Cho là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Cho là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Tìm nguyên hàm
Đặt .
Khi đó
Trong các khẳng định sau khẳng định nào đúng.
Ta có:
Khi đó:
Cho hàm số f(x) xác định trên thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho hàm số thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Cho hàm số xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Cho hàm số thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Một nguyên hàm của là :
Ta có:
Đặt:
Khi đó:
Tìm nguyên hàm của hàm số .
Ta có
Cho hàm số là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Tìm nguyên hàm .
Đặt ;
Lúc này ta có
Tìm nguyên hàm của hàm số ?
Ta có:
Xét từng đáp án ta thấy:
.
Vậy nguyên hàm của hàm số là:
Cho hàm số y = f(x) xác định trên thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Gọi F(x) là một nguyên hàm của hàm số , F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Biến đổi
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Tìm nguyên hàm của hàm số
Ta có:
(Áp dụng công thức )
Nguyên hàm của là:
Ta biến đổi:
.
Đặt.
.
.
Nguyên hàm của hàm số ?
Nhận thấy là nghiệm bội ba của phương trình
, do đó ta biến đổi:
Từ đây ta có
Ta có
Họ nguyên hàm của hàm số là
Phân tích
Ta có:
Khi đó , đồng nhất hệ số thì ta được
Giải chi tiết
Ta có
Đáp số bài tập kiểm tra khả năng vận dụng:
Biết là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Cách 1: Sử dụng tính chất của nguyên hàm
.
Từ giả thiết, ta có:
Suy ra .
Vậy
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Nếu u, v là hai hàm số có đạo hàm liên tục trên K thì:
.
Ta có
Từ giả thiết: .
Vậy .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: