Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Hướng dẫn:

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 2: Thông hiểu
    Tìm tham số để mặt cong là mặt cầu

    Giá trị \alpha phải thỏa mãn điều kiện nào để mặt cong là mặt cầu: (S):x^{2} + y^{2} + z^{2} + 2\left( 3 -
cos^{2}\alpha \right)x+ 4\left( sin^{2}\alpha - 1 \right) + 2z +
cos4\alpha + 8 = 0?

    Hướng dẫn:

    Ta có: a = 2cos^{2}\alpha - 3 =
cos2\alpha - 2;b = 2\left( 1 - sin^{2}\alpha \right) = cos2\alpha +
1;c = - 1;

    d = cos4\alpha + 8 = 2cos^{2}2\alpha +
7.\ \ (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d >
0

    \begin{matrix}
   \Leftrightarrow  - 1 + \cos 2\alpha  <  - \frac{1}{2} \Leftrightarrow \frac{{2\pi }}{3} + k2\pi  < 2\alpha  < \frac{{4\pi }}{3} + k2\pi  \hfill \\
   \Leftrightarrow \frac{\pi }{3} + k\pi  < \alpha  < \frac{{2\pi }}{3} + k\pi ,\,\,k \in \mathbb{Z} \hfill \\ 
\end{matrix}

  • Câu 3: Nhận biết
    Tính độ dài vecto

    Gọi I là tâm mặt cầu (S):x^{2} +
y^{2} + (z - 2)^{2} = 4. Độ dài \left| \overrightarrow{OI} \right| (O là gốc tọa độ) bằng:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(0;0;2) \Rightarrow \overrightarrow{OI} = (0;0;2)
\Rightarrow \left| \overrightarrow{OI} \right| = 2.

  • Câu 4: Vận dụng
    Tìm tọa độ tâm H của (C)

    Trong không gian Oxyz cho đường tròn:(C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.. Tọa độ tâm H của (C) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 6y + 6z +
17 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
3)^{2} + (z + 3)^{2} = 5

    Tâm mặt cầu là I(2, - 3, -
3)

    Xem đường thẳng qua I và vuông góc với mặt phẳng thiết diện x - 2y + 2z + 1 = 0

    \left\{ \begin{matrix}
x = 2 + t \\
y = - 3 - 2t \\
z = - 3 + 2t \\
\end{matrix} \right. , thế x,y,z vào phương trình mặt phẳng thiết diện

    2 + t - 2( - 3 - 2t) + 2( - 3 + 2t) + 1 =
0 \Leftrightarrow t = - \frac{1}{3}

    \Rightarrow Tọa độ tâm H của (C) là H\left( \frac{5}{3}, - \frac{7}{3}, -
\frac{11}{3} \right)

  • Câu 5: Vận dụng
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm M(1; −1; 2) và mặt cầu (S):x^{2} + y^{2} +
z^{2} = 9. Mặt phẳng đi qua M cắt S theo một đường tròn có bán kính nhỏ nhất có phương trình là:

    Hướng dẫn:

    Ta có:

    (S) có bán kính R = 3 và tâm I(0; 0; 0), IM = \sqrt{6} < 3 nên I nằm trong hình cầu (S).

    Gọi r là bán kính của đường tròn, (P) là mặt phẳng qua M, ta có:

    r^{2} = R^{2} - d^{2}\left( I;(P)
ight) = 9 - d^{2}\left( I;(P) ight) \geq 9 - IM^{2} = 3

    Suy ra bán kính r_{\min} =
\sqrt{3} khi \overrightarrow{IM} là vectơ pháp tuyến của (P).

    Vậy phương trình của mặt phẳng (P): (x − 1) − (y + 1) + 2(z − 2) = 0⇔ x − y + 2z − 6 = 0.

  • Câu 6: Thông hiểu
    Tính đường kính của mặt cầu

    Cho các điểm A(2;4; - 1)B(0; - 2;1) và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 1 + t \\
\end{matrix} \right.. Gọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng d. Đường kính mặt cầu (S) bằng:

    Hướng dẫn:

    Gọi I(1 + 2t;2 - t;1 + t) trên dIA = IB \Rightarrow t = 1
\Rightarrow R = IA = \sqrt{19} đường kính là 2\sqrt{19}.

  • Câu 7: Thông hiểu
    Xác định điều kiện tham số m

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y + z - m^{2} - 3m = 0 và mặt cầu (S):(x - 1)^{2} + (y + 1)^{2} + (z -
1)^{2} = 9. Tìm tất cả các giá trị của m để (P) tiếp xúc với mặt cầu (S)?

    Hướng dẫn:

    Ta có mặt cầu (S) có tâm I(1; −1; 1) và bán kính R = 3.

    Mặt phẳng (P) tiếp xúc với (S) khi và chỉ khi:

    d\left\lbrack I;(P) ightbrack = R
\Leftrightarrow \frac{\left| 1 - m^{2} - 3m ight|}{3} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} + 3m - 10 = 0 \\
m^{2} + 3m + 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2 \\
m = - 5 \\
\end{matrix} ight..

  • Câu 8: Nhận biết
    Tìm khoảng cách

    Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4\pi {m{m}} . Khoảng cách từ tâm mặt cầu đến mặt phẳng là:

    Hướng dẫn:

    Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có {d^2} = {R^2} - {r^2} .

    Theo giả thiết R = 2m và 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

    Vậy 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

  • Câu 9: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 10y - 6z + 49 =
0. Tính bán kính của mặt cầu (S)?

    Hướng dẫn:

    Phương trình mặt cầu:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0 có tâm I(a;b;c) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Ta có: a = 4;b = - 5;c = 3;d =
49

    Khi đó R = \sqrt{a^{2} + b^{2} + c^{2} -
d} = 1

  • Câu 10: Nhận biết
    Xác định tọa độ tâm mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} + (z - 3)^{2} =
4. Tâm mặt cầu (S) có tọa độ là:

    Hướng dẫn:

    Mặt cầu (S):(x - a)^{2} + (y - b)^{2} +
(z - c)^{2} = R^{2} có tâm là I(a;b;c)

    Mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} +
(z - 3)^{2} = 4 có tâm I(2; -
1;3).

  • Câu 11: Thông hiểu
    Tìm phương trình mặt cầu

    Cho mặt phẳng (P):2x + 3y + z - 2 =
0 . Mặt cầu (S) có tâm I thuộc trục Oz, bán kính bằng \frac{2}{\sqrt{14}} và tiếp xúc mặt phẳng (P) có phương trình:

    Hướng dẫn:

    Vì tâmI \in Oz \Rightarrow
I(0;0;z)

    Mặt cầu (S)có tâm I tiếp xúc với mặt phẳng

    (P) \Leftrightarrow d\left( I,(\beta) \right) = R
\Leftrightarrow \frac{|2.0 + 3.0 + 1.z - 2|}{\sqrt{2^{2} + 3^{2} +
1^{2}}} = \frac{2}{\sqrt{14}}

    \Leftrightarrow |z - 2| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
z = 0 \Rightarrow I(0;0;0) \\
z = 4 \Rightarrow I(0;0;4) \\
\end{matrix} \right.

    Vậy phương trình mặt cầu .(S):x^{2} +
y^{2} + z^{2} = \frac{2}{7} hoặc (S):x^{2} + y^{2} + (z - 4)^{2} =
\frac{2}{7}.

  • Câu 12: Thông hiểu
    Tìm mặt cầu ngoại tiếp tứ diện

    Cho ba điểm A(6; - 2;3), B(0;1;6), C(2;0; - 1), D(4;1;0). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By -
2Cz + D = 0, ta có:

    \left\{ \begin{matrix}
A(6; - 2;3) \in (S) \\
B(0;1;6) \in (S) \\
C(2;0; - 1) \in (S) \\
D(4;1;0) \in (S) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
49 - 12A + 4B - 6C + D = 0(1) \\
37 - 2B - 12C + D = 0(2) \\
5 - 4A + 2C + D = 0(3) \\
17 - 8A - 2B + D = 0(4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); (3) - (4)ta được hệ:

    \left\{ \begin{matrix}
- 12A + 6B + 6C = - 12 \\
4A - 2B - 14C = - 32 \\
4A + 2B + 2C = 12 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
A = 2 \\
B = - 1 \Rightarrow \\
C = 3 \\
\end{matrix} \right.\ D = - 3

    Vậy phương trình măt cầu là: x^{2} +
y^{2} + z^{2} - 4x + 2y - 6z - 3 = 0 .

    Lưu ý : Ở bài này máy tính Casio giúp chúng ta giải nhanh chóng hệ phương trình bậc nhất ba ấn được tạo ra để tìm các hệ số của phương trình mặt cầu tổng quát. (Ta cũng có thể dùng máy tính cầm tay thay trực tiếp tọa độ các điểm vào từng đáp án và tìm ra đáp án đúng)

  • Câu 13: Thông hiểu
    Tìm phương trình mặt cầu (S)

    Cho đường thẳng d:\frac{x + 5}{2} =
\frac{y - 7}{- 2} = \frac{z}{1} và điểm I(4;1;6). Đường thẳng d cắt mặt cầu (S) tâm I tại hai điểm A, B sao cho AB = 6. Phương trình của mặt cầu (S) là:

    Hướng dẫn:

    Ta có\overrightarrow{\mathbf{a}}\mathbf{=}\left(
\mathbf{2;}\mathbf{-}\mathbf{2;1} \right)là vectơ chỉ phương của d.

    Gọi H là hình chiếu vuông góc của I trên d là trung điểm của AB \Rightarrow HA = 3

    Ta có : \left\{ \begin{matrix}
H \in d \\
\overrightarrow{IH.}\overrightarrow{a} = 0 \\
\end{matrix} \right.

    H \in d \Rightarrow H( - 5 + 2t;7 -
2t;t)

    \Rightarrow \overrightarrow{IH} = (2t -9;6 - 2t;t - 6)

    \overrightarrow{IH}.\overrightarrow{a} =
0 \Leftrightarrow t = 4 \Rightarrow \overrightarrow{IH} = ( - 1; - 2; -
2) \Rightarrow IH = 3.

    Trong \Delta IAHvuông tại Hcó: IA^{2} =
IH^{2} + HA^{2} = 9 + 9 = 18

    Vậy (S):(x - 4)^{2} + (y - 1)^{2} + (z -
6)^{2} = 18.

  • Câu 14: Vận dụng
    Tính bán kính

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

    Hướng dẫn:

    Tính bán kính

    Gọi M là trung điểm AC, suy ra SM \bot \left( {ABC} ight) \Rightarrow SM \bot AC.

    Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.

    Ta có AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2, suy ra tam giác SAC đều.

    Gọi G là trọng tâm \triangle SAC , suy ra GS = GA = GC.    (1)

    Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

    Lại có SM \bot \left( {ABC} ight) nên SM là trục của tam giác ABC.

    Mà G thuộc SM nên suy ra GA = GB = GC.

    Từ (1) và (2), suy ra GS = GA = GB = GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC.

    Bán kính mặt cầu R = GS = \frac{2}{3}SM = \frac{{a\sqrt 6 }}{3}.

  • Câu 15: Thông hiểu
    Xác định điểm không thuộc mặt cầu

    Gọi (S) là mặt cầu có tâm I(1; -
3;0) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB đều. Điểm nào sau đây không thuộc mặt cầu (S):

    Hướng dẫn:

    Gọi H là hình chiếu của I(1; -
3;0) trên Ox

    \Rightarrow H(1;0;0) \Rightarrow IH =
d(I;Ox) = 3

    \Rightarrow IH = R.\frac{\sqrt{3}}{2}
\Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{3}

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y + 3)^{2} + z^{2} = 12 \mathbf{\Rightarrow}\left(
\mathbf{2;}\mathbf{-}\mathbf{1;1} \right)\mathbf{\notin}\left(
\mathbf{S} \right)\mathbf{.}

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} + 4x - 2y + 6z - 2 =
0 và mặt phẳng (P):3x + 2y + 6z + 1
= 0. Gọi (C) là đường tròn giao tuyến của (P)(S). Viết phương trình mặt cầu cầu (S') chứa (C) và điểm M(1, - 2,1).

    Hướng dẫn:

    Phương trình của (S'):(S) + m(P) =
0,\ \ m \neq 0

    (S'):x^{2} + y^{2} + z^{2} + 4x - 2y
+ 6z - 2 + m(3x + 2y + 6z + 1) = 0

    (S') qua M(1, - 2,1) \Rightarrow 6m + 18 = 0
\Leftrightarrow m = - 3

    \Rightarrow (S'):x^{2} + y^{2} +
z^{2} - 5x - 8y - 12z - 5 = 0

  • Câu 17: Thông hiểu
    Tính bán kính mặt cầu

    Bán kính mặt cầu đi qua bốn điểm M(1;0;1),\ N(1;0;0),\ P(2;1;0)Q(1;1;1) bằng:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz
+ d = 0 với a^{2} + b^{2} + c^{2} -
d > 0.

    Do (S) đi qua bốn điểm M, N, P, Q nên ta có hệ phương trình:

    \left\{ \begin{matrix}
- 2a - 2c + d = - 2 \\
- 2a + d = - 1 \\
- 4a - 2b + d = - 5 \\
- 2a - 2b - 2c + d = - 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = \dfrac{3}{2} \\
b = \dfrac{1}{2} \\
c = \dfrac{1}{2} \\
d = 2 \\
\end{matrix} \right..

    Vậy R = \sqrt{\left( \frac{3}{2}
\right)^{2} + \left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2}
\right)^{2} - 2} = \frac{\sqrt{3}}{2}.

  • Câu 18: Thông hiểu
    Xác định số phần bằng nhau

    Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0);\ \ \ B(4,0,0);\ \ \ D(0,6,0);\ \ \
E(0,0,2). Ba mặt phẳng: x - 2z =
0;\ \ y - 3 = 0;\ \ \ x + 2z - 4 = 0 chia hình hộp chữ nhật thanh mấy phần bằng nhau?

    Hướng dẫn:

    Hai mặt phẳng: x - 2zx + 2z- 4 = 0 chia hình hộp chữ nhật thành 4 phần bằng nhau.

    Mặt phẳng y - 3 = 0 cắt 4 phần trên thành 8 phần bằng nhau. (Học sinh tự vẽ hình).

  • Câu 19: Thông hiểu
    Tìm tập hợp các điểm M

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Tìm tập hợp các điểm M(x,y,z) thỏa mãn AM^{2} + BM^{2} = 124.

    Hướng dẫn:

    Ta có:

    AM^{2} + BM^{2} = 124

    \Leftrightarrow (x - 2)^{2} + (y + 3)^{2}= (z + 1)^{2} + (x + 4)^{2} + (y - 5)^{2} + (z + 3)^{2} =
124

    \Leftrightarrow Mặt cầu x^{2} + y^{2} + z^{2} + 2x - 2y + 4z - 30 =
0

  • Câu 20: Thông hiểu
    Xác định phương trình mặt cầu (S)

    Viết phương trình mặt cầu (S) tâm I( -
3,2,2) tiếp xúc với mặt cầu (S’):

    Hướng dẫn:

    (S') có tâm J(1, - 2,4), bán kínhR' = 4 \Rightarrow IJ = 6

    Gọi R là bán kính của (S). (S)(S') tiếp xúc trong khi và chỉ khi:

    \left| R - R^{'} \right| = IJ
\Leftrightarrow |R - 4| = 6

    \Rightarrow R = 10 \vee R = - 2 (loại)

    \Rightarrow (S):(x + 3)^{2} + (y - 2)^{2}
+ (z - 2)^{2} = 100

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo