Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 3 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{2x + 1}{x - 1} là:

    Hướng dẫn:

    Ta có \lim_{x ightarrow \pm
\infty}\frac{2x + 1}{x - 1} = \lim_{x ightarrow \pm \infty}\frac{2 +
\frac{1}{x}}{1 - \frac{1}{x}} = 2.

    Suy ra đồ thị hàm số có tiệmcận ngang là \mathbf{y =}\mathbf{2}.

  • Câu 2: Vận dụng
    Chọn đáp án thích hợp

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{x^{2} + 2}{\sqrt{mx^{4} + 3}} có đường tiệm cận ngang.

    Hướng dẫn:

    Đồ thị hàm số y = \frac{x^{2} +
2}{\sqrt{mx^{4} + 3}} có đường tiệm cận ngang khi và chỉ khi các giới hạn \lim_{x ightarrow +
\infty}y\lim_{x ightarrow -
\infty}y tồn tại hữu hạn.

    Ta có:

    Với m = 0\overset{}{ightarrow}y =
\frac{x^{2} + 2}{\sqrt{3}}.

    Khi đó \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}y = + \infty \\
\lim_{x ightarrow - \infty}y = + \infty \\
\end{matrix} ight. suy ra đồ thị không có tiệm cận ngang.

    Với m < 0, khi đó hàm số có tập xác định: D = \left( - \sqrt[4]{-
\frac{3}{m}};\sqrt[4]{- \frac{3}{m}} ight) nên ta không xét trường hợp x ightarrow + \infty hay x ightarrow - \infty được.

    Do đó hàm số không có tiệm cận ngang.

    Với m > 0, khi đó hàm số có tập xác định D\mathbb{= R}\lim_{x ightarrow \pm \infty}\frac{x^{2}\left( 1
+ \frac{2}{x^{2}} ight)}{x^{2}\sqrt{m + \frac{3}{x^{4}}}} = \lim_{x
ightarrow \pm \infty}\frac{1 + \frac{2}{x^{2}}}{\sqrt{m +
\frac{3}{x^{4}}}} = \frac{1}{\sqrt{m}}ightarrow y =
\frac{1}{\sqrt{m}} là TCN.

  • Câu 3: Thông hiểu
    Tìm số phần tử của tập hợp S

    Gọi S là tập tất cả các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{x - 3}{x^{2} - 2mx + 2m^{2} -
9} có đúng ba đường tiệm cận. Tìm số phần tử của tập hợp S?

    Hướng dẫn:

    y = \frac{x - 3}{x^{2} - 2mx + 2m^{2} -
9} có một đường tiệm cận ngang là y
= 0

    Để có ba đường tiệm cận thì x^{2} - 2mx +
2m^{2} - 9 = 0 phải có hai nghiệm phân biệt khác 3.

    Tức là \left\{ \begin{gathered}
  \Delta ' =  - {m^2} - 2{m^2} - 9 > 0 \hfill \\
  {3^2} - 6m + 2{m^2} - 9 e 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
   - 3 < m < 3 \hfill \\
  m e 0;m e 3 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow S = \left\{ { \pm 2; \pm 1} ight\}

  • Câu 4: Thông hiểu
    Tìm số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x - 2}{x^{2} -
9} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}\backslash\left\{ \pm 3
ight\}. Ta có:

    \lim_{x ightarrow 3^{-}}y = \lim_{x
ightarrow 3^{-}}\frac{x - 2}{x^{2} - 9} = - \infty;\lim_{x
ightarrow 3^{+}}y = \lim_{x ightarrow 3^{+}}\frac{x - 2}{x^2 - 9}
= + \infty\overset{}{ightarrow}x = 3 là TCĐ;

    \lim_{x ightarrow - 3^{-}}y = \lim_{x
ightarrow - 3^{-}}\frac{x - 2}{x^{2} - 9} = + \infty;\lim_{x
ightarrow - 3^{+}}y = \lim_{x ightarrow - 3^{+}}\frac{x - 2}{x^{2} -
9} = - \infty\overset{}{ightarrow}x = - 3 TCĐ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\frac{1}{x} - \frac{2}{x^{2}}}{1 -
\frac{9}{x^{2}}} = 0;\lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\frac{1}{x} - \frac{2}{x^{2}}}{1 -
\frac{9}{x^{2}}} = 0\overset{}{ightarrow}y = 0 là TCN.

    Vậy đồ thị hàm số có đúng ba tiệm cận

  • Câu 5: Nhận biết
    Tìm số đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Hướng dẫn:

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

  • Câu 6: Thông hiểu
    Tìm tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} - 3x +
2}{\sqrt[3]{x^{4}} - 1} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}\backslash\left\{ - 1\
;1 ight\}. Ta có:

    \lim_{x ightarrow 1^{-}}\frac{x^{2} -
3x + 2}{\sqrt[3]{x^{4}} - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} -
3x + 2}{\sqrt[3]{x^{4}} - 1} = - \frac{3}{4} ightarrow x = 1 không là TCĐ.

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 1)^{+}}\frac{x^{2} - 3x + 2}{\sqrt[3]{x^{4}} -
1} = - \infty \\
\lim_{x ightarrow \ ( - 1)^{-}}\frac{x^{2} - 3x + 2}{\sqrt[3]{x^{4}} -
1} = + \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận đứng.

  • Câu 7: Thông hiểu
    Tìm các tiệm cận của đồ thị hàm số

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0;3 ight\}

    f(x) = \frac{x^{2} - 3x + 1}{x^{2} -
3}

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 0

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{x
ightarrow 3^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{x
ightarrow 3^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 3

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{x^{2} - 3x + 1}{x^{2} - 3x} =
1

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận ngang là đường thẳng y = 1.

  • Câu 8: Nhận biết
    Xác định đồ thị hàm số thích hợp

    Đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số nào sau đây?

    Hướng dẫn:

    y = \frac{2}{3x + 2}\lim_{x ightarrow \infty}y = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số. (Loại)

    y = \frac{2x^{3} - 3}{x + 2}\lim_{x ightarrow \infty}y =
\infty nên đồ thị hàm số không có tiệm cận ngang (loại)

    y = \frac{2x^{2} + x - 1}{(x + 1)(3 - x)}
= \frac{2x^{2} + x - 1}{- x^{2} + 2x + 3}\lim_{x ightarrow \infty}y = - 2 suy ra y = - 2 là tiệm cận ngang (Thỏa mãn).

    Vậy đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số y = \frac{2x^{2}
+ x - 1}{(x + 1)(3 - x)}.

  • Câu 9: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Hướng dẫn:

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho bằng

    Hướng dẫn:

    Ta có

    \lim_{x ightarrow - 2^{+}}y = - \infty
\Rightarrow x = - 2 là tiệm cận đứng của đồ thị hàm số đã cho.

    \lim_{x ightarrow 0^{-}}y = + \infty
\Rightarrow x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.

    \lim_{x ightarrow + \infty}y = 0
\Rightarrow y = 0 là tiệm cận ngang của đồ thị hàm số đã cho.

    Vậy đồ thị hàm số đã cho có tổng đường tiệm cận đứng và tiệm cận ngang là 3.

  • Câu 11: Thông hiểu
    Tìm tổng số đường tiệm cận

    Cho hàm số có bảng biến thiên như hình sau

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số 0

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =4,\lim_{x ightarrow + \infty}y = - 1 \RightarrowĐồ thị hàm số có hai tiệm cận ngang là y = - 1y = 4.

    \lim_{x ightarrow - 1^{-}}y = +\infty;\lim_{x ightarrow - 1^{+}}y = - \infty \RightarrowĐồ thị hàm số có tiệm cận đứng x = -
1.

    \lim_{x ightarrow 1^{-}}y = -
\infty,\lim_{x ightarrow 1^{+}}y = + \infty \Rightarrow Đồ thị hàm số có tiệm cận đứng x =
1.

    Nên đồ thị hàm số có 4 đường tiệm cận.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow + \infty}y = 0
ightarrow y = 0 là TCN;

    \lim_{x ightarrow \ ( - 2)^{+}}y = -
\infty ightarrow x = - 2 là TCĐ;

    \lim_{x ightarrow 0^{-}}y = + \infty
ightarrow x = 0 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng ba đường tiệm cận

  • Câu 13: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ - 1
\right\}, có bảng biến thiên như sau:

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Từ bảng biến thiên, ta có:

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 1)^{+}}f(x) = + \infty \\
\lim_{x ightarrow \ ( - 1)^{-}}f(x) = - \infty \\
\end{matrix} ight.\  ightarrow x = - 1 là TCĐ.

    \lim_{x ightarrow - \infty}f(x) = 5
ightarrow y = 5 là TCN và \lim_{x
ightarrow + \infty}f(x) = 2 ightarrow y = 2 là TCN.

    Vậy câu đúng là: “Đồ thị hàm số có hai TCN y = 2, y =
5 và một TCĐ x = - 1.

  • Câu 14: Nhận biết
    Chọn câu đúng

    Cho hàm số y = f(x)\lim_{x ightarrow \pm \infty}f(x) = 1\lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x) = 10. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow \pm \infty}f(x) = 1\
\ \overset{}{ightarrow}\ \ y = 1 là TCN.

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = 10\ \ \overset{}{ightarrow}\ \ x = 0 không phải là TCĐ.

  • Câu 15: Thông hiểu
    Tìm số đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x^{2} + 5} - 3}{x - 2} là:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\}

    \lim_{x ightarrow 2}\frac{\sqrt{x^{2}
+ 5} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{x^{2} - 4}{(x - 2)\left(
\sqrt{x^{2} + 5} + 3 ight)}

    = \lim_{x ightarrow 2}\frac{x +
2}{\sqrt{x^{2} + 5} + 3} = \frac{2}{3} nên x = 2 không phải tiệm cận đứng.

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 -\dfrac{2}{x}} = - 1 suy ra y = -
1 là một tiệm cận ngang

    \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 - \dfrac{2}{x}}= 1 suy ra y = 1 là một tiệm cận ngang

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{\sqrt{x^{2} + 5} - 3}{x - 2} là 2.

  • Câu 16: Vận dụng
    Chọn đáp án đúng:

    Tồn tại đúng một điểm M(a,b) trên đường cong y = \frac{1}{x-1} sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.

  • Câu 17: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 18: Thông hiểu
    Xác định tọa độ giao điểm

    Tìm tọa độ giao điểm của đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 2}{x +
2}.

    Hướng dẫn:

    TXĐ D\mathbb{= R}\backslash\left\{ - 2
ight\}.

    Dễ thấy đồ thị hàm số có TCĐ: x = -
2 và TCN: y = 1.

    Suy ra giao điểm của hai đường tiệm cận là ( - 2\ ;\ 1).

  • Câu 19: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị hàm số y = \frac{\sqrt{16 -
x^{2}}}{x^{2} - 16} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = ( - 4;4) suy ra không tồn tại \ \lim_{x\  ightarrow \  - \
\infty}y\lim_{x\  ightarrow
\  + \ \infty}y\ .

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Ta có:

    \lim_{x ightarrow -
4^{+}}\frac{\sqrt{16 - x^{2}}}{x^{2} - 16} = \lim_{x ightarrow -
4^{+}}\left( \frac{- 1}{\sqrt{16 - x^{2}}} ight) = - \infty
ightarrow x = - 4 là TCĐ;

    \lim_{x ightarrow 4^{-}}\frac{\sqrt{16
- x^{2}}}{x^{2} - 16} = \lim_{x ightarrow 4^{-}}\left( \frac{-
1}{\sqrt{16 - x^{2}}} ight) = - \infty ightarrow x = 4 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng hai tiệm cận.

  • Câu 20: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có:

    \mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x ight) =  - \infty, suy ra đường thẳng x = -
2 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 0^{-}}f(x) = +
\infty, suy ra đường thẳng x =
0 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow + \infty}f(x) =0, suy ra đường thẳng y =
0 là tiệm cận ngang của đồ thị hàm số.

    Vậy đồ thị hàm số có 3 đường tiệm cận.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo