Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 18 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính xác suất P

    Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Tính xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất là màu trắng?

    Hướng dẫn:

    Gọi C là biến cố “viên bi lấy lần thứ nhất là màu trắng”.

    Gọi D là biến cố “viên bi lấy lần thứ hai là màu đỏ”.

    Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có 9 cách chọn, do đó: P(C) = \frac{3.9}{10.9} =
\frac{3}{10}

    Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ có 7 cách chọn, do đó: P(C
\cap D) = \frac{3.7}{10.9} = \frac{7}{30}

    Vậy xác suất để viên bi lấy lần thứ hai là màu trắng nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là: P\left( D|C ight) = \dfrac{P(C \cap D)}{P(C)} =\dfrac{\dfrac{7}{30}}{\dfrac{3}{10}} = \dfrac{7}{9}.

  • Câu 2: Nhận biết
    Tính P(A|B)

    Cho hai biến độc lập A,B với P(A) = 0,8;\ P(B) = 0,3. Khi đó, P\left( A\left| B
\right.\  \right)bằng

    Hướng dẫn:

    Do A,B là hai biến cố độc lập nên P\left( A\left| B \right.\  \right) =
\frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A) =
0,8.

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các phương án

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Đáp án là:

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Gọi A : “Học sinh được chọn giỏi môn Toán”

    B: “Học sinh được chọn giỏi môn Văn”

    Gọi C : “Học sinh được chọn không giỏi môn Toán”

    D: “Học sinh được chọn không giỏi môn Văn”

    Số học sinh giỏi cả 2 môn là: 23 + 20 -
35 = 8

    a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:

    P\left( A|B ight) = \frac{8}{20} =
\frac{2}{5}

    b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:

    P\left( B|A ight) =
\frac{8}{23}

    c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.

    Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:

    P\left( C|B ight) = \frac{12}{20} =
\frac{3}{5}

    d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 - 8 = 15

    Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là: P\left( D|A ight) =
\frac{15}{23}

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Hướng dẫn:

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 5: Nhận biết
    Tính xác suất của biến cố

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A ight) = \frac{1}{6}.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Một lớp có 50 học sinh, trong đó có 30 học sinh nam và 20 học sinh nữ. Có 5 học sinh nam được học sinh giỏi và có 6 học sinh nữ được học sinh giỏi. Xác suất để chọn được một bạn nữ là học sinh giỏi

    Hướng dẫn:

    Gọi A là biến cố chọn được học sinh giỏi.

    Gọi B là biến cố chọn được học sinh là nữ.

    Khi đó n(A \cap B) = 6

    Xác suất để chọn được một học sinh nữ và học sinh đó là học sinh giỏi là:

    P(A|B) = \frac{P(A \cap B)}{P(B)} =
\frac{n(A \cap B)}{n(B)} = \frac{6}{20} = \frac{3}{10}

  • Câu 7: Thông hiểu
    Tính xác suất có điều kiện

    Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?

    Hướng dẫn:

    Gọi A: “Học sinh đó học khá môn Toán”

    Và B: “Học sinh đó học khá môn Hóa học”

    Theo bài ra ta có:

    P(A) = \frac{16}{30};P(B) =
\frac{25}{30};P(AB) = \frac{12}{30}

    \Rightarrow P\left( A|B ight) =
\frac{P(AB)}{P(B)} = \frac{12}{25} = 0,48

  • Câu 8: Nhận biết
    Tính giá trị của biểu thức

    Cho P(A) = 0,4; P\left( B\left| \overline{A} \right.\  \right) =
0,2. Giá trị của P\left(
B\overline{A} \right)

    Hướng dẫn:

    Ta có P\left( \overline{A} \right) = 1 -
P(A) = 1 - 0,4 = 0,6.

    P\left( B\overline{A} \right) = P\left(
\overline{A} \right).P\left( B\left| \overline{A} \right.\  \right) =
0,6.0,2 = 0,12.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB độc lập, biết P(A) = 0,4;\ P(B) = 0,7. Khi đó P\left( \overline{B}|A \right) bằng

    Hướng dẫn:

    AB là hai biến cố độc lập nên ta có: P(AB) = P(A).P(B) = 0,4\ .\ 0,7 =
0,28

    Ta có: P\left( \overline{B}|A \right) = 1- P\left( B|A \right)= 1 - \frac{P(AB)}{P(A)} = 1 - \frac{0,28}{0,4} =\frac{3}{10}.

  • Câu 10: Nhận biết
    Tính P(AB)

    Cho hai biến cố A,\ B với P(B) = 0,8;P(A/B) = 0,5. Tính P(AB).

    Hướng dẫn:

    Ta có P(AB) = P(A/B)P(B) = 0,5.0,8 =
0,4

  • Câu 11: Nhận biết
    Chọn kết quả xác suất đúng

    Cho hai biến cố A,\ BP(A) = \frac{7}{15};P(AB) =
\frac{23}{145}. Kết quả của xác suất sau P(B \mid A) bằng bao nhiêu?

    Hướng dẫn:

    Ta có: P(AB) = P(A).P(B \mid
A)

    \Leftrightarrow P(B \mid A) =
\frac{P(AB)}{P(A)} = \frac{23}{145}:\frac{7}{15} =
\frac{69}{203}.

  • Câu 12: Nhận biết
    Chọn công thức đúng

    Nếu A,B là hai biến cố bất kì thì

    Hướng dẫn:

    Công thức cần tìm là: P(A \cap B) =
P(A).P(B|A)

  • Câu 13: Nhận biết
    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A} + \overline{B} ight)?

    Hướng dẫn:

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    P\left( \overline{A} + \overline{B}
ight) = P\left( \overline{A}\overline{B} ight) = 1 - P(AB) =
\frac{11}{12}

  • Câu 14: Thông hiểu
    Ghi đáp án vào ô trống

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Đáp án là:

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Suy ra số phần tử của không gian mẫu là n(\Omega) = C_{16}^{3} = 560.

    Gọi A là biến cố ''3 cuốn sách lấy ra không cùng một loại''.

    Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là 3 cuốn sách lấy ra cùng một loại.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = C_{5}^{3} +
C_{7}^{3} + C_{4}^{3} = 49.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 511.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{511}{560} = \frac{73}{80} \approx
0,91.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( B|\overline{A} ight)?

    Hướng dẫn:

    Hai biến cố \overline{A}B là hai biến cố độc lập nên P\left( B|\overline{A} ight) = P(B) =
0,2025.

  • Câu 16: Nhận biết
    Tìm số kết quả thuận lợi của biến cố

    Từ một hộp có 4 tấm thẻ cùng loại được ghi số lần lượt từ 1 đến 4. Bạn An lấy ra một cách ngẫu nhiên một thẻ từ hộp, bỏ thẻ đó ra ngoài và lại lấy một cách ngẫu nhiên thêm một thẻ nữa. Xét biến cố A là “thẻ lấy ra lần thứ nhất ghi số 3”. Số các kết quả thuận lợi của biến cố A

    Hướng dẫn:

    Tập hợp các kết quả thuận lợi cho biến cố A\left\{
(3;1),(3;2),(3;4) \right\}.

    Vậy n(A) = 3.

  • Câu 17: Nhận biết
    Tính xác suất của biến cố B

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Hướng dẫn:

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 18: Nhận biết
    Chọn phát biểu đúng

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Hướng dẫn:

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 19: Nhận biết
    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Hướng dẫn:

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 20: Nhận biết
    Chọn mệnh đề đúng

    Cho hai biến cố AB. Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: P(A \cap B) = P(A).P\left( B|A
\right) = P(B).P\left( A|B \right).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo