Cho hai biến cố và
, với
,
,
. Tính
.
Cách 1:
Ta có: .
Mà
Do đó
Cách 2:
Cho hai biến cố và
, với
,
,
. Tính
.
Cách 1:
Ta có: .
Mà
Do đó
Cách 2:
Một bình đựng 5 viên bi (cùng kích cỡ và đồng chất) khác nhau về màu sắc. Trong đó có 3 viên bi xanh và 2 viên bi đỏ. Lấy ngẫu nhiên từ bình ra một viên bi ta được viên bi màu xanh, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Xác suất để lấy được viên bi đỏ ở lần thứ hai bằng bao nhiêu?
Cách 1:
Gọi A là biến cố “lấy viên bi thứ nhất là màu xanh”
Gọi B là biến cố “lấy viên bi thứ hai là màu đỏ”
Ta đi tính . Ta có:
Do đó:
Cách 2:
Gọi C là biến cố: “Lấy được một viên bi đỏ ở lần thứ hai”.
Vì một viên bi xanh đã được lấy ra ở lần thứ nhất nên còn lại trong bình 4 viên bi trong đó số viên bi đỏ là 2 và số viên bi xanh cũng là 2.
Do đó, xác suất cần tìm là
Cho hai biến cố và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Gieo con xúc xắc 1 lần. Gọi A là biến cố xuất hiện mặt 2 chấm. B là biến cố xuất hiện mặt chẵn. Xác suất là
Theo định nghĩa xác suất có điều kiện ta có:
Cho hai biến cố và
có
Xác suất
là
Theo định nghĩa xác suất có điều kiện ta có:
Cho hai biến cố và
là hai biến cố độc lập, với
;
.
Tính .
Ta có: và
là hai biến cố độc lập nên:
Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học.
Gọi A: “Học sinh đó học khá môn Toán”,
Và B: “Học sinh đó học khá môn Hóa học”.
Từ bài ra ta có ,
;
.
.
Cho hai biến cố và
là hai biến cố độc lập, với
,
. Tính
.
Ta có: và
là hai biến cố độc lập nên:
Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.
Xét các biến cố : "Quả bóng lấy ra đầu tiên có màu đỏ"
: "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định là biến cố
khi biết
đã xảy ra?
Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).
Do đó, không gian mẫu mới là
Biến cố khi biết
đã xảy ra là:
Cho hai biến cố ,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”
Gọi là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì
Cho hai biến cố với
. Tính
?
Ta có:
Cho hai biến cố và
, với
. Tính
?
Ta có:
.
Cho hai biến cố sao cho
và
. Tính
.
Ta có .
Cho hai biến cố có xác suất
. Tính xác suất
.
Theo định nghĩa xác suất có điều kiện, ta có .
Do đó .
Từ đó suy ra .
Một cuộc khảo sát người về hoạt động thể dục thấy có
số người thích đi bộ và
thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?
Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"
Theo giả thiết: .
Ta có:
Cho hai biến cố với
. Tính
?
Ta có:
Cho hai biến cố có
;
. Xác suất
bằng
Ta có: .
Cho và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Cho hai biến cố và
có
và
. Tính
có kết quả là
Theo công thức nhân xác xuất, ta có:
Vì và
là hai biến cố xung khắc nên:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: