Trong không gian với hệ tọa độ , điểm nào sau đây không thuộc mặt phẳng
?
Dễ thấy điểm không thuộc mặt phẳng
.
Trong không gian với hệ tọa độ , điểm nào sau đây không thuộc mặt phẳng
?
Dễ thấy điểm không thuộc mặt phẳng
.
Trong không gian với hệ tọa độ , cho
. Gọi
là trọng tâm của tam giác
. Gọi
là điểm nằm trên mặt phẳng
sao cho độ dài đoạn thẳng
ngắn nhất. Tính độ dài đoạn thẳng
.
Ta có: là trọng tâm tam giác
nên
Mặt phẳng có phương trình
.
ngắn nhất khi và chỉ khi
là hình chiếu vuông góc của
lên mặt phẳng
. Khi đó, ta có:
.
Ba mặt phẳng cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Trong không gian , cho các điểm
và
. Mặt phẳng
đi qua các điểm
sao cho khoảng cách từ điểm
đến
gấp hai lần khoảng cách từ điểm
đến
. Hỏi có bao nhiêu mặt phẳng
thỏa mãn đề bài?
Gọi là vectơ pháp tuyến của
. Khi đó
.
Do đó
Khoảng cách từ điểm B đến gấp hai lần khoảng cách từ điểm A đến
(luôn đúng)
Vậy có vô số mặt phẳng .
Câu nào sau đây đúng? Trong không gian Oxyz:
A sai và có thể (P) và (Q) trùng nhau
B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.
C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.
Trong không gian với hệ trục tọa độ . Tọa độ giao điểm
của mặt phẳng
với trục
là?
Gọi là điểm thuộc trục
. Điểm
.
Vậy là giao điểm của
.
Phương pháp trắc nghiệm
Giải hệ PT gồm PT của (P) và của (Ox): ; bấm máy tính.
Trong không gian cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian , hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Trong không gian với hệ tọa độ , cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Trong không gian với hệ toạ độ , cho mặt phẳng
. Tìm khẳng định sai trong các mệnh đề sau:
Khẳng định sai: “ khi và chỉ khi
song song với mặt phẳng
.”
Trong không gian , cho hình bình hành
với
. Diện tích hình bình hành
bằng:
Gọi là diện tích hình bình hành
khi đó
Mà
Vậy diện tích hình bình hành bằng 2.
Trong không gian với hệ toạ độ , cho mặt phẳng (P) có phương trình
. Mặt phẳng (P) có một vectơ pháp tuyến là:
Mặt phẳng (P) có phương trình có một vectơ pháp tuyến
Trong không gian , cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Trong không gian , hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Trong không gian với hệ trục toạ độ ,cho 2 đường thẳng
. Viết phương trình mặt phẳng
vuông góc với
,cắt
tại
và cắt
tại
(có tọa nguyên) sao cho
.
Do mặt phẳng vuông góc với
.
Mặt phẳng cắt
tại
, cắt
tại
.
Vậy mặt phẳng .
Trong không gian cho hai điểm
và
là mặt phẳng trung trực của đoạn thẳng
. Vectơ nào sau đây là một vectơ pháp tuyến của
?
Do là mặt phẳng trung trực của đoạn thẳng
nên
nhận
làm vectơ pháp tuyến.
Suy ra cũng là vectơ pháp tuyến của (α).
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
. Gọi
lần lượt là giao điểm của mặt phẳng
với các trục tọa độ
. Tính thể tích
của khối chóp
.
Ta có:
cắt các trục tọa độ tại
Do đôi một vuông góc nên
Trong không gian Oxyz, cho điểm và vectơ
. Viết phương trình mặt phẳng
qua A và nhận vectơ
làm vectơ pháp tuyến.
Phương trình mặt phẳng có dạng:
.
Trong không gian , cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Cho tứ diện có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: