Biết rằng hàm số có hai điểm cực trị. Mệnh đề nào sau đây là đúng?
Ta có .
Có
Để hàm số đã cho đạt cực đại, cực tiểu khi và chỉ khi có hai nghiệm phân biệt
.
Biết rằng hàm số có hai điểm cực trị. Mệnh đề nào sau đây là đúng?
Ta có .
Có
Để hàm số đã cho đạt cực đại, cực tiểu khi và chỉ khi có hai nghiệm phân biệt
.
Cho hàm số với
là tham số thực. Gọi
lần lượt là hoành độ các điểm cực trị của đồ thị hàm số. Tính
.
Ta có
Vậy .
Nhận xét. Nếu phương trình không ra nghiệm đẹp như trên thì ta dùng công thức tổng quát
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số y = f(x) có đạo hàm . Khi đó hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu, hàm số nghịch biến trên các khoảng (-∞; -3) và (-0; 3)
Cho hàm số có bảng xét dấu đạo hàm như sau:
Hàm số đồng biến trên khoảng nào sau đây
Ta có .
Để đồng biến thì
.
Vậy hàm số đồng biến trên .
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Cho hàm số có bảng biến thiên như sau:
Hỏi hàm số đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Cho hàm số . Hàm số
có đồ thị như hình bên. Hàm số
đồng biến trên khoảng
Cách 1:
Ta thấy với
nên
nghịch biến trên
và
suy ra
đồng biến trên
và
.
Khi đó đồng biến biến trên khoảng
và
Cách 2:
Dựa vào đồ thị của hàm số ta có
.
Ta có .
Để hàm số đồng biến thì
.
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có:
Ta có:
Cho g’(x) = 0 =>
Dựa vào f’(x) ta có:
Lập bảng xét dấu như sau:

Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)
Tìm tất cả các giá trị thực của tham số để hàm số
có điểm cực tiểu
.
Nếu thì
: Hàm hằng nên không có cực trị.
Với , ta có
▪ đổi dấu từ
sang
khi qua
Hàm số đạt cực tiểu tại điểm
. Do đó
thỏa mãn.
▪ đổi dấu từ
sang
khi qua
Hàm số đạt cực đại tại điểm
.
Do đó không thỏa mãn.
Nhận xét. Nếu dùng mà bổ sung thêm điều kiện
nữa thì được, tức là giải hệ
.
Như vậy, khi gặp hàm mà chưa chắc chắn hệ số
thì cần xét hai trường hợp
và
(giải hệ tương tự như trên).
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số đạt cực trị tại
.
Ta có .
Yêu cầu bài toán có hai nghiệm phân biệt
Hàm số nghịch biến trên khoảng nào trong các khoảng sau đây?
TXĐ:
, suy ra hàm số nghịch biến trên khoảng
, suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số y = f(x). Đồ thị của hàm số như hình bên. Đặt
. Mệnh đề nào sau đây đúng?
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Cho hàm số có đồ thị như hình vẽ
Hàm số đồng biến trên khoảng nào dưới đây
Hàm số có
Do đó hàm số đồng biến trên .
Cho hàm số có đồ thị như hình vẽ:
Tổng các giá trị nguyên của tham số để hàm số
có
điểm cực trị bằng:
Cho hàm số có đồ thị như hình vẽ:
Tổng các giá trị nguyên của tham số để hàm số
có
điểm cực trị bằng:
Cho hàm số đa thức bậc bốn . Đồ thị hàm số
được biểu thị trong hình vẽ sau:
Hàm số nghịch biến trong khoảng nào?
Đặt . Ta có bảng xét dấu của
được mô tả lại như sau:
Từ đó suy ra bảng xét dấu của
Vậy hàm số nghịch biến trên các khoảng
.
Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)
Ta có: . Theo yêu cầu bài toán ta có:
=>
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
Ta có:
nên hàm số đạt cực đại tại điểm
và đạt cực tiểu tại
Mà suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
Vậy tiếp tuyến song song với trục hoành.
Tìm tất cả các giá trị thực của tham số để hàm số
đồng biến trên khoảng
?
Điều kiện xác định
Ta có:
Hàm số đồng biến trên khoảng khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số có đồ thị của hàm số
như sau:
Trên khoảng có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng một cực trị?
Cho hàm số có đồ thị của hàm số
như sau:
Trên khoảng có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng một cực trị?
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: