Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xét tính đúng sai của các nhận định

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    Đáp án là:

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    (a) Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên:

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}.

    Số trung bình của mẫu số liệu ngân hàngA bằng {\overline{x}}_{A} = \frac{1}{38}.\lbrack 6.1,5 +
7.2,5 + 9.3,5 + 10.4,5 + 5.5,5 + 1.6,5\rbrack =
\frac{137}{38}

    Phương sai của mẫu số liệu ngân hàngA bằng

    S_{A}^{2} = \frac{1}{38}.\lbrack
6.1,5^{2} + 7.2,5^{2} + 9.3,5^{2} + 10.4,5^{2} + 5.5,5^{2} +
1.6,5^{2}\rbrack - \left( \frac{137}{38} \right)^{2} =
\frac{661}{361}.

    Độ lệch chuẩn của mẫu số liệu ngân hàngA bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
\frac{\sqrt{661}}{19}.

    Chọn SAI.

    (c) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}.

    Số trung bình của mẫu số liệu ngân hàng B bằng{\overline{x}}_{B} = \frac{1}{38}.\lbrack 8.1,5 +
6.2,5 + 8.3,5 + 9.4,5 + 5.5,5 + 2.6,5\rbrack =
\frac{68}{19}

    Phương sai của mẫu số liệu ngân hàng B bằng

    S_{B}^{2} = \frac{1}{38}[8.1,5^{2} + 6.2,5^{2} + 8.3,5^{2} + 9.4,5^{2} + 5.5,5^{2}+2.6,5^{2}]- \left( \frac{68}{19} \right)^{2} =\frac{3221}{1444}.

    Độ lệch chuẩn của mẫu số liệu ngân hàng B bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} =
\sqrt{\frac{3221}{1444}}.

    Chọn SAI.

    (d) Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B

    \sigma_{A} < \sigma_{B} nên rủi ro của ngân hàng A thấp hơn rủi ro của ngân hàng B khi cho khách hàng vay nợ.

    Chọn SAI.

  • Câu 2: Nhận biết
    Xác định chiều cao trung bình

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 3: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Phương sai của mẫu số liệu ghép nhóm lớp 12A và lớp 12B lần lượt là

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Số trung bình của mẫu số liệu ghép nhóm lớp 12A:

    \overline{x_{A}} = \frac{6.6,5 + 10.7,5
+ 13.8,5 + 10.9,5 + 9.10,5}{50} = 8,54

    Phương sai của mẫu số liệu ghép nhóm lớp 12A là:

    {S_{A}}^{2} = \frac{1}{50}\left(
6.6,5^{2} + 10.7,5^{2} + 13.8,5^{2} + 10.9,5^{2} + 9.10,5^{2} ight) -
8,54^{2} = 1,7584

    Số trung bình của mẫu số liệu ghép nhóm lớp 12B:

    \overline{x_{B}} = \frac{4.6,5 + 12.7,5
+ 17.8,5 + 14.9,5 + 3.10,5}{50} = 8,5

    Phương sai của mẫu số liệu ghép nhóm lớp 12B là:

    {S_{B}}^{2} = \frac{1}{50}\left( 4.6,5^{2} +
12.7,5^{2} + 17.8,5^{2} + 14.9,5^{2} + 3.10,5^{2} ight) - 8,5^{2} =
1,08

  • Câu 4: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được thống kê ở bảng sau:

    Thời gian sử dụng

    \lbrack 7,2;7,4) \lbrack 7,4;7,6) \lbrack 7,6;7,8) \lbrack 7,8;8,0)

    Số máy

    2

    4

    7

    6

    Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Từ bảng thống kê ta có:

    Thời gian sử dụng

    \lbrack 7,2;7,4) \lbrack 7,4;7,6) \lbrack 7,6;7,8) \lbrack 7,8;8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy

    2

    4

    7

    6

    Tổng số máy: n = 2 + 4 + 7 + 6 =
19.

    Thời gian sử dụng trung bình của pin là:

    \overline{x} = \frac{2.7,3 + 4.7,5 + 7.7,7 +
6.7,9}{19} = \frac{1459}{190}

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{19}\left( 2.7,3^{2} +
4.7,5^{2} + 7.7,7^{2} + 6.7,9^{2} \right) - \left( \frac{1459}{190}
\right)^{2} \approx 0,037.

    Độ lệch chuẩn của mẫu số liệu là: S =
\sqrt{S^{2}} \approx \sqrt{0,037} \approx 0,192.

  • Câu 5: Nhận biết
    Chọn kết luận đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 25 thì có độ lệch chuẩn bằng

    Hướng dẫn:

    Ta có độ lệch chuẩn bằng căn bậc hai số học của phương sai nên s = 5.

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Đại lượng nào đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu?

    Hướng dẫn:

    Khoảng tứ phân vị dùng để đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.

  • Câu 7: Nhận biết
    Tính số trung bình của mẫu số liệu ghép nhóm

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 8: Thông hiểu
    Xác định phương sai của mẫu số liệu

    Cho mẫu số liệu ghép nhóm về chiều cao của 25 cây dừa giống như sau:

    Phương sai của mẫu số liệu trên:

    Hướng dẫn:

    Chiều cao trung bình của 25 cây dừa là:

    \overline{x} = \frac{4.5 + 6.15 + 7.25 +5.35 + 3.45}{25}= 23,8.

    Phương sai

    s^{2} = \frac{4.5^{2} + 6.15^{2} +
7.25^{2} + 5.35^{2} + 3.45^{2}}{25} - 23,8^{2} = 154,56.

  • Câu 9: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 \times 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    \lbrack 8;\ 10) \lbrack 10;\ 12) \lbrack 12;\ 14) \lbrack 14; 16) \lbrack 16;\ 18)
    Số lần

    4

    6

    8

    4

    3

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 25.

    Thời gian giải rubik (giây)

    \lbrack 8;\ 10) \lbrack 10;\ 12) \lbrack 12;\ 14) \lbrack 14; 16) \lbrack 16;\ 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{9.4 + 11.6 + 13.8 + 15.4 +
17.3}{25} = 12,68.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{25}(9^{2}.4 + 11^{2}.6
+ 13^{2}.8+ 15^{2}.4 + 17^{2}.3) - 12,68^{2} =
\frac{3736}{625}.

    + Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S = \sqrt{\frac{3736}{625}} \approx2,44.

  • Câu 10: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 11: Nhận biết
    Xét tính đúng sai của các nhậnđịnh

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    Đáp án là:

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    a) Đúng b) Đúng, c) Sai d) Sai.

    Số học sinh có điểm thi thấp hơn 60 là 4 + 6 =10.

    Giá trị đại diện của nhóm [70;80) là \frac{70 + 80}{2} = 75.

    Điểm thi trung bình môn tiếng anh của 32 học sinh bằng :

    \overline{x} = \frac{1}{32}.\lbrack 4.45
+ 6.55 + 10.65 + 6.75 + 4.85 + 2.95\rbrack = 66,875

    Phương sai là:

    s^{2} = \frac{4.(45 - 66,87)^{2} + 6.(55
- 66,87)^{2}}{32}+ \frac{10.(65 - 66,87)^{2} + 6.(75 -
66,87)^{2}}{32}

    + \frac{4.(85 - 66,87)^{2} + 2.(95 -
66,87)^{2}}{32} \approx 190,2344

    s = \sqrt{190,2344}

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các nhận định

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    Đáp án là:

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    a) Đúng. Ta có: Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là:

    {\overline{x}}_{1} = \frac{15 \cdot 12,5
+ 18 \cdot 17,5 + 10 \cdot 22,5 + 10 \cdot 27,5 + 5 \cdot 32,5 + 2 \cdot
37,5}{60}

    = \frac{62}{3} \approx 20,67

    Nên mệnh đề a) Đúng

    b) Đúng. Ta có:

    15 \cdot (12,5 - 20,67)^{2} + 18 \cdot
(17,5 - 20,67)^{2} + 10 \cdot (22,5 - 20,67)^{2} +

    + 10.(27,5 - 20,67)^{2} + 5.(32,5 -
20,67)^{2} + 2.(37,5 - 20,67)^{2} \approx 2948,33494

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} = \frac{2948,334}{60} \approx
49,1389.

    Nên mệnh đề b) Đúng

    c) Đúng. Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 2 là:

    {\overline{x}}_{2} = \frac{25 \cdot 12,5
+ 15 \cdot 17,5 + 7 \cdot 22,5 + 5 \cdot 27,5 + 5 \cdot 32,5 + 3 \cdot
37,5}{60}

    = \frac{1145}{60} \approx 19,08

    Ta có: 25 \cdot (12,5 - 19,08)^{2} + 15
\cdot (17,5 - 19,08)^{2} + 7 \cdot (22,5 - 19,08)^{2} +

    + 5.(27,5 - 19,08)^{2} + 5.(32,5 -
19,08)^{2} + 3.(37,5 - 19,08)^{2} \approx 3474,584.

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2}^{2} = \frac{3474,584}{60} \approx
57,9097.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx \sqrt{57,9097} \approx
7,61(triệu đồng)

    Nên mệnh đề c) Đúng

    d) Sai. Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 1 là:

    s_{1} \approx \sqrt{49,1389} \approx
7(triệu đồng)

    s_{1} \approx 7 < s_{2} \approx
7,61 nên công ty A có mức lương đồng đều hơn công ty B.

    Nên mệnh đề c) Sai

  • Câu 13: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 14: Vận dụng
    Xét tính đúng sai của các nhận định

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Đáp án là:

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Từ biểu đồ ta có bảng thống kê sau:

    (a) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực A:

    Cỡ mẫu là n_{1} = 2 + 4 + 7 + 5 +3 =21

    Số trung bình: {\overline{x}}_{1} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} =
\frac{255}{14}

    Phương sai:

    S_{1}^{2} = \frac{1}{21}\left( 2.7,5^{2}
+ 4.12,5^{2} + 7.17,5^{2} + 5.22,5^{2} + 3.27,5^{2} \right) - \left(
\frac{255}{14} \right)^{2} = \frac{5000}{147}

    S_{1} = \sqrt{\frac{5000}{147}} \approx
5,83

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực B:

    Cỡ mẫu là n_{2} = 5 + 4 + 6 + 2 + 4 =
21

    Số trung bình: \overline{x_{2}} =
\frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} =
\frac{695}{42}

    S_{2}^{2} = \frac{1}{21}\left( 5.7,5^{2}
+ 4.12,5^{2} + 6.17,5^{2} + 2.22,5^{2} + 4.27,5^{2} \right) - \left(
\frac{695}{42} \right)^{2} = \frac{21650}{441}

    S_{2} = \sqrt{\frac{21650}{441}} \approx
7,01

    Chọn ĐÚNG.

    (c) Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A.

    Số trung bình: \overline{x_{1}} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} = \frac{255}{14}
\approx 18,21

    Số trung bình: \overline{x_{2}} = \frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} = \frac{695}{42}\approx 16,55

    Về trung bình, đầu tư vào lĩnh vực A đem lại tiền lãi cao hơn lĩnh vực B.

    Chọn SAI.

    (d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.

    Ta có: S_{1} < S_{2}

    Vậy nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực B có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực A.

    Chọn SAI.

  • Câu 15: Thông hiểu
    Chọn đáp án thích hợp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Phương sai của mẫu số liệu ghép nhóm của lớp 12C:

    {S_{C}}^{2} = \frac{1}{18}\left(4.5,5^{2} + 5.6,5^{2} + 3.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -\left( \frac{65}{9} ight)^{2} = \frac{569}{324}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12C là: S_{C} = \sqrt{{S_{C}}^{2}} =\sqrt{\frac{569}{324}} \approx 1,33

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}

    Phương sai của mẫu số liệu ghép nhóm của lớp 12D:

    {S_{D}}^{2} = \frac{1}{15}\left(2.5,5^{2} + 5.6,5^{2} + 4.7,5^{2} + 3.8,5^{2} + 1.9,5^{2} ight) -\left( \frac{217}{30} ight)^{2} = \frac{284}{225}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12D là: S_{D} = \sqrt{{S_{D}}^{2}} =\sqrt{\frac{284}{225}} \approx 1,12

    Ta có: S_{C} > S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh lớp 12D có điểm đồng đều hơn lớp 12C.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (47%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo