Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án thích hợp

    Hai mặt cầu (S):x^{2} + y^{2} + z^{2} -
4x + 6y - 10z - 11 = 0;

    \left( {S'} \right):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0:

    Hướng dẫn:

    Ta có:

    (S):a = 2;\ \ b = - 3;\ \ c = 5;\ \ d = -
11 \Rightarrow Tâm I(2, -
3,5); bán kinh R = 7

    (S') = a' = 1;\ \ b' = - 1;\
c' = 3;\ \ d' = - 5 \Rightarrow Tâm J(1, - 1,3), bán kính R' =4

    IJ^{2} = (1 - 2)^{2} + ( - 1 + 3)^{2} +(3 - 5)^{2} = 9\Rightarrow IJ = 3 = R - R'

    (S)(S') tiếp xúc trong

  • Câu 2: Thông hiểu
    Tìm mặt cầu ngoại tiếp tứ diện

    Cho ba điểm A(6; - 2;3), B(0;1;6), C(2;0; - 1), D(4;1;0). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By -
2Cz + D = 0, ta có:

    \left\{ \begin{matrix}
A(6; - 2;3) \in (S) \\
B(0;1;6) \in (S) \\
C(2;0; - 1) \in (S) \\
D(4;1;0) \in (S) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
49 - 12A + 4B - 6C + D = 0(1) \\
37 - 2B - 12C + D = 0(2) \\
5 - 4A + 2C + D = 0(3) \\
17 - 8A - 2B + D = 0(4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); (3) - (4)ta được hệ:

    \left\{ \begin{matrix}
- 12A + 6B + 6C = - 12 \\
4A - 2B - 14C = - 32 \\
4A + 2B + 2C = 12 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
A = 2 \\
B = - 1 \Rightarrow \\
C = 3 \\
\end{matrix} \right.\ D = - 3

    Vậy phương trình măt cầu là: x^{2} +
y^{2} + z^{2} - 4x + 2y - 6z - 3 = 0 .

    Lưu ý : Ở bài này máy tính Casio giúp chúng ta giải nhanh chóng hệ phương trình bậc nhất ba ấn được tạo ra để tìm các hệ số của phương trình mặt cầu tổng quát. (Ta cũng có thể dùng máy tính cầm tay thay trực tiếp tọa độ các điểm vào từng đáp án và tìm ra đáp án đúng)

  • Câu 3: Vận dụng
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho điểm A(0; 1; 2), mặt phẳng (α): x−y +z −4 = 0 và mặt cầu (S):(x - 3)^{2} + (y - 1)^{2} + (z - 2)^{2} =
16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox

    Hướng dẫn:

    Gọi (C) là giao tuyến của mặt phẳng (P) và mặt cầu (S) và (C) có tâm H, bán kính r.

    Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi d(I,(P)) lớn nhất.

    M ∈ x'Ox nên gọi M(m; 0; 0).

    Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).

    Khi đó \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{MA};\overrightarrow{n_{(\alpha)}}
ightbrack = (3;2 + m;m - 1)

    Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:

    3(x − 0) + (2 + m)(y − 2) + (m − 1)(z − 2) = 0 hay 3x + (2 + m)y + (m − 1)z −3m=0

    Ta có:

    d\left( I;(P) ight) =
\frac{9}{\sqrt{2m^{2} + 2m + 14}} lớn nhất khi và chỉ khi 2m^{2} + 2m + 14 đạt giá trị nhỏ nhất

    2m^{2} + 2m + 14 = 2\left( m +
\frac{1}{2} ight)^{2} + \frac{27}{2} \geq \frac{27}{2}

    Do đó 2m^{2} + 2m + 14 nhỏ nhất khi và chỉ khi m = -
\frac{1}{2}

    Vậy M\left( - \frac{1}{2};0;0
ight).

  • Câu 4: Thông hiểu
    Viết phương trình mặt cầu

    Phương trình mặt cầu có tâm I\left( -
\sqrt{6}; - \sqrt{3};\sqrt{2} - 1 \right) và tiếp xúc trục Oz là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
- \sqrt{6}; - \sqrt{3};\sqrt{2} - 1 \right) trên Oz

    \Rightarrow H\left( 0;0;\sqrt{2}
- 1 \right) \Rightarrow R = IH = 3.

    Vậy phương trình mặt cầu là: \left( x +
\sqrt{6} \right)^{2} + \left( y + \sqrt{3} \right)^{2} + \left( z -
\sqrt{2} + 1 \right)^{2} = 9.

  • Câu 5: Thông hiểu
    Chọn phương án thích hợp

    Hai mặt cầu (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0(S):x^{2}
+ y^{2} + z^{2} - 2a'x - 2b'y - 2c'z + d' = 0, cắt nhau theo đường tròn có phương trình: (Có thể chọn nhiều đáp án)

    Hướng dẫn:

    Đáp án cần tìm là:

    \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0 \\
2(a - a')x + 2(b - b')y + 2(c - c')z + d' - d = 0 \\
\end{matrix} \right.\left\{
\begin{matrix}
x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0 \\
2(a - a')x + 2(b - b')y + 2(c - c')z + d - d' = 0 \\
\end{matrix} \right.

  • Câu 6: Thông hiểu
    Xác định phương trình mặt cầu

    Cho điểm I(1;0;0)và đường thẳng d:\frac{x - 1}{1} = \frac{y - 1}{2} =
\frac{z + 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 4 là:

    Hướng dẫn:

    Đường thẳng(d)đi qua M(1;\ 1; - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên (d).

    Ta có:IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 9.

    Vậy phương trình mặt cầu: (x - 1)^{2} +
y^{2} + z^{2} = 9.

  • Câu 7: Thông hiểu
    Tính tọa độ tâm H của đường tròn

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} +
4x - 2y + 6z - 2 = 0 và mặt phẳng (P):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P)(S). Tính tọa độ tâm H của (C).

    Hướng dẫn:

    (S) có tâm I\left( { - 2,1, - 3} \right); pháp vecto của (P) : \overrightarrow n  = \left( {3,2,6} \right)

    \begin{matrix}
  IH \bot \left( P \right) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t \hfill \\
  H \in \left( P \right) \Rightarrow 3\left( { - 2 + 3t} \right) + 2\left( {1 + 2t} \right) + 6\left( { - 3 + 6t} \right) + 1 = 0 \Leftrightarrow t = \frac{3}{7} \hfill \\
   \Rightarrow H\left( { - \frac{5}{7},\frac{{13}}{7}, - \frac{3}{7}} \right) \hfill \\ 
\end{matrix}

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz)?

    Hướng dẫn:

    Gọi I là tâm đường tròn nội tiếp tam giác OMN

    Ta áp dụng tính chất sau: “Cho tam giác OMN với I là tâm đường tròn nội tiếp, khi đó ta có: a.\overrightarrow{IO} +
b.\overrightarrow{IM} + c.\overrightarrow{IN} =
\overrightarrow{0} với a = MN,b =
ON,c = OM

    Ta có: \left\{ \begin{matrix}OM = \sqrt{2^{2} + 2^{2} + 2^{2}} = 3 \\ON = \sqrt{\left( - \dfrac{8}{3} ight)^{2} + \left( \dfrac{4}{3}ight)^{2} + \left( \dfrac{8}{3} ight)^{2}} = 4 \\MN = \sqrt{\left( - \dfrac{8}{3} - 2 ight)^{2} + \left( \dfrac{4}{3} - 2ight)^{2} + \left( \dfrac{8}{3} - 1 ight)^{2}} = 5 \\\end{matrix} ight.

    Khi đó:

    5.\overrightarrow{IO} +
4.\overrightarrow{IM} + 3.\overrightarrow{IN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{5.0 + 4.2 + 3.\left( - \dfrac{8}{3} ight)}{3 + 4 + 5} = 0\\y_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{4}{3} ight)}{3 + 4 + 5} = 1\\z_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{8}{3} ight)}{3 + 4 + 5} = 1\\\end{matrix} ight.

    Mặt phẳng (Oxz) có phương trình y = 0

    Mặt cầu tiếp xúc với mặt phẳng (Oxz) nên mặt cầu có bán kính R = d\left( I;(Oxz) ight) = 1

    Vậy phương trình mặt cầu cần tìm là: x^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?

    Hướng dẫn:

    Mặt cầu tâm O(0;0;0) và bán kính R = 3 có phương trình: (S):x^{2} +
y^{2} + z^{2} = 9.

  • Câu 10: Thông hiểu
    Tìm tham số để mặt cong là mặt cầu

    Giá trị \alpha phải thỏa mãn điều kiện nào để mặt cong là mặt cầu: (S):x^{2} + y^{2} + z^{2} + 2\left( 3 -
cos^{2}\alpha \right)x+ 4\left( sin^{2}\alpha - 1 \right) + 2z +
cos4\alpha + 8 = 0?

    Hướng dẫn:

    Ta có: a = 2cos^{2}\alpha - 3 =
cos2\alpha - 2;b = 2\left( 1 - sin^{2}\alpha \right) = cos2\alpha +
1;c = - 1;

    d = cos4\alpha + 8 = 2cos^{2}2\alpha +
7.\ \ (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d >
0

    \begin{matrix}
   \Leftrightarrow  - 1 + \cos 2\alpha  <  - \frac{1}{2} \Leftrightarrow \frac{{2\pi }}{3} + k2\pi  < 2\alpha  < \frac{{4\pi }}{3} + k2\pi  \hfill \\
   \Leftrightarrow \frac{\pi }{3} + k\pi  < \alpha  < \frac{{2\pi }}{3} + k\pi ,\,\,k \in \mathbb{Z} \hfill \\ 
\end{matrix}

  • Câu 11: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Hướng dẫn:

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 12: Thông hiểu
    Xác định phương trình mặt cầu (S)

    Viết phương trình mặt cầu (S) tâm I( -
3,2,2) tiếp xúc với mặt cầu (S’):

    Hướng dẫn:

    (S') có tâm J(1, - 2,4), bán kínhR' = 4 \Rightarrow IJ = 6

    Gọi R là bán kính của (S). (S)(S') tiếp xúc trong khi và chỉ khi:

    \left| R - R^{'} \right| = IJ
\Leftrightarrow |R - 4| = 6

    \Rightarrow R = 10 \vee R = - 2 (loại)

    \Rightarrow (S):(x + 3)^{2} + (y - 2)^{2}
+ (z - 2)^{2} = 100

  • Câu 13: Vận dụng
    Tìm số phần bằng nhau

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Sáu mặt phẳng x - y = 0;\ \ y - z = 0;z - x = 0; x + y = 1;\ \ y + z = 1;\ \ z + x = 1 chia hình lập phương thành bao nhiêu phân bằng nhau?

    Hướng dẫn:

     

  • Câu 14: Thông hiểu
    Viết phương trình mặt cầu

    Trong không gian với hệ trục tọa độ Oxyz cho 2 điểm A(1;3;0),B( - 2;1;1) và đường thẳng (\Delta): \frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z}{-
2} . Viết phương trình mặt cầu đi qua A,B và có tâm Ι thuộc (\Delta)

    Hướng dẫn:

    Thử 4 đáp án, ở đây thầy thử trước đáp án 

    {\left( {x + \frac{2}{5}} \right)^2} + {\left( {y - \frac{{13}}{{10}}} \right)^2} + {\left( {z + \frac{3}{5}} \right)^2} = \frac{{521}}{{100}} nhé

    Nhập \left( X + \frac{2}{5} \right)^{2} +
\left( Y - \dfrac{13}{10} \right)^{2} + \left( M + \frac{3}{5}
\right)^{2} - \frac{521}{100}

     \frac{Calc}{\left\{ \begin{matrix}
X = 1 \\
Y = 3 \\
M = 0 \\
\end{matrix} \right.\ ;\left\{ \begin{matrix}
X = - 2 \\
Y = 1 \\
M = 1 \\
\end{matrix} \right.\ } \rightarrow đáp án cần tìm là: {\left( {x + \frac{2}{5}} \right)^2} + {\left( {y - \frac{{13}}{{10}}} \right)^2} + {\left( {z + \frac{3}{5}} \right)^2} = \frac{{521}}{{100}}

  • Câu 15: Thông hiểu
    Ghi đáp án vào ô trống

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Đáp án là:

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Ta có x^{2} + y^{2} + z^{2} + 14x + 12y -
10z + 29 = 0

    \Leftrightarrow (x + 7)^{2} + (y + 6)^{2}
+ (z - 5)^{2} = 9^{2}.

    Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.

    Đáp số: 18km.

  • Câu 16: Nhận biết
    Xác định phương trình mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1; - 4;0) có bán kính bằng 3. Phương trình của (S) là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; - 4;0)và bán kính bằng 3có phương trình là:

    (x - 1)^{2} + (y + 4)^{2} + (z - 0)^{2}
= 3^{2}

    \Rightarrow (x - 1)^{2} + (y + 4)^{2} +
z^{2} = 9

  • Câu 17: Vận dụng
    Viết phương trình mặt cầu

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG}trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{2} \right) nội tiếp hình lập phương.

    Hướng dẫn:

    \left( S_{2} \right) có tâm I\left( \frac{1}{2},\frac{1}{2},\frac{1}{2}
\right) là trung điểm của 3 đoạn nối trung điểm các mặt đối diện đôi một có độ dài cạnh bằng 1. Bán kính R_{1} = \frac{1}{2}

    \Rightarrow \left( S_{2} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{1}{4}

    \Rightarrow \left( S_{2} \right):x^{2} +
y^{2} + z^{2} - x - y - z + \frac{1}{2} = 0

  • Câu 18: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Ở các đáp án 2x^{2} + 2y^{2} = (x +
y)^{2} - z^{2} + 2x - 1, x^{2} +
y^{2} + z^{2} + 2x - 2y + 1 = 0, (x
+ y)^{2} = 2xy - z^{2} + 1 - 4x đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án x^{2} +
y^{2} + z^{2} - 2x = 0. thì phương trình: 2x^{2} + 2y^{2} = (x + y)^{2} - z^{2} + 2x - 1
\Leftrightarrow x^{2} + y^{2} + z^{2} - 2xy - 2x + 1 = 0 không đúng dạng phương trình mặt cầu.

  • Câu 19: Thông hiểu
    Xác định phương trình mặt cầu

    Viết phương trình mặt cầu (S) tâm I(1,2, - 3) tiếp xúc với mặt phẳng (P):4x - 2y + 4z - 3 = 0.

    Hướng dẫn:

    Bán kính R = d(I,P) =
\frac{5}{2}

    \Rightarrow (S):(x - 1)^{2} + (y - 2)^{2}
+ (y + 3)^{2} = \frac{25}{4}

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2x - 4y + 6z + \frac{31}{4} = 0

  • Câu 20: Thông hiểu
    Chọn phương án đúng

    Tính bán kính của đường tròn giao tuyến của mặt phẳng (P):x - 2y + 2z - 3 = 0 và mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 6z - 2 =
0

    Hướng dẫn:

    (S) có tâm I(2,1, - 3), bán kính R = 4

    \Rightarrow d(I,P) = 3 =
IH,IH\bot(P)

    \Rightarrow r^{2} = R^{2} - IH^{2} = 16 -
9 = 7 \Rightarrow r = \sqrt{7}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo