Cho tứ diện ABCD có . Viết phương trình mặt cầu
nội tiếp tứ diện.
Ta có:
Tứ diện ABCD đều.
tiếp xúc với bốn mặt của tứ diện tại trọng tâm của mỗi mặt.
Trọng tâm G của tam giác đều ACD: tâm của
Bán kính của
Cho tứ diện ABCD có . Viết phương trình mặt cầu
nội tiếp tứ diện.
Ta có:
Tứ diện ABCD đều.
tiếp xúc với bốn mặt của tứ diện tại trọng tâm của mỗi mặt.
Trọng tâm G của tam giác đều ACD: tâm của
Bán kính của
Cho mặt cầu :
. Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):
Mặt cầu tâm
, bán kính
.
Do mặt cầu đối xứng với
qua mặt phẳng (Oxy) nên tâm I' của
đối xứng với I qua (Oxy), bán kính
.
Ta có: .
Vậy
Lưu ý: Để ý thấy rằng trung điểm thuộc mặt phẳng
và
. Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ
nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.
Trong không gian với hệ tọa độ , cho mặt cầu
có tâm nằm trên mặt phẳng
và đi qua ba điểm
. Tọa độ tâm
của mặt cầu
là:
Gọi tâm mặt cầu là và phương trình mặt cầu
Do
Lại có
Vậy là đáp án cần tìm.
Cho điểm và đường thẳng
có phương trình
. Phương trình mặt cầu tâm
, tiếp xúc với
là:
Ta có:
.
Trong đó
Phương trình mặt cầu tâm , bán kính
là
.
Cho mặt phẳng và hai đường thẳng
,
. Mặt cầu
có tâm thuộc
, tiếp xúc với
và mặt phẳng
, có phương trình:
Ta có:
;
đi qua điểm
và có vectơ chỉ phương
.
Giả sử là tâm và
là bán kính của mặt cầu
.
Ta có:
.
tiếp xúc với
và
.
Với
,
.
Với
.
Tìm tập hợp các tâm I của mặt cầu .
Ta có:
Tâm
Vậy tập hợp các tâm I là đường tròn
Cho đường thẳng d: và mặt phẳng
. Phương trình mặt cầu
có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với
và đi qua điểm
là:
Gọi là tâm của (S).
. Bán kính
.
Mặt phẳng tiếp xúc với
nên
.
⇔ ⇔
.
Vì có bán kính nhỏ nhất nên chọn
.
Suy ra .
Vậy phương trình mặt cầu (S): .
Cho mặt cầu và mặt phẳng
. Mặt phẳng tiếp xúc với
và song song với
có phương trình là:
Mặt cầu (S) có tâm và bán kính
Gọi là mặt phẳng tiếp xúc với
và song song với
.
Vì
Mặt phẳng tiếp xúc với mặt cầu
(thỏa điều kiện)
Vậy phương trình mặt phẳng hoặc
.
Lưu ý: Nếu hình dung phác họa hình học bài toán được thì ta có thể dự đoán được có 2 mặt phẳng thỏa mãn yêu cầu đề bài.
Trong không gian với hệ trục toạ độ , cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Cho hai điểm . Tìm tập hợp các điểm
thỏa mãn
.
Ta có:
Mặt cầu
Trong không gian với hệ trục tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Trong không gian với hệ tọa độ , cho mặt cầu
. Tính bán kính của mặt cầu
?
Phương trình mặt cầu:
với
có tâm
và bán kính
Ta có:
Khi đó
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Trong không gian với hệ tọa độ , cho mặt cầu
có tâm
có bán kính bằng
. Phương trình của
là:
Mặt cầu có tâm
và bán kính bằng
có phương trình là:
Điều kiện để là một mặt cầu là:
Theo đề bài, ta có:
có dạng:
Như vậy, (S) là mặt cầu
Cho hai điểm . Định
để tập hợp các điểm
sao cho
, là một mặt cầu.
Theo bài ra ta có:
Ta có:
là mặt cầu
Với
Giá trị t phải thỏa mãn điều kiện nào để mặt cong sau là mặt cầu:
Ta có:
là mặt cầu
Trong không gian , cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là:
Áp dụng CT, ta có (P) cắt (S)
Trong không gian với hệ tọa độ , cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: