Tiệm cận ngang của đồ thị hàm số là:
Ta có .
Suy ra đồ thị hàm số có tiệmcận ngang là .
Tiệm cận ngang của đồ thị hàm số là:
Ta có .
Suy ra đồ thị hàm số có tiệmcận ngang là .
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đường tiệm cận ngang.
Đồ thị hàm số có đường tiệm cận ngang khi và chỉ khi các giới hạn
và
tồn tại hữu hạn.
Ta có:
Với .
Khi đó suy ra đồ thị không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định:
nên ta không xét trường hợp
hay
được.
Do đó hàm số không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định
và
là TCN.
Gọi là tập tất cả các giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận. Tìm số phần tử của tập hợp
?
có một đường tiệm cận ngang là
Để có ba đường tiệm cận thì phải có hai nghiệm phân biệt khác
.
Tức là
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: Ta có:
là TCĐ;
TCĐ;
là TCN.
Vậy đồ thị hàm số có đúng ba tiệm cận
Cho hàm số có bảng biến thiên như sau:
Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?
Đồ thị của hàm số đã cho có đường tiệm cận.
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
TXĐ: Ta có:
không là TCĐ.
là TCĐ.
Vậy đồ thị hàm số có đúng một tiệm cận đứng.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Tập xác định
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận ngang là đường thẳng
.
Đường thẳng là đường tiệm cận của đồ thị hàm số nào sau đây?
có
suy ra
là tiệm cận ngang của đồ thị hàm số. (Loại)
có
nên đồ thị hàm số không có tiệm cận ngang (loại)
có
suy ra
là tiệm cận ngang (Thỏa mãn).
Vậy đường thẳng là đường tiệm cận của đồ thị hàm số
.
Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?
Ta có:
không có tiệm cận ngang vì
không có tiệm cận ngang vì
không có tiệm cận ngang vì
có tiệm cận ngang vì
Cho hàm số có bảng biến thiên như sau
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho bằng
Ta có
là tiệm cận đứng của đồ thị hàm số đã cho.
là tiệm cận đứng của đồ thị hàm số đã cho.
là tiệm cận ngang của đồ thị hàm số đã cho.
Vậy đồ thị hàm số đã cho có tổng đường tiệm cận đứng và tiệm cận ngang là .
Cho hàm số có bảng biến thiên như hình sau
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là
Vì Đồ thị hàm số có hai tiệm cận ngang là
và
.
Đồ thị hàm số có tiệm cận đứng
.
Đồ thị hàm số có tiệm cận đứng
.
Nên đồ thị hàm số có 4 đường tiệm cận.
Cho hàm số có bảng biến thiên như sau:
Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Từ bảng biến thiên, ta có:
là TCN;
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số đã cho có đúng ba đường tiệm cận
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng?
Từ bảng biến thiên, ta có:
là TCĐ.
là TCN và
là TCN.
Vậy câu đúng là: “Đồ thị hàm số có hai TCN
và một TCĐ
”
Cho hàm số có
và
Khẳng định nào sau đây là đúng?
Theo định nghĩa về tiệm cận, ta có:
là TCN.
không phải là TCĐ.
Số đường tiệm cận của đồ thị hàm số là:
Tập xác định
nên
không phải tiệm cận đứng.
suy ra
là một tiệm cận ngang
suy ra
là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.
Tồn tại đúng một điểm M(a,b) trên đường cong sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.
Cho hàm số có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
Từ bảng biến thiên của hàm số ta có:
nên đồ thị hàm số đã cho không có tiệm cận ngang.
Và nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có tiệm cận.
Tìm tọa độ giao điểm của đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
TXĐ
Dễ thấy đồ thị hàm số có TCĐ: và TCN:
.
Suy ra giao điểm của hai đường tiệm cận là .
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: suy ra không tồn tại
và
Do đó đồ thị hàm số không có tiệm cận ngang.
Ta có:
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số đã cho có đúng hai tiệm cận.
Cho hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có:
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận ngang của đồ thị hàm số.
Vậy đồ thị hàm số có 3 đường tiệm cận.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: