Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Tìm điều kiện của tham số để hàm số
đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên từng khoảng xác định
Vậy giá trị cần tìm là .
Định tất cả các giá trị thực của để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Biết là giá trị của tham số
để hàm số
có hai điểm cực trị
sao cho
. Mệnh đề nào sau đây đúng?
Ta có:
Hàm số có hai cực trị
là hai nghiệm của phương trình
Áp dụng hệ thức Vi – et ta có:
Ta có:
.
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số có hai điểm cực trị
thỏa mãn
.
Ta có
Yêu cầu bài toán có hai nghiệm phân biệt
thỏa mãn
Nhận xét. Nhắc lại kiến thức lớp dưới phương trình
có hai nghiệm phân biệt
thỏa mãn
Cho hàm số có bảng xét dấu đạo hàm như sau:
Hàm số nghịch biến trên khoảng nào dưới đây?
Xét hàm số ta có:
Đặt
Xét hàm số có
. Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số có đạo hàm liên tục trên
. Biết đồ thị của hàm số
biểu diễn như hình vẽ:
Khi đó hàm số nghịch biến trên khoảng nào sau đây?
Ta có:
Vậy đáp án cần tìm là .
Cho hàm số y = f(x) có đạo hàm liên tục trên . Đồ thị hàm số y f’(x) như hình vẽ bên:

Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:

Vậy hàm số đã cho có đúng một cực trị
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số
thuộc
để hàm số đã cho đồng biến trên khoảng
.
Ta có đạo hàm của là
.
Hàm số đã cho đồng biến trên khoảng khi và chỉ khi
(*)
Xét hàm số
ta có do đó ta có bảng biến thiên của hàm số
như sau
Qua bảng biến thiên ta có , kết hợp với
ta có 6 giá trị nguyên của
là
.
Cho hàm số có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.
Đặt . Tìm số điểm cực trị của hàm số
Đáp án: 6
Cho hàm số có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.
Đặt . Tìm số điểm cực trị của hàm số
Đáp án: 6
Đặt
Xét hàm số
Bảng biến thiên của hàm số
Dựa vào bảng biến thiến trên ta thấy phương trình .
Mỗi phương trình có hai nghiệm phân biệt khác , mà
có 4 nghiệm đơn phân biệt
khác
và phương trình
vô nghiệm.
Do đó phương trình có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là
.
Vậy hàm số có 6 cực trị.
Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?
Ta có bảng biến thiên như sau:

Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)
Cho hàm số có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:
Xét hàm . Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Cho hàm số , bảng xét dấu của
như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có .
.
.
Bảng biến thiên
Dựa vào bảng biến thiên hàm số đồng biến trên khoảng
.
Cho hàm số có bảng biến thiên như hình vẽ:
Hàm số nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y - 74.
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của
để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của
.
;
Hàm số nghịch biến trên các khoảng xác định khi
.
Mà nên có
giá trị thỏa mãn.
Hàm số có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số . Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: