Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Định phương trình tổng quát của mặt phẳng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -
6x - 4y - 4z - 12 = 0. Viết phương trình tổng quát của mặt phẳng đối xứng (P) của (S) vuông góc với đường kính qua gốc O.

    Hướng dẫn:

    Pháp vecto của (P):\overrightarrow{n} =
\overrightarrow{OI} = (3,2,2).(P) qua I(3 , 2,2)

    \Rightarrow (P):3(x - 3) + 2(y - 2) +
2(z - 2) = 0

    \Rightarrow (P):3x + 2y + 2z - 17 =
0

  • Câu 2: Thông hiểu
    Tính tọa độ tâm H của đường tròn

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} +
4x - 2y + 6z - 2 = 0 và mặt phẳng (P):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P)(S). Tính tọa độ tâm H của (C).

    Hướng dẫn:

    (S) có tâm I\left( { - 2,1, - 3} \right); pháp vecto của (P) : \overrightarrow n  = \left( {3,2,6} \right)

    \begin{matrix}
  IH \bot \left( P \right) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t \hfill \\
  H \in \left( P \right) \Rightarrow 3\left( { - 2 + 3t} \right) + 2\left( {1 + 2t} \right) + 6\left( { - 3 + 6t} \right) + 1 = 0 \Leftrightarrow t = \frac{3}{7} \hfill \\
   \Rightarrow H\left( { - \frac{5}{7},\frac{{13}}{7}, - \frac{3}{7}} \right) \hfill \\ 
\end{matrix}

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Điều kiện để (S):x^{2} + y^{2} + z^{2} +
Ax + By + Cz + D = 0 là một mặt cầu là:

    Hướng dẫn:

    (S):x^{2} + y^{2} + z^{2} + Ax + By + Cz
+ D = 0 có dạng:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0

    \Rightarrow a = - \frac{A}{2};\ \ b = -
\frac{B}{2};\ \ c = - \frac{C}{2};\ \ d = D

    (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d > 0
\Leftrightarrow A^{2} + B^{2} + C^{2} - 4D > 0

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, mặt cầu có tâm I(1;1;1) và có diện tích bằng 4\pi có phương trình là:

    Hướng dẫn:

    Ta có: S = 4\pi R^{2} = 4\pi \Rightarrow
R = 1

    Vậy mặt cầu tâm I(1;1;1) có bán kính R = 1 có phương trình:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 5: Vận dụng
    Viết phương trình mặt cầu

    Cho hai mặt phẳng (P), (Q) có phương trình (P):x - 2y + z - 1 = 0(Q):2x + y - z + 3 = 0. Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng (Oxy) và có hoành độ x_{M} = 1, có phương trình là:

    Hướng dẫn:

    M \in (Oxy) và có hoành độ bằng 1 nên M(1;y;0).

    Lại có, mặt cầu tiếp xúc với mặt phẳng (Q) nên M \in
(Q) \Rightarrow M(1; -
5;0).

    Gọi I(a;b;c) là tâm của mặt cầu (S) cần tìm.

    Ta có (S) tiếp xúc với mp (Q) tại M nên IM\bot(Q).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n} = (2;1; -
1).

    Ta có: IM\bot(Q)\Leftrightarrow
\overrightarrow{MI} = t\overrightarrow{n},\ \left( t\mathbb{\in R}
\right) \Leftrightarrow \left\{ \begin{matrix}
a = 1 + 2t \\
b = -5 + t \\
c = - t \\
\end{matrix} \right.

    I \in (P) \Leftrightarrow 1 + 2t - 2( - 5
+ t) - t - 1 = 0 \Leftrightarrow t = 10 \Rightarrow I(21;5; -
10).

    Bán kính mặt cầu R = d\left( I;(Q)
\right) = 10\sqrt{6}.

    Vậy phương trình mặt cầu (S):(x - 21)^{2}+ (y - 5)^{2} + (z + 10)^{2} = 600.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(1;1; - 2) đường thẳng d:\frac{x + 1}{1} = \frac{y - 3}{2} =
\frac{z - 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho \widehat{IAB} = 30^{o} là:

    Hướng dẫn:

    Đường thẳng d đi qua M( - 1;\ 3;2) và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1) .

    Gọi H là hình chiếu của I trên

    Ta có: IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18} .

    \Rightarrow R = IA =
2\sqrt{18} .

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y - 1)^{2} + (z + 2)^{2} = 72.

  • Câu 7: Thông hiểu
    Xác định phương trình mặt cầu

    Phương trình mặt cầu có tâm I(3;6; -
4) và cắt trục Oz tại hai điểm A, B sao cho diện tích tam giác IAB bằng 6\sqrt{5} là:

    Hướng dẫn:

    Gọi H là hình chiếu của I(3;6; -
4) trên Oz

    \Rightarrow H(0;0; - 4) \Rightarrow IH =
d(I;Ox) = \sqrt{45}

    S_{\Delta AIB} = \frac{IH.AB}{2}
\Rightarrow AB = \frac{2S_{\Delta AIB}}{IH} = 4

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 49

    Vậy phương trình mặt cầu là: (x - 3)^{2}
+ (y - 6)^{2} + (z + 4)^{2} = 49.

  • Câu 8: Vận dụng
    Chọn phương án thích hợp

    Viết phương trình mặt cầu (S) qua ba điểm A(2,0,1);\ \ \ B(1,3,2);\ \ \ C(3,2,0) có tâm nằm trong mặt phẳng (xOy)

    Hướng dẫn:

    Ta có:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by + d
= 0 vì tâm I \in (xOy) \Rightarrow c = 0

    A,\ B,\ C \in (S)\Rightarrow \left\{
\begin{matrix}
4a - d = 5 \\
2a + 6b - d = 14 \\
6a + 4b - d = 13 \\
\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}
2a - 6b = - 9 \\
2a + 4b = 8 \\
\end{matrix} \right.

    \Rightarrow a = \frac{3}{5};\ \ b =
\frac{17}{10};\ \ c = 0;\ \ d = - \frac{13}{5}

    \Rightarrow (S):x^{2} + y^{2} + z^{2} -
\frac{6x}{5} - \frac{17y}{5} - \frac{13}{5} = 0

  • Câu 9: Nhận biết
    Tính bán kính mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.( - 1)x - 2.0.y - 2.1z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
c = 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I( - 1;0;1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{( - 1)^{2} + 0^{2} + 1^{2} - 7} = 3

  • Câu 10: Nhận biết
    Chọn câu đúng

    Cho đường tròn (C) đường kính AB và đường thẳng \triangle. Để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu thì cần có thêm điều kiện nào sau đây:

    Hướng dẫn:

    Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu là trục quay \triangle phải cố định và hai điểm A, B cũng cố định trên \triangle.

  • Câu 11: Vận dụng
    Tính bán kính đường tròn

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 12: Thông hiểu
    Chọn phương án đúng

    Cho mặt cầu (S): (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
9. Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):

    Hướng dẫn:

    Mặt cầu (S) tâm I(1;2;3), bán kính R = 3.

    Do mặt cầu (S') đối xứng với (S) qua mặt phẳng (Oxy) nên tâm I' của (S') đối xứng với I qua (Oxy), bán kính R' =R=3.

    Ta có: I'(1;2; - 3).

    Vậy (S):(x - 1)^{2} + (y - 2)^{2} + (z +
3)^{2} = 9.

    Lưu ý: Để ý thấy rằng trung điểm II' thuộc mặt phẳng (Oxy) \overrightarrow{II'}\bot(Oxy). Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ I' nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.

  • Câu 13: Thông hiểu
    Tìm bán kính đường tròn

    Trong không gian Oxyz, cho mặt phẳng (P):2x + 2y + z - 2 = 0 và mặt cầu (S) tâm I(2;1; - 1) bán kính R = 2. Bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S) là:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S)r

    Ta có:

    h = d\left( I;(P) ight) = \frac{\left|
2.2 + 2.( - 1) - 1 - 2 ight|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
1

    Suy ra r = \sqrt{2^{2} - 1^{2}} =
\sqrt{3}

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các khẳng định dưới đây

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên trục là kilomet), một trạm thu phát sóng điện thoại di động (hình vẽ dưới đây) được đặt ở vị trí I( - 4;\ 2;\ 5). Biết rằng trạm phát sóng được thiết kế với bán kính phủ sóng là 4 km.

    a) Phương trình mặt cầu mô tả ranh giới bên ngoài của vùng phủ sóng là:

    (x + 4)^{2} + (y - 2)^{2} + (z - 5)^{2} =
16. Đúng||Sai

    b) Điểm A(3;\ 5;\  - 6) nằm phía trong mặt cầu đó.Sai||Đúng

    c) Nếu người dùng đứng ở vị trí điểm B( -2; 3; 0) thì không thể sử dụng dịch vụ của trạm phát sóng này. Đúng||Sai

    d) Nếu người dùng đứng ở vị trí điểm M( -
4;\ 6;\ 2) thì quãng đường ngắn nhất người đó phải di chuyển để đến được vị trí có thể sử dụng dịch vụ của trạm phát sóng là 1 km. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên trục là kilomet), một trạm thu phát sóng điện thoại di động (hình vẽ dưới đây) được đặt ở vị trí I( - 4;\ 2;\ 5). Biết rằng trạm phát sóng được thiết kế với bán kính phủ sóng là 4 km.

    a) Phương trình mặt cầu mô tả ranh giới bên ngoài của vùng phủ sóng là:

    (x + 4)^{2} + (y - 2)^{2} + (z - 5)^{2} =
16. Đúng||Sai

    b) Điểm A(3;\ 5;\  - 6) nằm phía trong mặt cầu đó.Sai||Đúng

    c) Nếu người dùng đứng ở vị trí điểm B( -2; 3; 0) thì không thể sử dụng dịch vụ của trạm phát sóng này. Đúng||Sai

    d) Nếu người dùng đứng ở vị trí điểm M( -
4;\ 6;\ 2) thì quãng đường ngắn nhất người đó phải di chuyển để đến được vị trí có thể sử dụng dịch vụ của trạm phát sóng là 1 km. Đúng||Sai

    a) Đúng

    Mặt cầu tâm I( - 4;\ 2;\ 5) , bán kính R = 4 có phương trình là:

    (x + 4)^{2} + (y - 2)^{2} + (z - 5)^{2}
= 16

    b) Sai

    Ta có: IA = \sqrt{7^{2} + 3^{2} + ( -
11)^{2}} = \sqrt{179} > R .

    Vậy điểm A nằm phía ngoài mặt cầu đó.

    c) Đúng

    Ta có: IB = \sqrt{2^{2} + 1^{2} + ( -
5)^{2}} = \sqrt{30} > R , từ đó suy ra nếu người dùng đứng ở vị trí điểm B( - 2;\ 3;\ 0) thì không thể sử dụng dịch vụ của trạm phát sóng này.

    d) Đúng

    Với điểm M( - 4;\ 6;\ 2) ta có: IM = \sqrt{0^{2} + 4^{2} + ( - 3)^{2}} = 5
> R

    Quãng đường ngắn nhất mà người đứng ở điểm M( - 4;\ 6;\ 2) phải di chuyển để đến được vùng phủ sóng là đoạn thẳng MH , với H là giao điểm của đoạn thẳng MI với mặt cầu.

    Khi đó, MH = MI - R = 5 - 4 =
1 km.

  • Câu 15: Vận dụng
    Viết phương trình mặt cầu (S’)

    Cho mặt cầu (S):\ \ x^{2} + y^{2} + z^{2}
+ 2x - 2y + 6z - 5 = 0 và mặt phẳng (P):\ x - 2y + 2z + 3 = 0. Viết phương trình mặt cầu (S’) có bán kính nhỏ nhất chứa giao tuyến (C) của (S) và (P).

    Hướng dẫn:

    Ta có:

    (S'):x^{2} + y^{2} + z^{2} + 2x - 2y+ 6z - 5 + m(x - 2y + 2z + 3) = 0

    \Leftrightarrow (S'):x^{2} + y^{2} +
z^{2} +(m + 2)x - 2(m + 1)y + 2(m + 3)z + 3m - 5 = 0

    (S') có bán kính nhỏ nhất \Leftrightarrow Tâm H\left( - \frac{m + 2}{2},m + 1, - m - 3 \right)
\in (P)

    \Leftrightarrow - \frac{m + 2}{2} - 2(m +
1) + 2( - m - 3) + 3 = 0 \Leftrightarrow m = - \frac{4}{3}

    Vậy (S'):x^{2} + y^{2} + = z^{2} +
\frac{2}{3}x + \frac{2}{3}y + \frac{10}{3}z - 9 = 0

  • Câu 16: Nhận biết
    Tìm tọa độ tâm mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y + 1)^{2} + (z -
1)^{2} = 2 có tọa độ tâm I là:

    Hướng dẫn:

    Tâm của (S) có tọa độ là I( - 3; - 1;1).

  • Câu 17: Thông hiểu
    Định tập hợp tâm I của mặt cầu (S) theo yêu cầu

    Tìm tập hợp các tâm I của mặt cầu (S) có bán kính thay đổi tiếp xúc với hai mặt phẳng (P):2x - y - 2z + 1 = 0;(Q):\ 3x + 2y - 6z + 5 = 0.

    Hướng dẫn:

    Tâm I(x,y,z) cách đều (P) và (Q) \Rightarrow d(I, P)=d(I, Q)

    \Rightarrow \frac{|2x - y - 2z + 1|}{3} =
\frac{|3x + 2y - 6z + 5|}{7}

    \Rightarrow Hai mặt phẳng: 5x - 13y + 4z - 8 = 0;23x - y - 32z + 22 =
0

  • Câu 18: Thông hiểu
    Tính diện tích mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Phương trình mặt cầu nào dưới đây có tâm I(2;1;3) và tiếp xúc với mặt phẳng (P):x + 2y + 2z + 2 = 0?

    Hướng dẫn:

    Do mặt cầu S(I;R) tiếp xúc với mặt phẳng (P) \Leftrightarrow d\left( I;(P)
\right) = R \Leftrightarrow R = 4 .

    \Rightarrow (S) : (x - 2)^{2} + (y - 1)^{2} + (z - 3)^{2} =
16.

  • Câu 20: Thông hiểu
    Định phương trình mặt cầu (S)

    Cho điểm I(1;1; - 2) đường thẳng d:\frac{x + 1}{1} = \frac{y - 3}{2} =
\frac{z - 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

    Hướng dẫn:

    Đường thẳng d đi qua M( - 1;\ 3;2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên d.

    Ta có : IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18}.

    \Rightarrow IH = R.\frac{\sqrt{3}}{2}
\Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{6}.

    Vậy phương trình mặt cầu là : (x - 1)^{2}
+ (y - 1)^{2} + (z + 2)^{2} = 24.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo