Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 18 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Các cặp biến cố \overline{A}B,A\overline{B} là độc lập vì hai lô đất khác nhau.

    Hai biến cố C = \overline{A} \cap
BD = A \cap\overline{B} là hai biến cố xung khắc.

    Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,56 = 0,44 \\
P\left( \overline{B} ight) = 1 - P(B) = 1 - 0,62 = 0,38 \\
\end{matrix} ight..

    Xác suất để cây chi phát triển bình thường trên một lô đất là:

    P(C \cup D)

    \  = P(C) + P(D) = P\left( \overline{A}
ight) \cdot P(B) + P(A) \cdot P\left( \overline{B}
ight)

    \  = 0,44.0,62 + 0,56.0,38 =
0,4856

  • Câu 2: Nhận biết
    Xác định đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( A|B ight)?

    Hướng dẫn:

    Hai biến cố AB là hai biến cố độc lập nên P\left( A|B ight) = P(A) = 0,2024.

  • Câu 3: Nhận biết
    Xác định P(A|B)

    Cho hai biến cố A,B có xác suất Ρ(A) = 0,4;Ρ(B) = 0,6;Ρ(AB) = 0,2. Tính xác suất Ρ\left( A|B
\right).

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện, ta có Ρ\left( A|B \right) = \frac{Ρ(AB)}{Ρ(B)} =
\frac{0,2}{0,6} = \frac{1}{3}.

  • Câu 4: Nhận biết
    Xác định công thức đúng

    Một đợt xổ số phát hành N vé, trong đó có M vé có thưởng. Một người mua t(r < N - M). Tính xác suất để người đó có ít nhất một vé trúng thưởng

    Hướng dẫn:

    Gọi A: “Người đó có ít nhất một vé trúng thưởng”.

    \overline{A}: “người đó không có vé trúng thưởng”

    Ta có: P\left( \overline{A} ight) =
\frac{C_{N - M}^{t}}{C_{N}^{t}} khi đó P(A) = 1 - P\left( \overline{A} ight) = 1 -
\frac{C_{N - M}^{t}}{C_{N}^{t}}

  • Câu 5: Nhận biết
    Chọn khẳng định đúng

    Cho hai biến cố AB bất kì với P(B) > 0. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Với hai biến cố AB bất kì với P(B) > 0.

    Ta cóP\left( A|B \right) = \frac{P(A \cap
B)}{P(B)}.

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Hướng dẫn:

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 7: Nhận biết
    Tính xác suất của biến cố

    Cho hai biến cố A,B sao cho P(B) = 0,7P(AB) = 0,2. Tính P(A|B).

    Hướng dẫn:

    Ta có P(A|B) = \frac{P(AB)}{P(B)} =
\frac{0,2}{0,7} = \frac{2}{7}.

  • Câu 8: Nhận biết
    Tính P(AB)

    Cho hai biến cố A,\ B với P(B) = 0,8;P(A/B) = 0,5. Tính P(AB).

    Hướng dẫn:

    Ta có P(AB) = P(A/B)P(B) = 0,5.0,8 =
0,4

  • Câu 9: Nhận biết
    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A}B ight)?

    Hướng dẫn:

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = \frac{5}{12}

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố ABP(A) =
0,3;P(B) = 0,6;\ P(A \cap B) = 0,2. Xác suất P\left( A|B \right)

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện ta có: P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} =
\frac{0,2}{0,6} = \frac{1}{3}

  • Câu 11: Thông hiểu
    Tính xác suất để Hà được chọn vào đội tuyển

    Để được chọn vào đội tuyển học sinh giỏi môn Toán cấp thành phố, mỗi thí sinh phải vượt qua hai vòng thi. Bạn Hà tham dự cuộc tuyển chọn này. Xác suất để Hà qua được vòng thứ nhất là 0,8. Nếu qua được vòng thứ nhất thì xác suất để Hà qua được vòng thứ hai là 0,7. Xác suất để bạn Hà được chọn vào đội tuyển này là

    Hướng dẫn:

    Gọi A là biến cố: “Hà qua được vòng thứ nhất” và B là biến cố: “Hà qua được vòng thứ hai”. Khi đó biến cố: “Hà được chọn vào đội tuyển” là AB.

    Ta có P(AB) = P(A).P\left( B\left| A
\right.\  \right) = 0,8.0,7 = 0,56.

  • Câu 12: Nhận biết
    Tính xác suất của biến cố

    Cho AB là hai biến cố độc lập thoả mãn P(A) = 0,5P(B) = 0,4. Khi đó, P(A \cap B) bằng:

    Hướng dẫn:

    A và B là hai biến cố độc lập nên

    P(A
\cap B) = P(A).P(B) = 0,4.0,5 = 0,2

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Hướng dẫn:

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đề bài: P(A) = 0,5 \Rightarrow P\left(
\overline{A} ight) = 0,5;P(B) = 0,6 \Rightarrow P\left( \overline{B}
ight) = 0,4

    P(A \cap B) = 0,4

    a) A,B độc lập \Leftrightarrow P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A,B không độc lập

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight) = P(A) - P(A \cap B) +
P(B) - P(A \cap B) = P(A) + P(B) -
2P(A \cap B) = 0,5 + 0,6 - 2.0,4 = 0,3

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P\left( B \cap \overline{A} ight)}{P\left( \overline{A}
ight)}

    = \frac{P(B) - P(A \cap B)}{P\left(
\overline{A} ight)} = \frac{0,6 - 0,4}{0,5} = 0,4

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,8; P(B) = 0,65; P\left( A \cap \overline{B} \right) =
0,55.

    Tính P(A \cap B).

    Hướng dẫn:

    Ta có P\left( A \cap \overline{B} \right)
+ P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} \right) = 0,8 - 0,55 = 0,25

  • Câu 16: Nhận biết
    Tìm kết luận đúng nhất

    Cho hai biến cố ABP(B)
> 0P\left( A|B \right) =
0,7. Tính P\left( \overline{A}|B
\right) có kết quả là

    Hướng dẫn:

    Với mọi biến cố AB, P(B) >
0 ta có P\left( \overline{A}|B
\right) = 1 - P\left( A|B \right) = 1 - 0,7 = 0,3.

  • Câu 17: Nhận biết
    Chọn phát biểu đúng

    Cho hai biến cố ABcủa một phép thử T. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, ký hiệu là P\left( \left. \ A ight|B ight). Phát biểu nào sau đây đúng?

    Hướng dẫn:

    Nếu P(B) > 0 thì P\left( \left. \ A ight|B ight) =
\frac{P(A).P\left( \left. \ B ight|A ight)}{P(B)}.

  • Câu 18: Nhận biết
    Tính giá trị của biểu thức

    Cho P(A) = 0,4; P\left( B\left| \overline{A} \right.\  \right) =
0,2. Giá trị của P\left(
B\overline{A} \right)

    Hướng dẫn:

    Ta có P\left( \overline{A} \right) = 1 -
P(A) = 1 - 0,4 = 0,6.

    P\left( B\overline{A} \right) = P\left(
\overline{A} \right).P\left( B\left| \overline{A} \right.\  \right) =
0,6.0,2 = 0,12.

  • Câu 19: Nhận biết
    Tìm không gian mẫu của phép thử

    Một hộp chứa bốn viên bi cùng loại ghi số lần lượt từ 1 đến 4. Bạn Mạnh lấy ra một cách ngẫu nhiên một viên bi, bỏ viên bi đó ra ngoài và lấy ra một cách ngẫu nhiên thêm một viên bi nữa. Không gian mẫu của phép thử đó là

    Hướng dẫn:

    Không gian mẫu là:

    \Omega = \begin{Bmatrix}
(1,2);\ \ (1,3);\ \ (1,4);\ \ (2,1);\ \ (2,3);\ \ (2,4);\ \  \\
(3,1);\ \ (3,2);\ \ (3,4);\ \ (4,1);\ \ (4,2);\ \ (4,3) \\
\end{Bmatrix},

  • Câu 20: Thông hiểu
    Tính xác suất của biến cố

    Trong một kỳ thi, có 60\% học sinh đã làm đúng bài toán đầu tiên và 40\% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20\% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?

    Hướng dẫn:

    Gọi biến cố A: "học sinh đã làm đúng bài toán đầu tiên"

    \Rightarrow P(A) =
60\% = 0,6

    Biến cố B: "học sinh đã làm đúng bài toán thứ hai”

    \Rightarrow P(B) = 40\% =
0,4

    Biến cố A \cap B: "học sinh làm đúng cả hai bài toán"

    \Rightarrow P(A \cap
B) = 20\% = 0,2

    Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3} \approx 0,333

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo