Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 18 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
A\overline{B} ight)?

    Hướng dẫn:

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( A\overline{B}
ight) = P(A) - P(AB) = \frac{1}{4}

  • Câu 2: Nhận biết
    Xác định đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( A|B ight)?

    Hướng dẫn:

    Hai biến cố AB là hai biến cố độc lập nên P\left( A|B ight) = P(A) = 0,2024.

  • Câu 3: Nhận biết
    Tính P(A|B)

    Cho hai biến độc lập A,B với P(A) = 0,8;\ P(B) = 0,3. Khi đó, P\left( A\left| B
\right.\  \right)bằng

    Hướng dẫn:

    Do A,B là hai biến cố độc lập nên P\left( A\left| B \right.\  \right) =
\frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A) =
0,8.

  • Câu 4: Nhận biết
    Tính xác suất P(A|B)

    Gieo con xúc xắc 1 lần. Gọi A là biến cố xuất hiện mặt 2 chấm. B là biến cố xuất hiện mặt chẵn. Xác suất P\left(
A|B \right)

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện ta có: P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} =
\frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}

  • Câu 5: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024; P(B) = 0,2025.

    Tính P\left( A\left| B
\right.\  \right).

    Hướng dẫn:

    Ta có: AB là hai biến cố độc lập nên: P\left( A\left| B \right.\  \right) = P(A) =
0,2024

  • Câu 6: Nhận biết
    Tính giá trị của biểu thức

    Cho P(A) = 0,4; P\left( B\left| \overline{A} \right.\  \right) =
0,2. Giá trị của P\left(
B\overline{A} \right)

    Hướng dẫn:

    Ta có P\left( \overline{A} \right) = 1 -
P(A) = 1 - 0,4 = 0,6.

    P\left( B\overline{A} \right) = P\left(
\overline{A} \right).P\left( B\left| \overline{A} \right.\  \right) =
0,6.0,2 = 0,12.

  • Câu 7: Nhận biết
    Chọn mệnh đề đúng

    Cho hai biến cố AB. Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: P(A \cap B) = P(A).P\left( B|A
\right) = P(B).P\left( A|B \right).

  • Câu 8: Nhận biết
    Tính xác suất của biến cố

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để cả hai bi đều đỏ là:

    Hướng dẫn:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 9: Nhận biết
    Chọn kết luận đúng

    Cho AB là hai biến cố, trong đó P(B) > 0. Khi đó

    Hướng dẫn:

    Ta có : P\left( \left. \ A \right|B
\right) = \frac{P(A \cap B)}{P(B)}.

  • Câu 10: Nhận biết
    Tính xác suất của biến cố

    Cho AB là hai biến cố độc lập thoả mãn P(A) = 0,5P(B) = 0,4. Khi đó, P(A \cap B) bằng:

    Hướng dẫn:

    A và B là hai biến cố độc lập nên

    P(A
\cap B) = P(A).P(B) = 0,4.0,5 = 0,2

  • Câu 11: Thông hiểu
    Tìm xác suất có điều kiện

    Gieo đồng thời hai con xúc sắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc sắc là 7, biết rằng có ít nhất một con xúc sắc xuất hiện mặt 5 chấm.

    Hướng dẫn:

    Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc sắc là 7” và B là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt 5 chấm”.

    Ta có

    P(B) = 1 - P\left( \overline{B} \right) =
1 - \frac{25}{36} = \frac{11}{36};

    A \cap B = \left\{ (2;5),\ \ (5;2)
\right\} \Rightarrow P(A \cap B) = \frac{2}{36}.

    Suy ra P\left( A\left| B
\right.\  \right) = \frac{P(A \cap B)}{P(B)} =
\frac{2}{11}.

  • Câu 12: Thông hiểu
    Xác định công thức đúng

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( AB\overline{C} ight)?

    Hướng dẫn:

    Ta có:

    P\left( AB\overline{C} ight) = P(AB) -
P(ABC) = p^{2}.

  • Câu 13: Thông hiểu
    Tìm xác suất có điều kiện

    Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?

    Hướng dẫn:

    Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

    Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).

    Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

    Ta có: P(A) = \frac{1}{4};P(B) =
\frac{3}{4}

    Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

    P(A \cap B) = P(A) =
\frac{1}{4}

    Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{4}}{\dfrac{3}{4}} =\dfrac{1}{3}.

  • Câu 14: Thông hiểu
    Ghi đáp án đúng vào ô trống

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 15: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( A|B \right).

    Hướng dẫn:

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}

  • Câu 16: Nhận biết
    Tính xác suất

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Hướng dẫn:

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

  • Câu 17: Nhận biết
    Chọn kết quả đúng

    Cho hai biến cố A,B có xác suất Ρ(A) = 0,4;Ρ(B) = 0,3;Ρ\left( A|B \right) =
0,25. Tính xác suất Ρ\left( B|A
\right).

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện, ta có Ρ\left( A|B \right) =
\frac{Ρ(AB)}{Ρ(B)}.

    Do đó Ρ(AB) = Ρ\left( A|B \right).Ρ(B) =
0,3.0,25 = 0,075.

    Từ đó suy ra Ρ\left( B|A \right) =
\frac{Ρ(AB)}{Ρ(A)} = \frac{0,075}{0,4} = 0,1875.

  • Câu 18: Thông hiểu
    Tính xác suất để chứng từ hợp lệ

    Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?

    Hướng dẫn:

    Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ

    Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A)

    Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).

    Khi đó ta có: A = A_1 . A_2

    Vì vậy các xác suất cần tìm là:

    P(A) = P\left( A_{1}.\ A_{2} ight) =
P\left( A_{1} ight).P\left( A_{2}|A_{1} ight) =
\frac{8}{10}.\frac{7}{9} = \frac{28}{45}

  • Câu 19: Nhận biết
    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Hướng dẫn:

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 20: Nhận biết
    Xác định P(A|B)

    Cho hai biến cố A,B có xác suất Ρ(A) = 0,4;Ρ(B) = 0,6;Ρ(AB) = 0,2. Tính xác suất Ρ\left( A|B
\right).

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện, ta có Ρ\left( A|B \right) = \frac{Ρ(AB)}{Ρ(B)} =
\frac{0,2}{0,6} = \frac{1}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo