Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Tích phân (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính giá trị biểu thức

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

    Gợi ý:

     Sử dụng tích phân từng phần

    Hướng dẫn:

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 2: Vận dụng
    Tìm nguyên hàm của hàm số

    Cho F(x) = x^{2} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Hướng dẫn:

    Cách 1: Sử dụng tính chất của nguyên hàm

    \int_{}^{}{f(x)dx = F(x) \Rightarrow
F'(x) = f(x)}.

    Từ giả thiết, ta có:

    \int_{}^{}{f(x)}e^{2x}dx = F(x)
\Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2} ight)' = 2x
\Rightarrow f(x) = \frac{2x}{e^{2x}}

    Suy ra f'(x) = \frac{(2x)'.e^{2x}
- 2x.\left( e^{2x} ight)'}{\left( e^{2x} ight)^{2}} = \frac{(2 -
4x)e^{2x}}{\left( e^{2x} ight)^{2}} = \frac{2 -
4x}{e^{2x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx
=}\int_{}^{}{\frac{2 - 4x}{e^{2x}}.e^{2x}dx = (2 - 4x)dx = 2x - 2x^{2}}
+ C

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Nếu u, v là hai hàm số có đạo hàm liên tục trên K thì:

    \int_{}^{}{u(x)}v'(x)dx = u(x).v(x) -
\int_{}^{}{v(x).u'(x)}dx.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx} =
F(x) = x^{2} \Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2}
ight)' = 2x.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = 2x -
2x^{2} + C}.

  • Câu 3: Vận dụng
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

    Gợi ý:

     Sử dụng tích phân từng phần

    Hướng dẫn:

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 4: Thông hiểu
    Xác định hàm số f(x)

    Cho f'(x) = 2x - cos2x. Tìm f(x) biết f(0) = 0.

    Hướng dẫn:

    Ta có

    f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{(2x - cos2x)dx} = x^{2} - \frac{1}{2}sin2x + C.

    f(0) = 0 \Rightarrow C = 0. Vậy f(x) = x^{2} -
\frac{1}{2}sin2x.

  • Câu 5: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

  • Câu 6: Vận dụng
    Tìm họ nguyên hàm U

    Họ nguyên hàm của I =
\int_{}^{}{\frac{\ln\left( \cos x \right)}{sin^{2}x}dx} là:

    Hướng dẫn:

    Ta đặt:

    \left\{ \begin{matrix}u = \ln\left( \cos x \right) \\dv = \dfrac{dx}{sin^{2}x} \\\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}du = - \tan xdx \\v = - \cot x \\\end{matrix} \right..

    \Rightarrow I = - \cot x.ln\left( \cos x
\right) - \int_{}^{}{dx = - \cot x.ln\left( \cos x \right) - x +
C}.

  • Câu 7: Thông hiểu
    Chọn phương án đúng

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{\sin x} là:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{\frac{dx}{\sin x} =
\int_{}^{}{\frac{\sin x.dx}{1 - cos^{2}x} = \int_{}^{}\frac{- \sin
x.dx}{cos^{2}x - 1}}}

    = \int_{}^{}{\frac{d\left( \cos x\right)}{cos^{2}x - 1} = \dfrac{1}{2}\ln\left| \dfrac{\cos x - 1}{\cos x +1} \right| + C}

  • Câu 8: Vận dụng
    Tìm nguyên hàm của hàm số f(x)

    Nguyên hàm của hàm số f(x) = \frac{2x}{(1
- x)^{3}}?

    Hướng dẫn:

    Nhận thấy x = 1 là nghiệm bội ba của phương trình (x - 1)^{3} = 0, do đó ta biến đổi:

    \frac{2x}{(1 - x)^{3}} =
\frac{A}{1 - x} + \frac{B}{(1 - x)^{2}} + \frac{C}{(1 - x)^{3}}

    =\frac{A\left( x^{2} - 2x + 1 ight) + B(1 - x) + C}{(1 -
x)^{3}}

    = \frac{Ax^{2} + ( - 2A - B)x + A + B +
C}{(1 - x)^{3}}

    Từ đây ta có \left\{ \begin{matrix}
A = 0 \\
- 2A - B = 2 \\
A + B +C=0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 0 \\
B = -2 \\
C = 2 \\
\end{matrix} ight.

    Ta có \int_{}^{}{\frac{2x}{(1 - x)^{3}}dx
= \int_{}^{}\left( \frac{- 2}{(1 - x)^{2}} + \frac{2}{(1 - x)^{3}}
ight)dx }= \frac{2}{x - 1} - \frac{1}{(x - 1)^{2}} + C

  • Câu 9: Vận dụng
    Tính nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{x^{2} + x - 1}{\sqrt{x^{2} -
1}}.e^{x}

    Hướng dẫn:

    Ta có

    f(x) = \frac{x^{2} + x - 1}{\sqrt{x^{2} -
1}}.e^{x} = \frac{\left( x^{2} - 1 ight) + x}{\sqrt{x^{2} -
1}}.e^{x}

    = \left\lbrack \frac{x}{\sqrt{x^{2} - 1}}
+ \sqrt{x^{2} - 1} ightbrack e^{x}= \left\lbrack \left( \sqrt{x^{2}
- 1} ight)' + \sqrt{x^{2} - 1} ightbrack e^{x}

    \Rightarrow F(x) = \sqrt{x^{2} - 1}.e^{x}
+ C

  • Câu 10: Vận dụng cao
    Phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 11: Thông hiểu
    Tính giá trị biểu thức T

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Hướng dẫn:

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 12: Vận dụng cao
    Xác định khẳng định chính xác nhất

    Biết luôn có hai số a;b để F(x) = \frac{ax + b}{x + 4};(4a - b eq
0) là một nguyên hàm của hàm số f(x) và thỏa mãn 2f^{2}(x) = \left\lbrack F(x) - 1
ightbrack.f'(x). Khẳng định nào sau đây là đúng và đầy đủ nhất?

    Hướng dẫn:

    Do 4a - b eq 0 \Rightarrow F(x) eq
C;\forall x\mathbb{\in R}. Vì luôn có hai số a;b để F(x) =
\frac{ax + b}{x + 4};(4a - b eq 0) là một nguyên hàm của hàm số f(x) nên f(x) không phải là hàm hằng.

    Từ giả thiết 2f^{2}(x) = \left\lbrack
F(x) - 1 ightbrack.f'(x) \Leftrightarrow \frac{2f(x)}{F(x) - 1}
= \frac{f'(x)}{f(x)}

    Lấy nguyên hàm hai vế với vi phân dx ta được:

    \int_{}^{}{\frac{2f(x)}{F(x) - 1}dx} =\int_{}^{}{\frac{f'(x)}{f(x)}dx}\Leftrightarrow 2\ln\left| F(x) - 1ight| = \ln\left| f(x) ight| + C với C là hằng số.

    \Leftrightarrow 2ln\left| F(x) - 1
ight| + \ln e^{C} = \ln\left| f(x) ight|

    \Leftrightarrow \left| f(x) ight| =
e^{C}.\left\lbrack F(x) - 1 ightbrack^{2} = e^{C}.\left( \frac{(a -
1)x + b - 4}{x + 4} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\f(x) = - e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\\end{matrix} ight.

    TH1: f(x) = e^{C}.\left\lbrack \frac{(a -
1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} - 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} - 1}{e^{C}}
ight)

    TH2: f(x) = - e^{C}.\left\lbrack \frac{(a
- 1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    - e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\- e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} + 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} + 1}{e^{C}}
ight)

    Vậy khẳng định đúng và đầy đủ nhất là a =
1;b\mathbb{= R}\backslash\left\{ 4 ight\}.

  • Câu 13: Vận dụng
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm I = \int_{}^{}{(x -1)\sin2x.dx}

    Hướng dẫn:

    I = \int_{}^{}{(x -1)\sin2xdx}

    Đặt x - 1 = u \Rightarrow dx =
du.

    \sin2xdx = dv \Rightarrow v = -\dfrac{1}{2}.\cos2x

    Khi đó I = \frac{- (x - 1)}{2}.\cos2x +\frac{1}{2}\int_{}^{}{\cos2xdx}

    = \frac{(1 - x)\cos2x}{2} +\frac{1}{4}.\sin2x + C

  • Câu 14: Vận dụng
    Xác định nguyên hàm của hàm số

    Nguyên hàm của I =
\int_{}^{}{xsin^{2}x}dx là:

    Hướng dẫn:

    Ta biến đổi:

    I = \int_{}^{}{xsin^{2}x}dx =
\int_{}^{}{x\left( \frac{1 - cos2x}{2} \right)dx}

    = \frac{1}{2}\int_{}^{}{xdx -
\frac{1}{2}\int_{}^{}{xcos2x}}dx = \frac{1}{4}x^{2} -
\frac{1}{2}\underset{I_{1}}{\overset{\int_{}^{}{xcos2xdx}}{︸}} +
C_{1}

    \mathbf{I}_{\mathbf{1}}\mathbf{=}\int_{}^{}{\mathbf{x}\mathbf{cos2}\mathbf{xdx}}.

    Đặt\left\{ \begin{matrix}
u = x \\
dv = cos2x \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \frac{1}{2}sin2x \\
\end{matrix} \right..

    \Rightarrow I_{1} = \int_{}^{}{xcos2xdx}
= \frac{1}{2}xsin2x - \frac{1}{2}\int_{}^{}{sin2xdx =} \frac{1}{2}xsin2x + \frac{1}{4}cos2x +
C.

    \Rightarrow I = \frac{1}{4}\left( x^{2} -
\frac{1}{2}cos2x - xsin2x \right) + C = \frac{1}{8}\left( 2x^{2} - 2xsin2x - cos2x
\right) + C

    = - \frac{1}{8}cos2x + \frac{1}{4}\left(
x^{2} + xsin2x \right) + C.

  • Câu 15: Vận dụng
    Tính nguyên hàm của I

    Tìm nguyên hàm I = \int_{}^{}{x\ln(2x -
1)dx}.

    Hướng dẫn:

    Đặt u = \ln(2x - 1) \Rightarrow du =
\frac{2}{2x - 1}dx;dv = xdx \Rightarrow v = \frac{x^{2}}{2}

    Khi đó

    \int_{}^{}{x\ln(2x - 1)dx} =\frac{x^{2}}{2}.\ln(2x - 1) - \int_{}^{}{\frac{x^{2}}{2}.\frac{2}{2x -
1}}dx

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\frac{x^{2}}{2x - 1}dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\left( \frac{x}{2} + \frac{1}{4} + \frac{1}{4(2x - 1)}
ight)dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| - \left(
\frac{x^{2}}{4} + \frac{x}{4} + \frac{1}{8}.\ln\left| (2x - 1) ight|
ight) + C

    = \frac{4x^{2} - 1}{8}.\ln|2x - 1| -
\frac{x(x + 1)}{4} + C

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Theo phương pháp đổi biến số (x
\rightarrow t), nguyên hàm của I =
\int_{}^{}\frac{2sinx + 2cosx}{\sqrt[3]{1 - sin2x}}dx là:

    Hướng dẫn:

    Ta có:

    I = \int_{}^{}\frac{2sinx +
2cosx}{\sqrt[3]{1 - sin2x}}dx = \int_{}^{}\frac{2\left( \sin x + \cos x
\right)}{\sqrt[3]{\left( \sin x - \cos x \right)^{2}}}dx.

    Đặt t = \sin x - \cos x \Rightarrow dt =
\left( \sin x + \cos x \right)dx.

    \Rightarrow I =
\int_{}^{}\frac{2}{\sqrt[3]{t^{2}}}dt = 2.\frac{1}{1 + \left( -
\frac{2}{3} \right)}t^{\frac{1}{3}} + C = 6\sqrt[3]{t} + C.

  • Câu 17: Vận dụng
    Tính tổng các nghiệm của phương trình

    Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{x}{{\sqrt {8 - {x^2}} }} thỏa mãn F(2) = 0 

    Hướng dẫn:

    \begin{matrix}  F\left( x ight) = \int {f\left( x ight)dx}  \hfill \\   = \int {\dfrac{x}{{\sqrt {8 - {x^2}} }}dx}  = \dfrac{1}{2}\int {d\frac{x}{{\sqrt {8 - {x^2}} }}d\left( {8 - {x^2}} ight)}  \hfill \\   \Rightarrow F\left( x ight) =  - \sqrt {8 - {x^2}}  + C \hfill \\ \end{matrix}

    Ta có: F(2) = 0 => C = 2

    => F\left( x ight) =  - \sqrt {8 - {x^2}}  + 2

    Xét phương trình F(x) = x ta có:

    \begin{matrix}  F\left( x ight) = x \hfill \\   \Leftrightarrow  - \sqrt {8 - {x^2}}  + 2 = x \hfill \\   \Leftrightarrow \sqrt {8 - {x^2}}  = 2 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2 - x \geqslant 0} \\   {8 - {x^2} = {{\left( {2 - x} ight)}^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {{x^2} - 2x + 2 = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {x = 1 \pm \sqrt 3 } \end{array}} ight. \Leftrightarrow x = 1 - \sqrt 3  \hfill \\ \end{matrix}

    Vậy tổng các nghiệm của phương trình đã cho bằng x = 1 - \sqrt 3

  • Câu 18: Thông hiểu
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
x\sqrt{x}.

    Hướng dẫn:

    Ta có:

    \int_{}^{}{x\sqrt{x}dx =
\int_{}^{}{x^{\frac{3}{2}}dx = \frac{2}{5}x^{\frac{5}{2}} + C =
\frac{2}{5}x^{2}\sqrt{x} + C}}.

  • Câu 19: Vận dụng
    Tính giá trị biểu thức

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Hướng dẫn:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 20: Thông hiểu
    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left(
5x^{2} + 13x + 9 \right)e^{x}

    Hướng dẫn:

    Ta có f(x) = \left( 10x + 3 + 5x^{2} + 3x
+ 6 ight)e^{x}= \left\lbrack \left( 5x^{2} + 3x + 6 ight)' +
5x^{2} + 3x + 6 ightbrack e^{x}

    Từ bảng nhận dạng nguyên hàm phía trên \Rightarrow F(x) = \left( 5x^{2} + 3x + 6
ight)e^{x} + C là nguyên hàm của hàm số đã cho.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo