Tiệm cận đứng của đồ thị hàm số là đường thẳng
Ta có nên đồ thị hàm số có tiệm cận đứng là
.
Tiệm cận đứng của đồ thị hàm số là đường thẳng
Ta có nên đồ thị hàm số có tiệm cận đứng là
.
Biết rằng đồ thị hàm số nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng
Ta có:
là TCN;
là TCĐ.
Từ giả thiết, ta có
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Ta có:
Xét
Vậy đường tiệm cận xiên có phương trình
Khoảng cách từ điểm đến đường tiệm cận xiên là:
Cho hàm số có bảng biến thiên như sau
Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là
Từ bảng biến thiên ta có:
nên đường thẳng
là đường tiệm cận đứng của đồ thị hàm số
nên đường thẳng
và
là các đường tiệm cận ngang của đồ thị hàm số
Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là 3
Cho hàm số . Tìm tất cả các giá trị thực của tham số
để đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng
.
Điều kiện để đồ thị hàm số có tiệm cận là
Khi đó đồ thị hàm số có:
Tiệm cận đúng: , song song với
và cắt
tại điểm
Tiệm cận ngang: song song với
và cắt
tại điểm
Diện tích hình chữ nhật tạo bởi hai đường tiệm cận cùng với hai trục tọa độ là
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có ba đường tiệm cận.
Ta có là tiệm cận ngang với mọi
.
Do đó ycbt tương đương với phương trình có hai nghiệm phân biệt khác
Tìm m để đồ thị hàm số không có tiệm cận đứng.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: . Ta có:
là TCN;
là TCĐ;
là TCĐ;
là TCĐ;
là TCĐ.
Vậy hàm số đã cho có tất cả năm đường tiệm cận.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
TXĐ: Ta có:
là tiệm cận ngang và
là tiệm cận ngang
không là tiệm cận đứng
là tiệm cận đứng.
Vậy đồ thị hàm số có đúng ba tiệm cận.
Tìm tất cả các đường tiệm cận của đồ thị hàm số
TXĐ: suy ra đồ thị không có tiệm cận đứng.
Ta có:
là TCN
là TCN.
Đồ thị của hàm số có bao nhiêu đường tiệm cận?
Tập xác định
suy ra
là tiệm cận ngang của đồ thị hàm số đã cho.
suy ra đường thẳng
không là đường tiệm cận đứng của đồ thị hàm số đã cho.
suy ra đường thẳng
là đường tiệm cận đứng của đồ thị hàm số đã cho.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.
Cho hàm số . Đồ thị hàm số có mấy đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Cho hàm số . Nếu đồ thị hàm số có tiệm cận ngang y = 1 và tiệm cận đứng
thì giá trị của a và c là:
Cho hàm số có bảng biến thiên như sau
Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là
Quan sát bảng biến thiên ta thấy ;
.
Do đó đường thẳng là tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?
Nhận thấy các đáp án ;
;
là các hàm số có TXĐ:
nên không có TCĐ.
Dùng phương pháp loại trừ thì đúng.
(Thật vậy; hàm số có
là TCĐ)
Cho hàm số có bảng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Hàm số có tập xác định:
Ta có:
Không tồn tại tiệm cận ngang khi
vậy hàm số
có tiệm cận ngang
;
Đồ thị hàm số có tiệm cận đứng
Vậy tổng số tiệm cận đứng và ngang là 2.
ho hàm số . Khẳng định nào sau đây là khẳng định đúng?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đồ thị hàm số có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1
Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm ?
Xét hàm số
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Tiệm cận đứng đi qua điểm .
Đồ thị hàm số có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Gọi là tập tất cả các giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận. Tìm số phần tử của tập hợp
?
có một đường tiệm cận ngang là
Để có ba đường tiệm cận thì phải có hai nghiệm phân biệt khác
.
Tức là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: