Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz cho điểm H(2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A;B;C sao cho H là trực tâm tam giác ABC. Hãy viết trình mặt phẳng (P).

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left| \begin{matrix}
AB\bot OC \\
AB\bot CH \\
\end{matrix} ight.\  \Rightarrow AB\bot OH

    Chứng minh tương tự BC ⊥ OH.

    Do đó OH\bot(ABC) \Rightarrow
\overrightarrow{n_{ABC}} = \overrightarrow{OH} = (2;;1)

    Suy ra (P):2x + y + z - 6 =
0.

  • Câu 2: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 3: Nhận biết
    Chọn kết luận đúng

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Hướng dẫn:

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 4: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz cho A(1;
- 1;2),B(2;1;1) và mặt phẳng (P):x
+ y + z + 1 = 0. Mặt phẳng (Q) chứa A;B và vuông góc với mặt phẳng (P). Tìm phương trình mặt phẳng (Q).

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{P}} = (1;1;1) \\
\overrightarrow{AB} = (1;2; - 1) \\
\end{matrix} ight.

    Do mặt phẳng Q chứa A, B và vuông góc với mặt phẳng (P) \Rightarrow \overrightarrow{n_{q}} = \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{AB} ightbrack = ( -
3;2;1)

    Do đó (Q):3x - 2y - x - 3 =
0.

  • Câu 5: Nhận biết
    Tìm khoảng cách từ A đến (Oxy)

    Trong không gian với hệ trục tọa độ Oxyz, khoảng cách từ A( - 2;1; - 6) đến mặt phẳng (Oxy)

    Hướng dẫn:

    Khoảng cách từ điểm A đến mặt phẳng (Oxy):z = 0 là:

    d\left( A;(Oxy) ight) = \frac{| -
6|}{\sqrt{1}} = 6

  • Câu 6: Thông hiểu
    Tìm độ dài đường cao tứ diện

    Cho tứ diện ABCDA(0;1; - 1),B(1;1;2),C(1; -
1;0),D(0;0;1). Tính độ dài đường cao AH của tứ diện ABCD?

    Hướng dẫn:

    Ta có:

    \overrightarrow{BA} = ( - 1;0; -
3),\overrightarrow{BC} = (0; - 2; - 2),\overrightarrow{BD} = ( - 1; - 1;
- 1)

    \left\lbrack
\overrightarrow{BC},\overrightarrow{BD} ightbrack = (0; - 2; - 2)
\Rightarrow \left\lbrack \overrightarrow{BC},\overrightarrow{BD}
ightbrack.\overrightarrow{BA} = 6

    V_{ABCD} = \frac{1}{3}AH.S_{BCD}
\Rightarrow AH = \frac{3V_{ABCD}}{S_{BCD}} = \frac{3}{\sqrt{2}} =
\frac{3\sqrt{2}}{2}.

  • Câu 7: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

    Hướng dẫn:

    PTTQ của mặt phẳng có dạng Ax + By + Cz +
D = 0, với A^{2} + B^{2} + C^{2}
eq 0 nên ta chọn 2x + 3y + z - 12
= 0.

  • Câu 8: Nhận biết
    Chọn kết luận chính xác

    Trong không gian Oxyz, hãy tính pq lần lượt là khoảng cách từ điểm M(5; - 2;0) đến mặt phẳng (Oxz) và mặt phẳng (P):3x - 4z + 5 = 0?

    Hướng dẫn:

    Do mặt phẳng (Oxz) có phương trình y = 0 nên

    p = d\left( M;(Oxz) ight) = \frac{| -
2|}{\sqrt{0^{2} + 1^{2} + 0^{2}}} = 2

    Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên

    q = d\left( M;(P) ight) = \frac{|3.5 -
4.0 + 5|}{\sqrt{3^{2} + 0^{2} + ( - 4)^{2}}} = 4

  • Câu 9: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Hướng dẫn:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 10: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Hướng dẫn:

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 11: Nhận biết
    Tìm khẳng định đúng

    Chọn khẳng định đúng

    Hướng dẫn:

    Câu đúng là: Nếu hai mặt phẳng song song thì hai vectơ pháp tuyến tương ứng cùng phương

  • Câu 12: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz cho A(2;0;0),B(0; - 2;0),C(0;0; - 1). Viết phương trình mặt phẳng (ABC)?

    Hướng dẫn:

    Phương trình mặt phẳng (ABC)\frac{x}{2} + \frac{y}{- 2} + \frac{z}{-
1} = 1

  • Câu 14: Nhận biết
    Xác định điều kiện tham số m

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Hướng dẫn:

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 15: Nhận biết
    Tìm khẳng định sai

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (\alpha):6x - 3y - 2z - 6 = 0. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Do d\left( O,(\alpha) \right) =
\frac{6}{\sqrt{36 + 9 + 4}} = \frac{6}{7}.

  • Câu 16: Nhận biết
    Viết PT mp đi qua 3 điểm

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Hướng dẫn:

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 17: Nhận biết
    Định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz. Phương trình của mặt phẳng chứa trục Ox và qua điểm I(2; - 3;1) là:

    Hướng dẫn:

    Trục Ox đi qua A(1;0;0) và có \overrightarrow{i} = (1;0;0)

    Mặt phẳng đi qua I(2; - 3;1) và có vectơ pháp tuyến \overrightarrow{n} =
\left\lbrack \overrightarrow{i},\overrightarrow{AI} \right\rbrack =
(0;1;3) có phương trình y + 3z =
0.

    Vậy y + 3z = 0.

  • Câu 18: Nhận biết
    Tính khoảng cách d(M; (P))

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Hướng dẫn:

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

  • Câu 19: Thông hiểu
    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;6;0),B(0;0; - 2);C( - 3;0;0). Phương trình mặt phẳng (P) đi qua ba điểm A;B;C là:

    Hướng dẫn:

    Phương trình mặt phẳng theo đoạn chắn \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Ta có \frac{x}{3} + \frac{y}{- 6} +
\frac{z}{2} = 1

    \Leftrightarrow - 2x + y - 3z =
6

    \Leftrightarrow 2x - y + 3z + 6 =
0

  • Câu 20: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz. Phương trình mặt phẳng (P) đi qua điểm A( - 1;2;0) và nhận \overrightarrow{n}( - 1;0;2) là VTPT có phương trình là:

    Hướng dẫn:

    Mặt phẳng (P) đi qua điểm A( -
1;2;0) và nhận \overrightarrow{n}(
- 1;0;2) là VTPT có phương trình là:

    - 1(x + 1) + 0(y - 2) + 2(z - 0) =
0

    \Leftrightarrow - x - 1 + 2z = 0
\Leftrightarrow - x + 2z - 1 = 0.

    Vậy - x + 2z - 1 = 0.

    Phương pháp trắc nghiệm (nên có)

    Từ tọa độ VTPT suy ra hệ số B=0, vậy loại ngay đáp án - x + 2y - 5 = 0- x + 2y - 5 = 0

    Chọn 1 trong 2 PT còn lại bằng cách thay tọa độ điểm A vào.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo