Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Hướng dẫn:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 2: Nhận biết
    Xác định phương trình mặt phẳng (P)

    Trong không gian với hệ toạ độ Oxyz , cho ba điểm A(2;1;3);B(3;0;2);C(0; - 2;1) . Phương trình mặt phẳng (P) đi qua A,B và cách C một khoảng lớn nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H,K lần lượt là hình chiếu C của lên mp(P) và doạn thẳng AB

    Ta có : CH = d\left( I,(P) \right) \leq
CK \Rightarrow d\left( C,(P) \right) lớn nhất khi H \equiv K. Khi đó mặt phẳng (P) đi qua A,B và vuông với mặt phẳng (ABC)

    Ta có \overrightarrow{n_{p}} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack \land
\overrightarrow{AB} = ( - 9, - 6, - 3)

    \Rightarrow (P):3x + 2y + z - 11 =
0

  • Câu 3: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 1 =
0(Q):x + y + 2z = 0. Tập hợp tất cả các giá trị m để hai mặt phẳng này không song song là:

    Hướng dẫn:

    Ta có A(0;0;0) \in (Q).

    (P)//(Q) \Leftrightarrow \left\{\begin{matrix}\dfrac{1}{1} = \dfrac{m}{1} = \dfrac{m - 1}{2} \\A(0;0;0) otin (P) \\\end{matrix} ight. hệ này vô nghiệm

    Hệ này vô nghiệm.

    Do đó (P) không song song với (Q), với mọi giá trị của m.

  • Câu 4: Thông hiểu
    Tính khoảng cách từ điểm đến mặt phẳng

    Cho hình chóp S.ABCD đáy là hình thang vuông tại AD, SA\bot(ABCD). Góc giữa SB và mặt phẳng đáy bằng 45^{o}, E là trung điểm của SD, AB =
2a, AD = DC = a. Tính khoảng cách từ điểm B đến mặt phẳng (ACE).

    Hướng dẫn:

    Hình vẽ minh họa

    Hình chiếu của SB trên mặt phẳng (ABCD)AB \Rightarrow Góc giữa SB và mặt đáy là góc giữa SBAB và bằng góc \widehat{SBA} = 45^{o}.

    Tam giác SAB vuông cân tại A \Rightarrow
SA = 2a.

    Chọn hệ trục tọa độ như hình vẽ ta có: A(0;0;0), B(0;2a;0), C(a;a;0), D(a;0;0), S(0;0;2a), E\left( \frac{a}{2};0;a \right).

    \overrightarrow{AC} = (a;a;0), \overrightarrow{AE} = \left( \frac{a}{2};0;a
\right) \Rightarrow \overrightarrow{AC} \land \overrightarrow{AE} =
\left( a^{2}; - a^{2}; - \frac{a^{2}}{2} \right)

    \Rightarrow mặt phẳng (ACE) có véctơ pháp tuyến \overrightarrow{n} = (2; - 2; - 1) \Rightarrow
(ACE):2x - 2y - z = 0.

    Vậy d\left( B,(ACE) \right) =
\frac{|2.2a|}{\sqrt{4 + 4 + 1}} = \frac{4a}{3}.

  • Câu 5: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian Oxyz cho điểm H(1;2; - 3). Viết phương trình mặt phẳng (\alpha) đi qua H và cắt các trục tọa độ Ox,Oy,Oz tại A,B,C sao cho H là trực tâm của tam giác ABC?

    Hướng dẫn:

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c),abc
eq 0.

    Khi đó: (\alpha):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1

    Ta có: \frac{x}{1} + \frac{y}{2} +
\frac{z}{- 3} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2;3) \\
\overrightarrow{HB} = ( - 1;b - 2;3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. vì H là trực tâm của tam giác ABC suy ra \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = 0 \\
\overrightarrow{HB}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b + 3c = 0 \\
a + 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = - 3c

    Mặt khác H \in (\alpha) \Rightarrow
\frac{1}{a} + \frac{2}{b} - \frac{3}{c} = 1 \Rightarrow \frac{1}{- 3c} +
\frac{4}{- 3c} - \frac{3}{c} = 1

    \Leftrightarrow 14 = - 3c
\Leftrightarrow c = \frac{- 14}{3} \Rightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    Vậy (\alpha):\frac{x}{14} + \frac{y}{7} +\dfrac{z}{- \dfrac{14}{3}} = 1 hay (\alpha):x + 2y - 3z - 14 = 0.

  • Câu 6: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1; - 2;1), B( - 1;3;3), C(2; - 4;2). Một vectơ pháp tuyến \overrightarrow{n} của mặt phẳng (ABC) là:

    Hướng dẫn:

    Phưowng pháp tự luận

    Ta có \overrightarrow{AB} = ( -
2;5;2), \overrightarrow{AC} = (1; -
2;1)

    \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} \right\rbrack =
(9;4; - 1).

    Phương pháp trắc nghiệm

    Sử dụng MTBT tính tích có hướng.

    \overrightarrow{AB} = ( -
2;5;2), \overrightarrow{AC} = (1; -
2;1).

    Chuyển sang chế độ Vector: Mode 8.

    Ấn tiếp 1 – 1: Nhập tọa độ \overrightarrow{AB} vào vector A.

    Sau đó ấn AC. Shift – 5 – 1 – 2 – 1 Nhập tọa độ \overrightarrow{AC} vào vector B.

    Sau đó ấn AC.

    Để nhân \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} \right\rbrack ấn Shift – 5 –3 – X Shift - 5 – 4 - =

  • Câu 7: Nhận biết
    Tìm điểm thuộc mặt phẳng

    Trong không gian với hệ toạ độ Oxyz. Điểm nào sau đây thuộc mặt phẳng (P) - 2x + y - 5 = 0

    Hướng dẫn:

    Phương pháp tự luận

    Thay tọa độ các điểm vào phương trình mặt phẳng, nếu điểm nào làm cho vế trái bằng 0 thì đó là điểm thuộc mặt phẳng.

    Phương pháp trắc nghiệm

    Nhập phương trình mặt phẳng (P) vào máy tính dạng sau: - 2X + Y + 0A - 5 = 0, sau đó dùng hàm CALC và nhập tọa độ (x;y;z)của các điểm vào. Nếu bằng 0 thì điểm đó thuộc mặt phẳng.

  • Câu 8: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Hướng dẫn:

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 9: Nhận biết
    Tính khoảng cách giữa hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x - 2y - 2z + 4 = 0(\beta): - x + 2y + 2z - 7 = 0. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?

    Hướng dẫn:

    Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).

    \Rightarrow d\left\lbrack
(\alpha);(\beta) ightbrack = d\left( A;(\beta) ight) = \frac{|4 -
7|}{\sqrt{1 + 4 + 4}} = 1.

  • Câu 10: Nhận biết
    Chọn kết luận đúng

    Cho A( - 1;2;1) và hai mặt phẳng (P):2x + 4y - 6z - 5 = 0;(Q):x + 2y - 3z =
0. Khi đó:

    Hướng dẫn:

    Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).

    {\overrightarrow{n}}_{(P)} = (2;4; -
6) = 2(1;2; - 3) = {\overrightarrow{n}}_{(Q)} nên (Q)//(P).

  • Câu 11: Nhận biết
    Viết phương trình mặt phẳng (MNP)

    Trong không gian Oxyz, cho ba điểm M(0;1;0),N(2;0;0),P(0;0; - 3). Phương trình nào dưới đây là phương trình mặt phẳng (MNP)?

    Hướng dẫn:

    Phương trình đoạn chắn của mặt phẳng (MNP) là: \frac{x}{2} + \frac{y}{1} + \frac{z}{- 3} =
1

  • Câu 12: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3;1),B(0;1;2). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( - 2; -
2;1) là vectơ pháp tuyến của mặt phẳng (P)

    Phương trình mặt phẳng (P) là:

    - 2(x - 2) - 2(y - 3) + (z - 1) =
0

    \Leftrightarrow (P):2x + 2y - z - 9 =
0

  • Câu 13: Nhận biết
    Phương trình tổng quát

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Hướng dẫn:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 14: Nhận biết
    Xác định vectơ pháp tuyến

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Hướng dẫn:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 15: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Hướng dẫn:

    Mặt phẳng (P) có một véctơ pháp tuyến \overrightarrow{n} =
\overrightarrow{AB} = (1;1;2)

    Phương trình mặt phẳng (P) là: x + y - 1 + 2(z - 1) = 0 hay (P):x + y + 2z - 3 = 0.

  • Câu 16: Nhận biết
    Giao điểm 3 mp

    Ba mặt phẳng 2x + y - z - 1 = 0,3x - y - z + 2 = 0,4x - 2y + z - 3 = 0 cắt nhau tại điểm A.Tọa độ của A là:

    Hướng dẫn:

     Tọa độ của A là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}2x + y - z - 1 = 0\left( 1 ight)\\3x - y - z + 2 = 0\left( 2 ight)\\4x - 2y + z - 3 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x = \frac{{2z - 1}}{5};y = \frac{{z + 7}}{5}

    Thế vào phương trình (3) được z=3, từ đó có x=1,y=2.

    Vậy A(1, 2, 3).

  • Câu 17: Thông hiểu
    Tìm M để biểu thức có giá trị nhỏ nhất

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

  • Câu 18: Nhận biết
    Xác định điểm thuộc mặt phẳng

    Trong không gian Oxyz cho mặt phẳng (\alpha):x - 2y + 2z - 3 = 0. Điểm nào sau đây nằm trên mặt phẳng (\alpha)?

    Hướng dẫn:

    Ta thấy tọa độ điểm Q(1;0;1) thỏa mãn phương trình mặt phẳng (\alpha):x -
2y + 2z - 3 = 0 nên điểm Q nằm trên (\alpha).

  • Câu 19: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(5;1;3),B(1;2;6),C(5;0;4),D(4;0;6). Viết phương trình mặt phẳng chứa AB và song song với CD.

    Hướng dẫn:

    +) \overrightarrow{AB} = ( - 4;1;3),\ \
\overrightarrow{CD} = ( - 1;0;2) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{CD} \right\rbrack =
(2;5;1).

    +) Mặt phẳng đi quaA có VTPT \overrightarrow{n} = (2;5;1)có phương trình là: 2x + 5y + z - 18 =
0.

    +) Thay tọa độ điểm Cvào phương trình mặt phẳng thấy không thỏa mãn.

    Vậy phương trình mặt phẳng thỏa mãn yêu cầu bài toán là: 2x + 5y + z - 18 = 0

  • Câu 20: Nhận biết
    Tìm khẳng định sai

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (\alpha):6x - 3y - 2z - 6 = 0. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Do d\left( O,(\alpha) \right) =
\frac{6}{\sqrt{36 + 9 + 4}} = \frac{6}{7}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo