Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính bán kính r của đường tròn (C)

    Trong không gian cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.

    Bán kính r của đường tròn (C) bằng:

    Hướng dẫn:

    Cùng đề trên nên có bán kính mặt cầu là R
= \sqrt{5} .

    Khoảng cách từ I đến thiết diện là h =
\frac{\left| 2 - 2( - 3) + 2( - 3) + 1 \right|}{\sqrt{1^{2} + ( - 2)^{2}
+ 2^{2}}} = 1 .

    \Rightarrow Bán kính của (C) là: r =
\sqrt{R^{2} - r^{2}} = 2.

  • Câu 2: Thông hiểu
    Xác định phương trình mặt cầu

    Cho điểm I(1;0;0)và đường thẳng d:\frac{x - 1}{1} = \frac{y - 1}{2} =
\frac{z + 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 4 là:

    Hướng dẫn:

    Đường thẳng(d)đi qua M(1;\ 1; - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên (d).

    Ta có:IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 9.

    Vậy phương trình mặt cầu: (x - 1)^{2} +
y^{2} + z^{2} = 9.

  • Câu 3: Thông hiểu
    Chọn phương án đúng

    Cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Phương trình mặt cầu đi qua ba điểm A,B,C và có tâm thuộc mặt phẳng (P) là:

    Hướng dẫn:

    Phương mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By - 2Cz + D
= 0, ta có :

    \left\{ \begin{matrix}
A(2;0;1) \in (S) \\
B(1;0;0) \in (S) \\
C(1;1;1) \in (S) \\
I \in (P) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
- 4A - 2C + D = - 5\ \ \ \ \ (1) \\
- 2A + D = - 1\ \ \ \ \ \ \ (2) \\
- 2A - 2B - 2C + D = - 3\ \ \ \ \ (3) \\
A + B + C = 2\ \ \ \ \ \ (4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); kết hợp (4) ta được hệ:

    \left\{ \begin{matrix}
- 2A - 2C = - 4 \\
2B + 2C = 2 \\
A + B + C = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
A = 1 \\
B = 0 \Rightarrow \\
C = 1 \\
\end{matrix} \right.\ D = 1

    Vậy phương trình mặt cầu là : x^{2} +
y^{2} + z^{2} - 2x - 2z + 1 = 0.

    Lưu ý : Ở câu này nếu nhanh trí chúng ta có thể sử dụng máy tính cầm tay thay ngay tọa độ tâm của các mặt cầu ở 4 đáp án trên vào phương trình mặt phẳng (P) để loại ngay được các đáp án có tọa độ tâm không thuộc mặt phẳng (P)

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính R = 2?

    Hướng dẫn:

    Phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0 có bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Xét phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 4x + 2y + 2z + 2 = 0 ta có:

    \left\{ \begin{matrix}
a = 2;b = - 1 \\
c = - 1;d = 2 \\
\end{matrix} ight.\  \Rightarrow R = \sqrt{a^{2} + b^{2} + c^{2} - d}
= \sqrt{4} = 2

  • Câu 5: Thông hiểu
    Tính bán kính mặt cầu

    Bán kính mặt cầu đi qua bốn điểm M(1;0;1),\ N(1;0;0),\ P(2;1;0)Q(1;1;1) bằng:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz
+ d = 0 với a^{2} + b^{2} + c^{2} -
d > 0.

    Do (S) đi qua bốn điểm M, N, P, Q nên ta có hệ phương trình:

    \left\{ \begin{matrix}
- 2a - 2c + d = - 2 \\
- 2a + d = - 1 \\
- 4a - 2b + d = - 5 \\
- 2a - 2b - 2c + d = - 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = \dfrac{3}{2} \\
b = \dfrac{1}{2} \\
c = \dfrac{1}{2} \\
d = 2 \\
\end{matrix} \right..

    Vậy R = \sqrt{\left( \frac{3}{2}
\right)^{2} + \left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2}
\right)^{2} - 2} = \frac{\sqrt{3}}{2}.

  • Câu 6: Thông hiểu
    Chọn phương án đúng

    Viết phương trình mặt cầu (S) qua gốc O và các giao điểm của mặt phẳng (P):\ \ \ 2x + y - 3z + 6 = 0 với ba trục tọa độ.

    Hướng dẫn:

    (P) cắt ba trục Ox,Oy,\ Oz tại A( - 3,0,0);B(0, - 6,0),C(0,0,2)

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0\ \ qua\ O,\ A,\ B,\ C, nên:

    d = 0;\ \ 9 + 6a = 0 \Leftrightarrow a =
- \frac{3}{2};\ \ 36 + 12b = 0

    \Leftrightarrow b = - 3;\ \ 4 - 4c = 0
\Leftrightarrow c = 1

    Vậy (S):x^{2} + y^{2} + z^{2} + 3x + 6y -
2z = 0

  • Câu 7: Vận dụng
    Xác định các tham số m thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2)B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m + 1)z +
m^{2} + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m +
1)z + m^{2} + 2m + 8 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
m)^{2} + (z - m - 1)^{2} = m^{2} - 3(*)

    Suy ra (*) là phương trình mặt cầu

    \Leftrightarrow m^{2} - 3 > 0
\Leftrightarrow |m| > \sqrt{3}

    Khi đó, mặt cầu (S) có tâm I(2; −m; m + 1) và bán kính R = \sqrt{m^{2} - 3}

    Gọi (P) là mặt phẳng đi qua A, B.

    Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.

    Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là d = \sqrt{R^{2} - r^{2}} = \sqrt{m^{2} - 4};\left(
m^{2} - 4 \geq 0 ight)

    Ta có: \overrightarrow{AB} = (2;6; -
2) suy ra \overrightarrow{u} =
(1;3; - 1) là một vectơ chỉ phương của đường thẳng AB

    Suy ra đường thẳng AB là: \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Để có duy nhất mặt phẳng (P) thỏa mãn bài thì

    TH1. Mặt phẳng (P) đi qua điểm I và I
otin AB

    Ta có I ∈ (P) ⇔ d = 0 ⇔ m^2 − 4 = 0 ⇔ m = ±2.

    + Với m = 2 ⇒ I(2; −2; 3) ∈ AB ⇒ m = 2 (loại).

    + Với m = −2 ⇒ I(2;2; - 1) otin
AB⇒ m = −2 (thỏa mãn).

    TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)

    \overrightarrow{IA} = (1;1 + m;1 -
m)

    \Rightarrow \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack = ( - 4 + 2m;2 -
m;2 - m)

    \Rightarrow \left| \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack ight| = |2 -
m|\sqrt{6};\left| \overrightarrow{u} ight| = \sqrt{11}

    Khi đó d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{IA};\overrightarrow{u} ightbrack
ight|}{\left| \overrightarrow{u} ight|} = \frac{|2 -
m|\sqrt{6}}{\sqrt{11}}

    (*) \Leftrightarrow \sqrt{m^{2} - 4} =
\frac{|2 - m|\sqrt{6}}{\sqrt{11}}

    \Leftrightarrow 5m^{2} + 24m - 68 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 2(ktm) \\m = - \dfrac{34}{5}(tm) \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.

  • Câu 8: Vận dụng
    Tìm phương trình mặt cầu thỏa mãn điều kiện

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{1} \right) ngoại tiếp hình lập phương.

    Hướng dẫn:

    \left( S_{1} \right) có tâm I là trung điểm chung của 4 đường chéo: I\left(
\frac{1}{2},\frac{1}{2},\frac{1}{2} \right), bán kính R_{1} = \frac{1}{2}OE =
\frac{\sqrt{3}}{2}

    \Rightarrow \left( S_{1} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{3}{4}

    \Rightarrow \left( S_{1} \right):x^{2} +
y^{2} + z^{2} - x - y - z = 0

  • Câu 9: Nhận biết
    Viết phương trình mặt cầu (S)

    Trong không gian Oxyz, cho hai điểm I(1;1;1)A(1;2;3). Phương trình mặt cầu có tâm I và đi qua A là:

    Hướng dẫn:

    Ta có: R = IA = \sqrt{(1 - 1)^{2} + (2 -
1)^{2} + (3 - 1)^{2}} = \sqrt{5}

    Vậy phương trình mặt cầu tâm I và đi qua điểm A có phương trình là:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
5.

  • Câu 10: Thông hiểu
    Xác định tọa độ tâm mặt cầu

    Cho các điểm A(0;1;3)B(2;2;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z -
3}{- 2}. Mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm là:

    Hướng dẫn:

    Gọi I(1 + t;2 - t;3 - 2t) trên dIA = IB \Rightarrow t =
\frac{3}{10} \Rightarrow I\left(
\frac{13}{10};\frac{17}{10};\frac{12}{5} \right).

  • Câu 11: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Hướng dẫn:

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 12: Thông hiểu
    Xác định phương trình mặt cầu thỏa mãn điều kiện

    Phương trình mặt cầu có tâm I(4;6; -
1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông là:

    Hướng dẫn:

    Gọi H là hình chiếu của I(4;6; -
1) trên Ox

    \Rightarrow H(4;0;0) \Rightarrow IH =
d(I;Ox) = \sqrt{37}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 37 + 37 = 74

    Vậy phương trình mặt cầu là: (x - 4)^{2}
+ (y - 6)^{2} + (z + 1)^{2} = 74.

  • Câu 13: Vận dụng
    Tính giá trị biểu thức

    Trong hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z -
3)^{2} = 16 và các điểm A(1; 0; 2); B(−1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A; B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by + cz + 3 = 0. Tính T = a + b + c.

    Hướng dẫn:

    Ta có:

    (S) có tâm I(1; 2; 3), bán kính R = 4.

    Nhận thấy: IA = IB = \sqrt{5} <
R ⇒ A; B nằm bên trong mặt cầu.

    Gọi K là trung đểm của AB ⇒ K(0; 1; 2); IK ⊥ AB.

    Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.

    Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất

    ⇔ IH = IK ⇔ H ≡ K.

    Khi đó mặt phẳng (P): Đi qua A và có VTPT là \overrightarrow{IK} = ( - 1; - 1; -
1)

    ⇒ Phương trình mặt phẳng (P) : −x−y−z+3 = 0 ⇒ a+b+c = −3

  • Câu 14: Nhận biết
    Xác định tọa độ giao điểm

    Cho đường thẳng d:\frac{x + 2}{2} =\frac{y - 2}{3} = \frac{z + 3}{2} và mặt cầu (S) : x^{2} + y^{2} + (z + 2)^{2} = 9. Tọa độ giao điểm của (\Delta)(S) là:

    Hướng dẫn:

    Tọa độ giao điểm là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
x = - 2 + 2t \\
y = 2 + 3t \\
z = - 3 + 2t \\
x^{2} + y^{2} + (z + 2)^{2} = 9 \\
\end{matrix} \right.\  \Rightarrow t = 0 \Rightarrow A( - 2;2; -
3).

  • Câu 15: Thông hiểu
    Viết phương trình mặt cầu

    Mặt cầu (S) tâm I( - 1;2; - 3) và tiếp xúc với mặt phẳng (P):x + 2y + 2z + 1 = 0 có phương trình:

    Hướng dẫn:

    Mặt cầu (S) tâm I, tiếp xúc với mặt phẳng (P)

    \Leftrightarrow d\left( I;(P) \right) = R
\Leftrightarrow R = \frac{2}{3}.

    \Rightarrow (S) : (x + 1)^{2} + (y - 2)^{2} + (z + 3)^{2} =
\frac{4}{9}.

  • Câu 16: Thông hiểu
    Tìm phương trình tổng quát của tiếp diện

    Viết phương trình tổng quát của tiếp diện của mặt cầu (S):\ \ x^{2} + y^{2} + z^{2} - 4x - 2y - 2z - 10
= 0 song song với mặt phẳng (P):\ \
2x - 3y + 6z - 7 = 0.

    Hướng dẫn:

    (S) có tâm I(2,1,1), bán kính R = 4.

    Tiếp điểm của (S) có phương trình:

    (Q):2x - 3y + 6z + m = 0

    \Rightarrow d(I,Q) = R \Leftrightarrow
\frac{|m + 7|}{7} = 4 \Leftrightarrow \left\lbrack \begin{matrix}
m = 21 \\
m = - 35 \\
\end{matrix} \right.

    \Rightarrow \left\lbrack \begin{matrix}
(Q):2x - 3y + 6z + 21 = 0 \\
(Q'):2x - 3y + 6z - 35 = 0 \\
\end{matrix} \right.

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Phương trình mặt cầu nào dưới đây có tâm I(2;1;3) và tiếp xúc với mặt phẳng (P):x + 2y + 2z + 2 = 0?

    Hướng dẫn:

    Do mặt cầu S(I;R) tiếp xúc với mặt phẳng (P) \Leftrightarrow d\left( I;(P)
\right) = R \Leftrightarrow R = 4 .

    \Rightarrow (S) : (x - 2)^{2} + (y - 1)^{2} + (z - 3)^{2} =
16.

  • Câu 18: Thông hiểu
    Tìm m để (P) và (S) tiếp xúc

    Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là (P):2x + 2y + z - m^{2} + 4m - 5 = 0;(S): x^{2} + y^{2} + z^{2} - 2x + 2y - 2z - 6 = 0. Giá trị của m để (P) tiếp xúc (S) là:

    Hướng dẫn:

    Ta có:

    (S):\ \ x^{2} + y^{2} + z^{2} - 2x + 2y -
2z - 6 = 0 có tâm I(1; -
1;1) và bán kính R =
3.

    (P) tiếp xúc (S) \Leftrightarrow \ \ d\left( I;\ (P) \right) = \ \
R

    \Leftrightarrow \ \ \frac{\left| 2.1 +
2.( - 1) + 1.1 - m^{2} + 4m - 5 \right|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
3

    \Leftrightarrow \ \ \left| m^{2} - 4m +
4 \right|\ \  = \ \ 9

    \Leftrightarrow \ \ \left\lbrack
\begin{matrix}
m^{2} - 4m + 4 = 9 \\
m^{2} - 4m + 4 = - 9 \\
\end{matrix} \right.\ \ \ \

    \Leftrightarrow \ m^{2} - 4m - 5 = 0
\Leftrightarrow \ \ \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
\end{matrix} \right.\ .

  • Câu 19: Thông hiểu
    Tìm biểu thức liên hệ

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với  AB=2a, AD=a. Cạnh bên SA vuông góc với đáy và góc giữa SC với đáy bằng 45^0 . Gọi N là trung điểm SA, h là chiều cao của khối chóp S.ABCD và R là bán kính mặt cầu ngoại tiếp khối chóp N.ABC. Biểu thức liên hệ giữa R và h là:

    Hướng dẫn:

    Tìm biểu thức liên hệ

    Ta có {45^0} = \widehat {SC,\left( {ABCD} ight)} = \widehat {SC,AC} = \widehat {SCA} .

    Trong \Delta SAC, ta có h = SA = a\sqrt 5

    Ta có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot BN.

    Mặt khác, ta lại có NA \bot AC.

    Do đó hai điểm A, B cùng nhìn đoạn dưới một góc vuông nên hình chóp N.ABC nội tiếp mặt cầu tâm J là trung điểm NC, bán kính

    R = JN = \frac{{NC}}{2} = \frac{1}{2}.\sqrt {A{C^2} + {{\left( {\frac{{SA}}{2}} ight)}^2}}  = \frac{{5a}}{4}.

  • Câu 20: Thông hiểu
    Tính diện tích đường tròn

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):x + \sqrt{2}y - z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} = 5 theo giao tuyến là đường tròn có diện tích là:

    Hướng dẫn:

    Mặt cầu (S) có tâm O(0;0;0) và bán kính R = \sqrt{5}

    Khoảng cách từ O đến (P): d\left( O;(P) ight) = \frac{3}{2}

    Bán kính đường tròn giao tuyến

    r = \sqrt{R^{2} - \left\lbrack d\left(
O;(P) ight) ightbrack^{2}} = \sqrt{5 - \frac{9}{4}} =
\sqrt{\frac{11}{4}}

    Diện tích đường tròn giao tuyến S = 2\pi
r^{2} = \frac{11\pi}{4}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo