Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính thời gian trung bình của mẫu số liệu

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Hướng dẫn:

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Hướng dẫn:

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 3: Nhận biết
    Tính số trung bình của mẫu số liệu ghép nhóm

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 4: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 \times 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Ta có:

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    _6

    8

    4

    3

    Số trung bình: \overline{x} = \frac{4.9 +
6.11 + 8.13 + 4.15 + 3.17}{25} = 12,68

    Phương sai:

    s^{2} = \lbrack 4.(9 - 12,68)^{2} +6.(11 - 12,68)^{2} + 8.(13 - 12,68)^{2}+ 4.(15 - 12,68)^{2} + 3.(17 -12,68)^{2}\rbrack.\frac{1}{25} \approx 5,98

  • Câu 5: Thông hiểu
    Tính độ lệch chuẩn

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng sau:

    Nhóm

    Tần số

    [40; 45)

    4

    [45; 50)

    14

    [50; 55)

    8

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Ta có:

    Nhóm

    Giá trị đại diện

    Tần số

    [40; 45)

    42,5

    4

    [45; 50)

    47,5

    14

    [50; 55)

    52,5

    8

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    2

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,6 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \lbrack 4.\left( 42,5 -
\frac{585}{11} ight)^{2} + 14.\left( 47,5 - \frac{585}{11} ight)^{2}
+ 8.\left( 52,5 - \frac{585}{11} ight)^{2}

    + 10.\left( 57,6 - \frac{585}{11}
ight)^{2} + 6.\left( 62,5 - \frac{585}{11} ight)^{2} + 2.\left( 67,5
- \frac{585}{11} ight)^{2}brack:44 \approx 46,12

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    s = \sqrt{s^{2}} = \sqrt{46,12} \approx
6,8

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng
    Xét tính đúng sai của các nhận định

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Đáp án là:

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Từ biểu đồ ta có bảng thống kê sau:

    (a) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực A:

    Cỡ mẫu là n_{1} = 2 + 4 + 7 + 5 +3 =21

    Số trung bình: {\overline{x}}_{1} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} =
\frac{255}{14}

    Phương sai:

    S_{1}^{2} = \frac{1}{21}\left( 2.7,5^{2}
+ 4.12,5^{2} + 7.17,5^{2} + 5.22,5^{2} + 3.27,5^{2} \right) - \left(
\frac{255}{14} \right)^{2} = \frac{5000}{147}

    S_{1} = \sqrt{\frac{5000}{147}} \approx
5,83

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực B:

    Cỡ mẫu là n_{2} = 5 + 4 + 6 + 2 + 4 =
21

    Số trung bình: \overline{x_{2}} =
\frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} =
\frac{695}{42}

    S_{2}^{2} = \frac{1}{21}\left( 5.7,5^{2}
+ 4.12,5^{2} + 6.17,5^{2} + 2.22,5^{2} + 4.27,5^{2} \right) - \left(
\frac{695}{42} \right)^{2} = \frac{21650}{441}

    S_{2} = \sqrt{\frac{21650}{441}} \approx
7,01

    Chọn ĐÚNG.

    (c) Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A.

    Số trung bình: \overline{x_{1}} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} = \frac{255}{14}
\approx 18,21

    Số trung bình: \overline{x_{2}} = \frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} = \frac{695}{42}\approx 16,55

    Về trung bình, đầu tư vào lĩnh vực A đem lại tiền lãi cao hơn lĩnh vực B.

    Chọn SAI.

    (d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.

    Ta có: S_{1} < S_{2}

    Vậy nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực B có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực A.

    Chọn SAI.

  • Câu 8: Nhận biết
    Xét tính đúng sai của các nhận định

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    Đáp án là:

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    a) Đúng, b) Đúng, c) Sai, d) Sai.

    Số lượng học sinh nam là : 6 + 10 + 13 +
9 + 7 = 45

    Thời gian ngủ trung bình của các bạn học sinh nam là :

    \overline{x} = \frac{1}{45}.\lbrack
6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5\rbrack =
\frac{587}{90}

    Phương sai của mẫu số liệu trên là

    s^{2} = \frac{1}{45}.[ 6.4,5^{2} +10.5,5^{2} + 13.6,5^{2}+ 9.7,5^{2} + 7.8,5^{2}] - \left(\frac{587}{90} \right)^{2} = 1,5773

    Độ lệch chuẩn là s =
\sqrt{1,5773}.

  • Câu 9: Vận dụng
    Xét tính đúng sai của các nhận định

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    Đáp án là:

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    a) Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng X sản xuất là R_{X} = 12 - 2 = 10

    Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng Y sản xuất là R_{Y} = 12 - 4 = 8

    R_{X} > R_{Y} nên tuổi thọ của máy chạy bộ do hãng X có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng Y sản xuất suy ra mệnh đề sai.

    b) Chọn giá trị đại diện cho các nhóm số liệu, ta có bảng thống kê sau:

    Tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất là

    {\overline{x}}_{X} = \frac{3.7 + 5.20 +
7.36 + 9.20 + 11.17}{100} = 7,4

    Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất là

    {\overline{x}}_{Y} = \frac{3.0 + 5.20 +
7.35 + 9.35 + 11.10}{100} = 7,7

    Như vậy, tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất suy ra mệnh đề đúng.

    c) Tính các tần số tích lũy của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất, ta có bảng thống kê sau:

    Ta có \frac{n_{X}}{4} = 257 < 25 < 27 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 25.

    Xét nhóm 2 là nhóm \lbrack 4;6)s = 4;h = 2;n_{2} = 20 và nhóm 1 là nhóm [2;4) có cf_{1} = 7.

    Ta có tứ phân vị thứ nhất là Q_{1} = 4 +
\left( \frac{25 - 7}{20} ight).2 = 5,8

    Ta có \frac{3n_{X}}{4} = 7563 < 75 < 83 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75.

    Xét nhóm 4 là nhóm \lbrack 8;10)s = 8;l = 2;n_{4} = 20 và nhóm 3 là nhóm \lbrack 6;8)cf_{3} = 63.

    Ta có tứ phân vị thứ ba là Q_{3} = 8 +
\left( \frac{75 - 63}{20} ight).2 = 9,2

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 3,4 suy ra mệnh đề sai.

    d) Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng X sản xuất là

    s_{X} = \sqrt{\frac{7.(3 - 7,4)^{2} +
20.(5 - 7,4)^{2} + 36.(7 - 7,4)^{2} + 20.(9 - 7,4)^{2} + 17(11 -
7,4)^{2}}{100}} \approx 2,3

    Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng Y sản xuất là

    s_{Y} = \sqrt{\frac{20.(5 - 7,7)^{2} +
35.(7 - 7,7)^{2} + 35(9 - 7,7)^{2} + 10(11 - 7,7)^{2}}{100}} \approx
1,82

    Vậy tuổi thọ máy chạy bộ do hãng Y sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng X sản xuất suy ra mệnh đề sai.

  • Câu 10: Thông hiểu
    Tính phương sai của mẫu số liệu đã cho

    Khảo sát thời gian tự học bài ở nhà của học sinh khối 9 ở trường X, ta thu được bảng sau:

    Thời gian(phút)

    \lbrack 0\ ;\ 30) \lbrack 30\ ;\ 60) \lbrack 60\ ;\ 90) \lbrack 90\ ;\ 120) \lbrack 120\ ;\ 150)

    Số học sinh

    9 10 9 15 7

    Phương sai của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Thời gian(phút)\lbrack 0\ ;\ 30)\lbrack 30\ ;\ 60)\lbrack 60\ ;\ 90)\lbrack 90\ ;\ 120)\lbrack 120\ ;\ 150)Giá trị đại diện154575105135Số học sinh9109157

    Thời gian(phút)

    \lbrack 0\ ;\ 30) \lbrack 30\ ;\ 60) \lbrack 60\ ;\ 90) \lbrack 90\ ;\ 120) \lbrack 120\ ;\ 150)

    Giá trị đại diện

     15 45  75  105  135 

    Số học sinh

    9 10 9 15 7

    Thời gian trung bình tự học ở nhà của các em học sinh đó là:

    \overline{x} = \frac{9.15 + 10.45 + 9.75
+ 15.105 + 7.135}{50} = 75,6(phút).

    Phương sai của mẫu số kiệu ghép nhóm là

    S^{2} = \frac{1}{50}\left( 9.15^{2} +
10.45^{2} + 9.75^{2} + 15.105^{2} + 7.135^{2} \right) - 75,6^{2} =
1601,64

  • Câu 11: Thông hiểu
    Xác định nhận xét sai

    Bộ phận kiểm tra chất lượng sản phẩm dùng máy để đo (chính xác đến 0,001\ mm) độ dày của một chi tiết máy. Kết quả đo một số sản phẩm được thống kê trong bảng sau:

    A table with numbers and lettersDescription automatically generated

    Nhận xét nào sau đây sai?

    Hướng dẫn:

    Ta có cỡ mẫu n = 60.

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{3 \cdot 18,5 + 7
\cdot 19,5 + 23 \cdot 20,5 + 25 \cdot 21,5 + 2 \cdot 22,5}{60} =
\frac{623}{30} \approx 20,77.

    Phương sai của mẫu số liệu là

    S^{2} = \frac{1}{60}( 3 \cdot18,5^{2} + 7 \cdot 19,5^{2} + 23 \cdot 20,5^{2}+ 25 \cdot 21,5^{2} + 2\cdot 22,5^{2} ) - \left( \frac{623}{30} \right)^{2} =\frac{179}{225}.

    Độ lệch chuẩn của mẫu số liệu là S^{2} =
\sqrt{\frac{179}{225}} = \frac{\sqrt{179}}{15} \approx
0,89.

  • Câu 12: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Phương sai của mẫu số liệu ghép nhóm lớp 12A và lớp 12B lần lượt là

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Số trung bình của mẫu số liệu ghép nhóm lớp 12A:

    \overline{x_{A}} = \frac{6.6,5 + 10.7,5
+ 13.8,5 + 10.9,5 + 9.10,5}{50} = 8,54

    Phương sai của mẫu số liệu ghép nhóm lớp 12A là:

    {S_{A}}^{2} = \frac{1}{50}\left(
6.6,5^{2} + 10.7,5^{2} + 13.8,5^{2} + 10.9,5^{2} + 9.10,5^{2} ight) -
8,54^{2} = 1,7584

    Số trung bình của mẫu số liệu ghép nhóm lớp 12B:

    \overline{x_{B}} = \frac{4.6,5 + 12.7,5
+ 17.8,5 + 14.9,5 + 3.10,5}{50} = 8,5

    Phương sai của mẫu số liệu ghép nhóm lớp 12B là:

    {S_{B}}^{2} = \frac{1}{50}\left( 4.6,5^{2} +
12.7,5^{2} + 17.8,5^{2} + 14.9,5^{2} + 3.10,5^{2} ight) - 8,5^{2} =
1,08

  • Câu 13: Nhận biết
    Chọn công thức đúng

    Xét mẫu số liệu ghép nhóm cho ở bảng dưới đây. Gọi \overline{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Độ lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm được tính bởi công thức:

    • s = \sqrt {\frac{{{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {n_m}{{\left( {{x_m} - \bar x} \right)}^2}}}{n}} .
  • Câu 14: Thông hiểu
    Xét tính đúng sai của các nhận định

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Phương sai của mẫu số liệu lớp 11A là: 133,44 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm). Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    Đáp án là:

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Phương sai của mẫu số liệu lớp 11A là: 133,44 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm). Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    (a) Phương sai của mẫu số liệu lớp 11A là: 133,44(làm tròn đến hàng phần trăm).

    Phương sai của mẫu số liệu lớp 11A là: 133,44(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của lớp 11A:

    Cỡ mẫu là n_{1} = 2 + 10 + 6 + 4 + 3 =
25

    Số trung bình: {\overline{x}}_{1} =
\frac{5,5.2 + 15,5.10 + 25,5.6 + 35,5.4 + 45,5.3}{25} =
23,9

    Phương sai:

    S_{1}^{2} = \frac{1}{25}\left( 2.5,5^{2}
+ 10.15,5^{2} + 6.25,5^{2} + 4.35,5^{2} + 3.45,5^{2} \right) - 23,9^{2}
= 133,44

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm).

    S_{1} = \sqrt{133,44} \approx
11,55

    Chọn SAI.

    (c) Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của lớp 11B:

    Cỡ mẫu là n_{2} = 3 + 8 + 10 + 2 + 4 =
27

    Số trung bình: {\overline{x}}_{2} =
\frac{5,5.3 + 15,5.8 + 25,5.10 + 35,5.2 + 45,5.4}{27} = \frac{648,5}{27}
\approx 24,02

    S_{2}^{2} = \frac{1}{27}\left( 3.5,5^{2}
+ 8.15,5^{2} + 10.25,5^{2} + 2.35,5^{2} + 4.45,5^{2} \right) - 24,02^{2}
\approx 138,47

    S_{2} \approx \sqrt{138,47} \approx
11,77

    Chọn SAI.

    (d) Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B.

    Ta có: S_{1} < S_{2}

    Nên nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B.

    Chọn ĐÚNG.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường (km)

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Biết phương sai của mẫu số liệu được tính theo công thức:

    S^{2} = \frac{1}{n}\left\lbrack
m_{1}x_{1}^{2} + m_{2}x_{2}^{2} + ... + m_{k}x_{k}^{2} \right\rbrack -
{\overline{x}}^{2}. Khi đó giá trị của phương sai là

    Hướng dẫn:

    Ta có bảng sau:

    Quãng đường (km)

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{20}\lbrack 3.(2,85)^{2}
+ 6.(3,15)^{2} + 5.(3,45)^{2}

    + 4.(3,75)^{2} + 2.(4,05)^{2}\rbrack -
(3,39)^{2} = 0,1314

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (47%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo