Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Đại lượng nào đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu?

    Hướng dẫn:

    Khoảng tứ phân vị dùng để đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có độ lệch chuẩn bằng bằng 3 thì có phương sai bằng

    Hướng dẫn:

    Phương sai: s^{2} = 9.

  • Câu 3: Nhận biết
    Chọn kết luận đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 25 thì có độ lệch chuẩn bằng

    Hướng dẫn:

    Ta có độ lệch chuẩn bằng căn bậc hai số học của phương sai nên s = 5.

  • Câu 4: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Thống kê điểm trắc nghiệm môn Tiếng Anh của 40 học sinh, người ta có bảng sau:

    Tính phương sai của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Chọn giá trị đại diện cho mẫu số liệu, ta có:

    A white paper with black numbersDescription automatically generated

    Điểm trung bình là:

    \overline{x} = \frac{3 \cdot 25 + 5 \cdot
35 + 5 \cdot 45 + 8 \cdot 55 + 7 \cdot 65 + 5 \cdot 75 + 3 \cdot 85 + 4
\cdot 95}{40} = 59,5.

    Phương sai là:

    S^{2} = \frac{1}{40}\lbrack 3 \cdot
(25)^{2} + 5 \cdot (35)^{2} + 5 \cdot (45)^{2} + 8 \cdot (55)^{2} + 7
\cdot (65)^{2}

    + 5 \cdot (75)^{2} + 3 \cdot (85)^{2} +
4 \cdot (95)^{2}\rbrack - (59,5)^{2} = 404,75

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Xét mẫu dữ liệu ghép nhóm được cho ở bảng sau với n = n_{1} + n_{2} + \cdots + n_{k}.

    A table with writing on itDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của \left\lbrack
u_{2};u_{3} \right)c_{2} = \frac{u_{2} +u_{3}}{2}. Đúng||Sai

    b. Giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( c_{1} + c_{2} +
\cdots + c_{k} \right). Sai||Đúng

    c. Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left\lbrack n_{1}\left( c_{1}
- \overline{x} \right)^{2} + n_{2}\left( c_{2} - \overline{x}
\right)^{2} + \cdots + n_{k}\left( c_{k} - \overline{x} \right)^{2}
\right\rbrack. Đúng||Sai

    d. Phương sai của mẫu số liệu ghép nhóm là s^{2} = \frac{1}{n}\left( n_{1}c_{\ _{1}}^{2} +
n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
\overline{x}. Sai||Đúng

    Đáp án là:

    Xét mẫu dữ liệu ghép nhóm được cho ở bảng sau với n = n_{1} + n_{2} + \cdots + n_{k}.

    A table with writing on itDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của \left\lbrack
u_{2};u_{3} \right)c_{2} = \frac{u_{2} +u_{3}}{2}. Đúng||Sai

    b. Giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( c_{1} + c_{2} +
\cdots + c_{k} \right). Sai||Đúng

    c. Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left\lbrack n_{1}\left( c_{1}
- \overline{x} \right)^{2} + n_{2}\left( c_{2} - \overline{x}
\right)^{2} + \cdots + n_{k}\left( c_{k} - \overline{x} \right)^{2}
\right\rbrack. Đúng||Sai

    d. Phương sai của mẫu số liệu ghép nhóm là s^{2} = \frac{1}{n}\left( n_{1}c_{\ _{1}}^{2} +
n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
\overline{x}. Sai||Đúng

    (a) giá trị đại diện của \left\lbrack u_{2};u_{3} \right)c_{2} = \frac{u_{2} +u_{3}}{2}.

    Chọn ĐÚNG.

    (b) giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( c_{1} +
c_{2} + \cdots + c_{k} \right).

    Giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( n_{1}c_{1} +
n_{2}c_{2} + \cdots + n_{k}c_{k} \right).

    Chọn SAI.

    (c) phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left\lbrack n_{1}\left( c_{1}
- \overline{x} \right)^{2} + n_{2}\left( c_{2} - \overline{x}
\right)^{2} + \cdots + n_{k}\left( c_{k} - \overline{x} \right)^{2}
\right\rbrack.

    Chọn ĐÚNG.

    (d) phương sai của mẫu số liệu ghép nhóm là s^{2} = \frac{1}{n}\left( n_{1}c_{\ _{1}}^{2} +
n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
\overline{x}.

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left( n_{1}c_{\
_{1}}^{2} + n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
{\overline{x}}^{2}.

    Chọn SAI.

  • Câu 6: Thông hiểu
    Xác định phương sai của mẫu số liệu ghép nhóm

    Cân nặng của các học sinh lớp 10A trường Trung học phổ thông Mnhư sau.

    Cân nặng(kg)

    \lbrack 30;36) \lbrack 36;42) \lbrack 42;48) \lbrack 48;54) \lbrack 54;60) \lbrack 60;66)

    Số học sinh lớp

    1

    2

    5

    15

    9

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần nhất với kết quả nào sau đây.

    Hướng dẫn:

    Cân nặng trung bình của học sinh lớp 10A là.

    \overline{x_{A}} = \frac{1}{38}(1.33 +
2.39 + 5.45 + 15.51 + 9.57 + 6.63) = 52,4\ \ kg

    Độ lệch chuẩn về nhóm cân nặng của học sinh lớp 10A

    {s^{2}}_{A} = \frac{1}{38}\lbrack 1.(33 -
52,4)^{2} + 2.(39 - 52,4)^{2} + 5.(45 - 52,4)^{2} + 15.(51 - 52,4)^{2} + 9.(57 - 52,4)^{2} + 6.(63 -
52,4)^{2}\rbrack \approx 50,4

  • Câu 7: Thông hiểu
    Chọn phát biểu đúng

    Hai mẫu số lię̂u ghép nhóm M_{1},M_{2} có bảng tần số ghép nhóm như sau:

    M_{1}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tần số

    3

    4

    8

    6

    4

    M_{2}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tằn số

    6

    8

    16

    12

    8

    Gọi s_{1},s_{2} lần lượt là độ lệch chuẩn của mẫu số liệu ghép nhóm M_{1},M_{2}. Phát biểu nào sau đây là đúng?

    Hướng dẫn:

    Dùng máy tính casio tính được độ lệch chuẩn: \left\{ \begin{matrix}
s_{1} \approx 2,444913086 \\
s_{2} \approx 2,444913086 \\
\end{matrix} ight.

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    Đáp án là:

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    (a) Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên:

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}.

    Số trung bình của mẫu số liệu ngân hàngA bằng {\overline{x}}_{A} = \frac{1}{38}.\lbrack 6.1,5 +
7.2,5 + 9.3,5 + 10.4,5 + 5.5,5 + 1.6,5\rbrack =
\frac{137}{38}

    Phương sai của mẫu số liệu ngân hàngA bằng

    S_{A}^{2} = \frac{1}{38}.\lbrack
6.1,5^{2} + 7.2,5^{2} + 9.3,5^{2} + 10.4,5^{2} + 5.5,5^{2} +
1.6,5^{2}\rbrack - \left( \frac{137}{38} \right)^{2} =
\frac{661}{361}.

    Độ lệch chuẩn của mẫu số liệu ngân hàngA bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
\frac{\sqrt{661}}{19}.

    Chọn SAI.

    (c) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}.

    Số trung bình của mẫu số liệu ngân hàng B bằng{\overline{x}}_{B} = \frac{1}{38}.\lbrack 8.1,5 +
6.2,5 + 8.3,5 + 9.4,5 + 5.5,5 + 2.6,5\rbrack =
\frac{68}{19}

    Phương sai của mẫu số liệu ngân hàng B bằng

    S_{B}^{2} = \frac{1}{38}[8.1,5^{2} + 6.2,5^{2} + 8.3,5^{2} + 9.4,5^{2} + 5.5,5^{2}+2.6,5^{2}]- \left( \frac{68}{19} \right)^{2} =\frac{3221}{1444}.

    Độ lệch chuẩn của mẫu số liệu ngân hàng B bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} =
\sqrt{\frac{3221}{1444}}.

    Chọn SAI.

    (d) Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B

    \sigma_{A} < \sigma_{B} nên rủi ro của ngân hàng A thấp hơn rủi ro của ngân hàng B khi cho khách hàng vay nợ.

    Chọn SAI.

  • Câu 9: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Độ lệch chuẩn của mẫu số liệu trên gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Bảng tần số ghép nhóm theo giá trị đại diện là

    Số trung bình: \overline{x} = \frac{2.6 +
7.8 + 7.10 + 3.12 + 1.14}{20} = 9,4.

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{20}.\lbrack 2(6 -
9,4)^{2} + 7(8 - 9,4)^{2} + 7(10 - 9,4)^{2}+ 3(12 - 9,4)^{2} + 1.(14 -
9,4)^{2}\rbrack \approx 4,04

    s = \sqrt{s^{2}} = \sqrt{4,04} \approx
2,01

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các nhận định

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    Đáp án là:

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    a) Đúng. Ta có: Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là:

    {\overline{x}}_{1} = \frac{15 \cdot 12,5
+ 18 \cdot 17,5 + 10 \cdot 22,5 + 10 \cdot 27,5 + 5 \cdot 32,5 + 2 \cdot
37,5}{60}

    = \frac{62}{3} \approx 20,67

    Nên mệnh đề a) Đúng

    b) Đúng. Ta có:

    15 \cdot (12,5 - 20,67)^{2} + 18 \cdot
(17,5 - 20,67)^{2} + 10 \cdot (22,5 - 20,67)^{2} +

    + 10.(27,5 - 20,67)^{2} + 5.(32,5 -
20,67)^{2} + 2.(37,5 - 20,67)^{2} \approx 2948,33494

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} = \frac{2948,334}{60} \approx
49,1389.

    Nên mệnh đề b) Đúng

    c) Đúng. Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 2 là:

    {\overline{x}}_{2} = \frac{25 \cdot 12,5
+ 15 \cdot 17,5 + 7 \cdot 22,5 + 5 \cdot 27,5 + 5 \cdot 32,5 + 3 \cdot
37,5}{60}

    = \frac{1145}{60} \approx 19,08

    Ta có: 25 \cdot (12,5 - 19,08)^{2} + 15
\cdot (17,5 - 19,08)^{2} + 7 \cdot (22,5 - 19,08)^{2} +

    + 5.(27,5 - 19,08)^{2} + 5.(32,5 -
19,08)^{2} + 3.(37,5 - 19,08)^{2} \approx 3474,584.

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2}^{2} = \frac{3474,584}{60} \approx
57,9097.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx \sqrt{57,9097} \approx
7,61(triệu đồng)

    Nên mệnh đề c) Đúng

    d) Sai. Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 1 là:

    s_{1} \approx \sqrt{49,1389} \approx
7(triệu đồng)

    s_{1} \approx 7 < s_{2} \approx
7,61 nên công ty A có mức lương đồng đều hơn công ty B.

    Nên mệnh đề c) Sai

  • Câu 11: Nhận biết
    Chọn công thức đúng

    Xét mẫu số liệu ghép nhóm cho ở bảng dưới đây. Gọi \overline{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Độ lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm được tính bởi công thức:

    • s = \sqrt {\frac{{{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {n_m}{{\left( {{x_m} - \bar x} \right)}^2}}}{n}} .
  • Câu 12: Nhận biết
    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng
    Xét tính đúng sai của các nhận định

    Bác sĩ A điều trị 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong buổi sáng điều trị như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị. Đúng||Sai

    b. Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3, 7 ; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây

    Sai||Đúng

    c. Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3, 7; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58. Sai||Đúng

    d. Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7; 4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Đúng||Sai

    Đáp án là:

    Bác sĩ A điều trị 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong buổi sáng điều trị như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị. Đúng||Sai

    b. Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3, 7 ; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây

    Sai||Đúng

    c. Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3, 7; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58. Sai||Đúng

    d. Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7; 4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Đúng||Sai

    (a) Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị.

    Sắp xếp lại bảng số liệu theo thứ tự không giảm như sau:

    3,8;3,8;4,0;4,1; 4,2; 4,3;4,4;4,5;4,6; 4,7

    ;4,8;5,0;5,1; 5,2; 5,3; 5,6; 5,6;5,8

    Gọi x_{1};x_{2};....;x_{18} là mẫu số liệu gốc của 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong một ngày theo thứ tự không giảm.

    Trung vị Q_{2} = \frac{1}{2}\left( x_{9}
+ x_{10} \right) = \frac{1}{2}(4,6 + 4,7) = 4,65.

    Tứ phân vị thứ nhất của trung vị của nửa số liệu bên trái Q_{2}Q_{1} = 4,2.

    Tứ phân vị thứ nhất của trung vị của nửa số liệu bên phải Q_{2}Q_{3} = 5,2.

    Khoảng tứ phân vị của mẫu số liệu trên \Delta Q = Q_{3} - Q_{1} = 5,2 - 4,2 =
1.

    Số trung bình của mẫu số liệu trên do bác sĩ A điều trị bằng \overline{x} = \frac{1}{18}[2.3,8 + 4,0 + 4,1 + 4,2 + 4,3+ 4,4 + 4,5+ 4,6 + 4,7 + 4,8 + 5,0 + 5,1 + 5,2 + 5,3+ 2.5,6 + 5,8]= \frac{212}{45}

    Phương sai của mẫu số liệu trên do bác sĩ A điều trị bằng

    S^{2} = \frac{{x_{1}}^{2} + {x_{2}}^{2} +
{x_{3}}^{2} + .... + {x_{18}}^{2}}{18} - {\overline{x}}^{2} =
\frac{3023}{8100}.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ A điều trị bằng \sigma = \sqrt{S^{2}} = 0,61.

    Chọn ĐÚNG.

    (b) Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây:

    Chọn SAI.

    (c) Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58.

    Số trung bình của mẫu số liệu trên do bác sĩ A điều trị bằng \overline{x_{A}} = \frac{4.3,92 + 4.4,36 +
4.4,8 + 3.5,24 + 3.5,68}{18} = \frac{709}{150}

    Phương sai của mẫu số liệu trên do bác sĩ A điều trị bằng

    {S_{A}}^{2} = \frac{4.3,92^{2} +
4.4,36^{2} + 4.4,8^{2} + 3.5,24^{2} + 3.5,68^{2}}{18} - \left(
\frac{709}{150} \right)^{2} = \frac{2783}{7500}.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ A điều trị bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
0,609.

    Chọn SAI.

    (d) Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Số trung bình của mẫu số liệu trên do bác sĩ B điều trị bằng;

    \overline{x_{B}} = \frac{3.3,92 + 4.4,36 + 3.4,8 +
4.5,24 + 4.5,68}{18} = \frac{1091}{225}

    Phương sai của mẫu số liệu trên do bác sĩ B điều trị bằng

    {S_{B}}^{2} = \frac{3.3,92^{2} +
4.4,36^{2} + 3.4,8^{2} + 4.5,24^{2} + 4.5,68^{2}}{18} - \left(
\frac{1091}{225} \right)^{2} \approx 0,3848.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ B điều trị bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} = 0,62.

    \sigma_{A} < \sigma_{B} nên so sánh về độ lệch chuẩn thì chỉ số Cholesterol toàn phần bác sĩ A điều trị ít phân tán hơn bác sĩ B điều trị.

    Chọn ĐÚNG.

  • Câu 15: Thông hiểu
    Xác định nhận xét sai

    Bộ phận kiểm tra chất lượng sản phẩm dùng máy để đo (chính xác đến 0,001\ mm) độ dày của một chi tiết máy. Kết quả đo một số sản phẩm được thống kê trong bảng sau:

    A table with numbers and lettersDescription automatically generated

    Nhận xét nào sau đây sai?

    Hướng dẫn:

    Ta có cỡ mẫu n = 60.

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{3 \cdot 18,5 + 7
\cdot 19,5 + 23 \cdot 20,5 + 25 \cdot 21,5 + 2 \cdot 22,5}{60} =
\frac{623}{30} \approx 20,77.

    Phương sai của mẫu số liệu là

    S^{2} = \frac{1}{60}( 3 \cdot18,5^{2} + 7 \cdot 19,5^{2} + 23 \cdot 20,5^{2}+ 25 \cdot 21,5^{2} + 2\cdot 22,5^{2} ) - \left( \frac{623}{30} \right)^{2} =\frac{179}{225}.

    Độ lệch chuẩn của mẫu số liệu là S^{2} =
\sqrt{\frac{179}{225}} = \frac{\sqrt{179}}{15} \approx
0,89.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (47%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo