Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R}. Hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số g(x) = f(x - 1) + \frac{2019 -
2018x}{2018} đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có g'(x) = f'(x - 1) -
1.

    g'(x) \geq 0 \Leftrightarrow f'(x- 1) - 1 \geq 0 \Leftrightarrow f'(x - 1) \geq 1

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 \leq - 1 \\
x - 1 \geq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 3 \\
\end{matrix} ight.\ .

    Từ đó suy ra hàm số g(x) = f(x - 1) +
\frac{2019 - 2018x}{2018} đồng biến trên khoảng ( - 1\ ;\ 0).

  • Câu 2: Vận dụng cao
    Tính số điểm cực trị của hàm số

    Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} là:

    Tính số điểm cực trị của hàm số

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = f'\left( x ight){.2021^{f\left( x ight)}}.\ln 2021 + f'\left( x ight){.2020^{f\left( x ight)}}.\ln 2020 \hfill \\   = f'\left( x ight)\left[ {{{2021}^{f\left( x ight)}}.\ln 2021 + {{2020}^{f\left( x ight)}}.\ln 2020} ight] \hfill \\ \end{matrix}

    Do {2021^{f\left( x ight)}}.\ln 2021 + {2020^{f\left( x ight)}}.\ln 2020 > 0,\forall x \in \mathbb{R}

     y' = 0 \Leftrightarrow f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_1} = a} \\   {{x_2} = b} \\   {{x_3} = c} \end{array}} ight.

    Tính số điểm cực trị của hàm số

    Vậy hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} có ba điểm cực trị.

  • Câu 3: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ \left( m^{2} - 4 \right)x + 5 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số đạt cực tiểu tại điểm x = - 1.

    Hướng dẫn:

    Ta có y' = x^{2} - 2mx + \left( m^{2}
- 4 ight).

    x = - 1 là điểm cực tiểu của hàm số \overset{}{ightarrow}y'( - 1) =
0 \Leftrightarrow m^{2} + 2m - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1 \\
m = - 3 \\
\end{matrix} ight.\ .

    Thử lại ta thấy chỉ có giá trị m = -
3 thỏa mãn y' đổi dấu từ '' - '' sang '' + '' khi qua x = - 1.

  • Câu 4: Vận dụng
    Xác định số điểm cực trị của hàm số

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 5: Vận dụng
    Tìm mệnh đề sai

    Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ. Xét hàm số g(x) = f\left( x^{2} - 2
\right). Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Ta có g'(x) = \left( x^{2} - 2
ight)^{'}.f'\left( x^{2} - 2 ight) = 2x.f'\left( x^{2} -
2 ight).

    Hàm số nghịch biến khi g'(x) \leq 0
\Leftrightarrow x.f'\left( x^{2} - 2 ight) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 2 ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 2 ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Từ đồ thị hình của hàm số y =
f'(x) như hình vẽ, ta thấy

    f'(x) \leq 0 \Leftrightarrow x \leq
2f'(x) \geq 0
\Leftrightarrow x \geq 2.

    + Với \left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 2 ight) \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 0 \\
x^{2} - 2 \geq 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  x \leqslant 0 \hfill \\
  {x^2} \geqslant 4 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  x \leqslant 0 \hfill \\
  \left[ \begin{gathered}
  x \geqslant 2 \hfill \\
  x \leqslant  - 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x \leqslant  - 2.

    + Với \left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 2 ight) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} - 2 \leq 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq x \leq 2.

    Như vậy hàm số nghịch biến trên mỗi khoảng ( - \infty; - 2), (0;2); suy ra hàm số đồng biến trên ( - 2;0)(2; + \infty).

    Do ( - 1;0) \subset ( - 2;0) nên hàm số đồng biến trên ( - 1;0). Vậy “Hàm số g(x) nghịch biến trên ( - 1;0)” sai.

  • Câu 6: Vận dụng
    Xác định tham số m để hàm số nghịch m trên khoảng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Hướng dẫn:

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 7: Vận dụng cao
    Tìm khoảng đồng biến của hàm số

    Cho y = f\left( x ight) hàm số có f'\left( x ight) = \left( {x - 2} ight)\left( {x + 5} ight)\left( {x + 1} ight). Hàm số y = f\left( {{x^2}} ight) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Xét dấu f’(x) như sau:

    Tìm khoảng đồng biến của hàm số

    Ta có:

    \begin{matrix}  y' = \left( {f\left( {{x^2}} ight)} ight)' = 2xf'\left( {{x^2}} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {f'\left( {{x^2}} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \sqrt 2 } \\   {x =  - \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    Chọn x = 1 \in \left( {0;\sqrt 2 } ight) ta có: y'\left( 1 ight) = 2.1.f'\left( {{1^2}} ight) = 2.f'\left( {{1^2}} ight) < 0

    => \left( {0;\sqrt 2 } ight) là khoảng âm

    Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

    Tìm khoảng đồng biến của hàm số

    Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)

  • Câu 8: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số  y = \frac{1}{3} x^{3} - \frac{1}{2} mx^{2} + 4x-2021, m là tham số; gọi x1, x2 là các điểm cực trị của hàm số đã cho. Tính giá trị lớn nhất của biểu thức P = (x_{1}^{2}-1) (x_{2}^{2} -1).

  • Câu 9: Vận dụng
    Xác định số cực trị của hàm số

    Hàm số f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} = {\left( {1 + x} ight)^{2019}} \hfill \\   \Rightarrow f'\left( x ight) = 2019.{\left( {1 + x} ight)^{2018}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow x =  - 1 \hfill \\ \end{matrix}

    Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.

  • Câu 10: Vận dụng cao
    Tìm khoảng đồng biến của hàm số

    Cho hàm số đa thức f(x) có đạo hàm trên \mathbb{R}. Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau.

    Hàm số g(x) = \left| 4f(x) + x^{2}
\right| đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Xét hàm số h(x) = 4f(x) + x^{2} trên \mathbb{R}.

    f(x) là hàm số đa thức nên h(x) cũng là hàm số đa thức và h(0) = 4f(0) = 0.

    Ta có h'(x) = 4f'(x) +
2x.

    Do đó h'(x) = 0 \Leftrightarrow
f'(x) = - \frac{1}{2}x.

    Dựa vào sự tương giao của đồ thị hàm số y
= f'(x) và đường thẳng y = -
\frac{1}{2}x, ta có h'(x) = 0
\Leftrightarrow x \in \left\{ - 2;0;4 ight\}

    Suy ra bảng biến thiên của hàm số h(x) như sau:

    Từ đó ta có bảng biến thiên của hàm số g(x) = \left| h(x) ight| như sau:

    Dựa vào bảng biến thiên trên, ta thấy hàm số g(x) đồng biến trên khoảng (0;4).

  • Câu 11: Vận dụng
    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y = -x^{3} +3mx^{2} -3m-1 có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y - 74.

  • Câu 12: Vận dụng
    Chọn phương án thích hợp

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
1)x^{2} + (2m + 1)x - \frac{4}{3} với m > 0 là tham số thực. Tìm giá trị của m để đồ thị hàm số có điểm cực đại thuộc trục hoành.

    Hướng dẫn:

    Đạo hàm y' = x^{2} - 2(m + 1)x + (2m
+ 1)

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m + 1 \\
\end{matrix} ight.

    Do m > 0\overset{}{ightarrow}2m + 1
eq 1 nên đồ thị hàm số luôn có hai điểm cực trị.

    Do m > 0\overset{}{ightarrow}2m + 1
> 1\overset{}{ightarrow} hoành độ điểm cực đại là x = 1 nên y_{CD} = y(1) = m - 1.

    Yêu cầu bài toán \Leftrightarrow y_{CD} =0 \Leftrightarrow m - 1 = 0 \Leftrightarrow m = 1: thỏa mãn.

  • Câu 13: Vận dụng
    Tính tổng P

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 14: Vận dụng
    Tìm m để hàm số có hai cực trị

    Cho hàm số y = 2x^{3} + mx^{2} - 12x -
13 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị cách đều trục tung.

    Hướng dẫn:

    Ta có y' = 6x^{2} + 2mx -
12.

    Do \Delta' = m^{2} + 72 > 0,\
\forall m\mathbb{\in R} nên hàm số luôn có hai điểm cực trị x_{1},\ x_{2} với x_{1},\ x_{2} là hai nghiệm của phương trình y' = 0.

    Theo định lí Viet, ta có x_{1} + x_{2} =
- \frac{m}{3}.

    Gọi A\left( x_{1};y_{1} ight)B\left( x_{2};y_{2}\right) là hai điểm cực trị của đồ thị hàm số.

    Yêu cầu bài toán \Leftrightarrow \left|
x_{1} ight| = \left| x_{2} ight| \Leftrightarrow x_{1} = -
x_{2} (do x_{1} eq
x_{2})

    \Leftrightarrow x_{1} + x_{2} = 0
\Leftrightarrow - \frac{m}{3} = 0 \Leftrightarrow m = 0.

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Cho hàm số y =
f(x) có đạo hàm f'(x) = x^{2}(x
- 9)(x - 4)^{2}. Khi đó hàm số y =
f\left( x^{2} ight) nghịch biến trên khoảng nào?

    Hướng dẫn:

    Ta có:

    y' = \left( f\left( x^{2} ight)
ight)' = 2x.f'\left( x^{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{4}\left( x^{2} - 9 ight)\left( x^{2} - 4 ight)^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 3 \\
x = \pm 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta có hàm số nghịch biến trên ( - \infty; - 3)(0;3).

  • Câu 17: Thông hiểu
    Chọn đáp án chính xác

    Tìm tất cả các giá trị của tham số m để hàm số y
= x^{3} - 3(m + 1)x^{2} + 3(3m + 7)x + 1 có cực trị?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6(m + 1)x + 3(3m
+ 7)

    Để hàm số y = x^{3} - 3(m + 1)x^{2} +
3(3m + 7)x + 1 có cực trị thì y' = 0 có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9m^{2} - 9m - 54 > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 3 \\
\end{matrix} ight..

  • Câu 18: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Tìm tất cả các giá trị của m...

    Hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y' = - 2f'(3 -
2x)

    y' < 0 \Leftrightarrow -
2f'(3 - 2x) < 0 \Leftrightarrow f'(3 - 2x) >
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
- 1 < 3 - 2x < 1 \\
3 - 2x > 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 < x < 2 \\
x < - \frac{1}{2} \\
\end{matrix} ight.

    Vậy hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng (1;2).

  • Câu 20: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Ta có: f'(x) = 0 \Leftrightarrow
3x^{3} - 3x^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    a) Hàm số đồng biến trên khoảng (1; +∞).

    b) Hàm số nghịch biến trên khoảng (−∞; 1) nên nghịch biến trên (−1; 1).

    c) Hàm số có đúng một điểm cực trị.

    d) Hàm số có đúng một điểm cực tiểu x = 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo