{2}}}} = -1

    Suy ra y = - 1 là tiệm cận ngang của đồ thị hàm số

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 13: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Cho hàm số y = f(x) có bảng biến thiên:

    Số giá trị nguyên của m \in \lbrack -
4;4brack để đồ thị hàm số có 4 tiệm cận là:

    Hướng dẫn:

    Từ bảng biến thiên ta thấy đồ thị có hai tiệm cận đứng x = - 2;x = 1 và các tiệm cận ngang y = 4;y = m^{2}. Suy ra đồ thị có bốn tiệm cận khi m^{2} eq 4 \Leftrightarrow m
eq \pm 2

    Do \left\{ \begin{matrix}
m \in \lbrack - 4;4brack \\
m\mathbb{\in Z} \\
\end{matrix} ight. nên m \in
\left\{ \pm 4; \pm 3; \pm 1;0 ight\}

    Vậy có 7 giá trị của tham số m thỏa mãn.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Hướng dẫn:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

  • Câu 15: Thông hiểu
    Tìm số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x + 3}{\sqrt{9 -
x^{2}}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = ( -
3;3)\overset{}{ightarrow}không tồn tại \ \lim_{x\  ightarrow \  - \ \infty}y\lim_{x\  ightarrow \  + \ \infty}y\
.

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Ta có:

    \lim_{x ightarrow - 3^{+}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x + 3}{\sqrt{3
- x}.\sqrt{3 + x}}= \lim_{x ightarrow - 3^{+}}\frac{\sqrt{x +3}}{\sqrt{3 - x}} = 0 ightarrow x = - 3 không là TCĐ;

    \lim_{x ightarrow 3^{-}}\frac{x +
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x + 3}{\sqrt{3 -
x}.\sqrt{3 + x}}= \lim_{x ightarrow 3^{-}}\frac{\sqrt{x + 3}}{\sqrt{3
- x}} = + \infty ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng một tiệm cận.

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    ho hàm số y = \frac{{x - 9{x^4}}}{{{{\left( {3{x^2} - 3} ight)}^2}}}. Khẳng định nào sau đây là khẳng định đúng?

    Gợi ý:

     Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Đồ thị hàm số y = \frac{{x - 9{x^4}}}{{{{\left( {3{x^2} - 3} ight)}^2}}} có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1

  • Câu 17: Thông hiểu
    Chọn phương án đúng

    Đồ thị hàm số y = \frac{\sqrt{2 - x^{2}}
- 1}{x^{2} - 3x + 2} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack\backslash\left\{ 1 ight\} suy ra không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 1^{+}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2}
= 0 \\
\lim_{x ightarrow 1^{-}}\frac{\sqrt{2 - x^{2}} - 1}{x^{2} - 3x + 2} =
0 \\
\end{matrix} ight.. Do đó đồ thị hàm số không có tiệm cận đứng.

    Vậy đồ thị hàm số không có tiệm cận.

  • Câu 18: Thông hiểu
    Tìm tọa độ điểm M thỏa mãn điều kiện

    Tìm điểm M thuộc đồ thị hàm số y = \frac{{2x + 1}}{{x - 1}} sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Do M thuộc đồ thị hàm số nên tọa độ điểm M\left( {{x_0};\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight);{x_0} e 1

    Phương trình tiệm cận đứng là x – 1 = 0 (d’)

    Giải phương trình d(M,d’) = d(M, Ox)

    => \left| {{x_0} - 1} ight| = \left| {\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight| \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_0} = 0} \\   {{x_0} = 4} \end{array}} ight.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 8x + m} có ba đường tiệm cận?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x - 1}{x^{2} - 8x + m} = 0 nên suy ra hàm số có 1 đường tiệm cận ngang là y = 0

    Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình x^{2} - 8x + m = 0 có hai nghiệm phân biệt khác 1

    \left\{ \begin{matrix}
16 - m > 0 \\
1^{2} - 8.1 + m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 16 \\
m eq 7 \\
\end{matrix} ight.

    Do m nguyên dương nên có 14 giá trị m thỏa mãn.

  • Câu 20: Vận dụng
    Chọn đáp án thích hợp

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x^{2} + 2}{\sqrt{mx^{4} + 3}} có đường tiệm cận ngang.

    Hướng dẫn:

    Đồ thị hàm số y = \frac{x^{2} +
2}{\sqrt{mx^{4} + 3}} có đường tiệm cận ngang khi và chỉ khi các giới hạn \lim_{x ightarrow +
\infty}y\lim_{x ightarrow -
\infty}y tồn tại hữu hạn.

    Ta có:

    Với m = 0\overset{}{ightarrow}y =
\frac{x^{2} + 2}{\sqrt{3}}.

    Khi đó \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}y = + \infty \\
\lim_{x ightarrow - \infty}y = + \infty \\
\end{matrix} ight. suy ra đồ thị không có tiệm cận ngang.

    Với m < 0, khi đó hàm số có tập xác định: D = \left( - \sqrt[4]{-
\frac{3}{m}};\sqrt[4]{- \frac{3}{m}} ight) nên ta không xét trường hợp x ightarrow + \infty hay x ightarrow - \infty được.

    Do đó hàm số không có tiệm cận ngang.

    Với m > 0, khi đó hàm số có tập xác định D\mathbb{= R}\lim_{x ightarrow \pm \infty}\frac{x^{2}\left( 1
+ \frac{2}{x^{2}} ight)}{x^{2}\sqrt{m + \frac{3}{x^{4}}}} = \lim_{x
ightarrow \pm \infty}\frac{1 + \frac{2}{x^{2}}}{\sqrt{m +
\frac{3}{x^{4}}}} = \frac{1}{\sqrt{m}}ightarrow y =
\frac{1}{\sqrt{m}} là TCN.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo