Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định tọa độ tâm mặt cầu

    Trong không gian Oxyz, cho tứ diện đều ABCDA(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD)H(4;
- 3; - 2). Tìm tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD?

    Hướng dẫn:

    Gọi I(a;b;c) \Rightarrow \left\{
\begin{matrix}
\overrightarrow{IA} = ( - a;1 - b;2 - c) \\
\overrightarrow{IH} = (4 - a; - 3 - b; - 2 - c) \\
\end{matrix} ight.

    ABCD là tứ diện đều nên tâm I của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện

    \Rightarrow \overrightarrow{IA} = -
3\overrightarrow{IH} \Leftrightarrow \left\{ \begin{matrix}
- a = - 3(4 - a) \\
1 - b = - 3(3 - b) \\
2 - c = - 3( - 2 - c) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow I(3; - 2; - 1)

  • Câu 2: Thông hiểu
    Định phương trình tổng quát của mặt phẳng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -
6x - 4y - 4z - 12 = 0. Viết phương trình tổng quát của mặt phẳng đối xứng (P) của (S) vuông góc với đường kính qua gốc O.

    Hướng dẫn:

    Pháp vecto của (P):\overrightarrow{n} =
\overrightarrow{OI} = (3,2,2).(P) qua I(3 , 2,2)

    \Rightarrow (P):3(x - 3) + 2(y - 2) +
2(z - 2) = 0

    \Rightarrow (P):3x + 2y + 2z - 17 =
0

  • Câu 3: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 4: Vận dụng
    Chọn phương án thích hợp

    Cho mặt phẳng (P):x - 2y - 2z + 10 =0 và hai đường thẳng \Delta_{1}:\
\frac{x - 2}{1} = \frac{y}{1} = \frac{z - 1}{- 1}, \ \Delta_{2}:\frac{x - 2}{1} = \frac{y}{1} =
\frac{z + 3}{4}. Mặt cầu (S) có tâm thuộc \Delta_{1}, tiếp xúc với \Delta_{2} và mặt phẳng (P), có phương trình:

    Hướng dẫn:

    Ta có:

    \Delta_{1}:\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 1 - t \\
\end{matrix} \right.; \Delta_{2} đi qua điểm A(2;0; - 3) và có vectơ chỉ phương \overrightarrow{a_{2}} = (1;1;4).

    Giả sử I(2 + t;t;1 - t) \in
\Delta_{1} là tâm và R là bán kính của mặt cầu (S).

    Ta có: \overrightarrow{AI} = (t;t;4 -
t) \left\lbrack
\overrightarrow{AI},\overrightarrow{a_{2}} \right\rbrack = (5t - 4;4 -
5t;0)

    d\left( I;\Delta_{2} \right) =
\frac{\left| \left\lbrack \overrightarrow{AI},\overrightarrow{a_{2}}
\right\rbrack \right|}{\left| \overrightarrow{a_{2}} \right|} =
\frac{|5t - 4|}{3}

    d(I,(P)) = \frac{\left| 2 + t - 2t - 2(1
- t) + 10 \right|}{\sqrt{1 + 4 + 4}} = \frac{|t + 10|}{3}.

    (S) tiếp xúc với \Delta_{2}(P) d(I,\Delta_{2}) = d(I,(P)) |5t - 4| = |t + 10| \left\lbrack \begin{matrix}
t = \frac{7}{2} \\
t = - 1 \\
\end{matrix} \right..

    Với t = \frac{7}{2} I\left( \frac{11}{2};\frac{7}{2}; - \frac{5}{2}
\right), R = \frac{9}{2} (S):\left( x - \frac{11}{2} \right)^{2} +
\left( y - \frac{7}{2} \right)^{2} + \left( z + \frac{5}{2} \right)^{2}
= \frac{81}{4}.

    Với t = - 1 I(1; - 1;2),\ R = 3 (S):(x - 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
9.

  • Câu 5: Thông hiểu
    Xác định bán cầu mặt cầu ngoại tiếp tứ giác

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1;0;0),B(0;0;2),C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

    Hướng dẫn:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    O;A;B;C \in (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
a = - \frac{1}{2} \\
b = - \frac{3}{2} \\
c = 1 \\
\end{matrix} ight.

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}

  • Câu 6: Thông hiểu
    Tìm phương trình mặt cầu thích hợp

    Phương trình mặt cầu tâm I(2;4;6) nào sau đây tiếp xúc với trục Ox:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc trục Ox\Leftrightarrow R = d(I;Ox)

    \Leftrightarrow R = \sqrt{y_{I}^{2} +
z_{I}^{2}} = \sqrt{52}.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 52.

    Lưu ý : Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.

  • Câu 7: Thông hiểu
    Tính tổng tất cả các tham số m

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Hướng dẫn:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 8: Thông hiểu
    Viết phương trình mặt cầu

    Phương trình mặt cầu có tâm I\left( -
\sqrt{6}; - \sqrt{3};\sqrt{2} - 1 \right) và tiếp xúc trục Oz là:

    Hướng dẫn:

    Gọi H là hình chiếu của I\left(
- \sqrt{6}; - \sqrt{3};\sqrt{2} - 1 \right) trên Oz

    \Rightarrow H\left( 0;0;\sqrt{2}
- 1 \right) \Rightarrow R = IH = 3.

    Vậy phương trình mặt cầu là: \left( x +
\sqrt{6} \right)^{2} + \left( y + \sqrt{3} \right)^{2} + \left( z -
\sqrt{2} + 1 \right)^{2} = 9.

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Phương trình ở các đáp án (x - 1)^{2} +
(y - 1)^{2} + (z - 1)^{2} = 6, (2x
- 1)^{2} + (2y - 1)^{2} + (2z + 1)^{2} = 6, (x + y)^{2} = 2xy - z^{2} + 3 - 6x đều thỏa mãn điều kiện phương trình mặt cầu. Ví dụ:

    (2x - 1)^{2} + (2y - 1)^{2} + (2z +
1)^{2} = 6

    \Leftrightarrow \left( x - \frac{1}{2}
\right)^{2} + \left( y - \frac{1}{2} \right)^{2} + \left( z +
\frac{1}{2} \right)^{2} = \frac{3}{2}.

    (x + y)^{2} = 2xy - z^{2} + 3 -
6x\Leftrightarrow x^{2} + y^{2} + z^{2} +
6x - 3 = 0.

  • Câu 10: Vận dụng
    Chọn phương án thích hợp

    Trong không gian Oxyz cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4 = 0 \\
x + z - 2 = 0 \\
\end{matrix} \right.

    (C) có tâm H và bán kính r bằng:

    Hướng dẫn:

    Ta có:

    h = \frac{|0 + 0 - 2|}{\sqrt{1^{2} +
1^{2}}} = \sqrt{2}

    r = \sqrt{R^{2} - h^{2}} = \sqrt{4 - 2}
= 2.

    Đường thẳng qua tâm của (S) và vuông góc với mặt phẳng thiết diện có phương trình tham số:\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = t \\
\end{matrix} \right.

    Thế vào phương trình mặt phẳng thiết diện được t = 1 \Rightarrow Tâm H(1,0,1) .

  • Câu 11: Thông hiểu
    Viết phương trình mặt cầu

    Trong không gian (Oxyz), cho mặt phẳng(P):2x - y - z + 4 = 0 và điểm I(2; - 3; - 1); mặt cầu (S) tâm I và tiếp xúc mặt phẳng (P) có phương trình là

    Hướng dẫn:

    Mặt cầu (S) tâm I và tiếp xúc mặt phẳng (P) có bán kính là:

    R = \frac{\left| 2.2 - ( - 3) - ( - 1) + 4
ight|}{\sqrt{2^{2} + ( - 1)^{2} + ( - 1)^{2}}} =
2\sqrt{6}.

    Phương trình mặt cầu (S)

    (x - 2)^{2} + (y + 3)^{2} + (z + 1)^{2} =
\left( 2\sqrt{6} ight)^{2} = 24

  • Câu 12: Thông hiểu
    Tính diện tích đường tròn

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1; 2; −2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với (P).

    Hướng dẫn:

    Hình vẽ minh họa

    Vì H là trực tâm tam giác ABC nên AH ⊥ BC, CH ⊥ AB

    \Rightarrow \left\{ \begin{matrix}
AB\bot(OHC) \\
BC\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
(ABC)\bot(OHC) \\
(ABC)\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow OH\bot(ABC)

    Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính

    ⇒ Phương trình mặt cầu là x^{2} + y^{2} + z^{2} =
9.

  • Câu 13: Thông hiểu
    Tìm các khẳng định sai

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 và mặt phẳng (P):Ax + By + Cz + D = 0

    I. \frac{|Aa + Bb + Cc + D| -
\sqrt{\left( A^{2} + B^{2} + C^{2} \right)\left( a^{2} + b^{2} + c^{2} -
d \right)}}{A^{2} + B^{2} + C^{2}} > 0 \Rightarrow (P) cắt (S)

    II. \frac{|Aa + Bb + Cc + D| -
\sqrt{\left( A^{2} + B^{2} + C^{2} \right)\left( a^{2} + b^{2} + c^{2} -
d \right)}}{A^{2} + B^{2} + C^{2}} = 0 \Rightarrow (P)tiếp xúc (S)

    III. \frac{|Aa + Bb + Cc + D| -
\sqrt{\left( A^{2} + B^{2} + C^{2} \right)\left( a^{2} + b^{2} + c^{2} -
d \right)}}{A^{2} + B^{2} + C^{2}} < 0 \Rightarrow (P) không cắt (S)

    Xác định các khẳng định sai?

    Hướng dẫn:

    Đáp án cần tìm là: Chỉ I và III.

  • Câu 14: Nhận biết
    Xác định bán kính mặt cầu

    Trong không gian Oxyz, mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} + z^{2} =
9 có bán kính bằng:

    Hướng dẫn:

    Bán kính của mặt cầu (S)R = \sqrt{9} = 3.

  • Câu 15: Thông hiểu
    Chọn phương án đúng

    Cho mặt cầu (S): (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
9. Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):

    Hướng dẫn:

    Mặt cầu (S) tâm I(1;2;3), bán kính R = 3.

    Do mặt cầu (S') đối xứng với (S) qua mặt phẳng (Oxy) nên tâm I' của (S') đối xứng với I qua (Oxy), bán kính R' =R=3.

    Ta có: I'(1;2; - 3).

    Vậy (S):(x - 1)^{2} + (y - 2)^{2} + (z +
3)^{2} = 9.

    Lưu ý: Để ý thấy rằng trung điểm II' thuộc mặt phẳng (Oxy) \overrightarrow{II'}\bot(Oxy). Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ I' nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.

  • Câu 16: Vận dụng
    Tìm tập hợp các điểm M thỏa mãn biểu thức

    Cho tứ diện ABCD có A(1,2,3);\ \ \
B(0,0,3);\ \ \ C(0,2,0);\ \ \ D(1,0,0).Tìm tập hợp các điểm M thỏa mãn \left| \overrightarrow{AM} +
\overrightarrow{BM} + \overrightarrow{CM} + \overrightarrow{DM} \right|
= 8

    Hướng dẫn:

    Ta có:

    \left| \overrightarrow{AM} +
\overrightarrow{BM} + \overrightarrow{CM} + \overrightarrow{DM} \right|= \left| 4\left( x - \frac{1}{2} \right);4(y - 1);4\left( z -
\frac{3}{2} \right) \right| = 8

    \Rightarrow 16\left( x - \frac{1}{2}
\right)^{2} + 16(y - 1)^{2} + 16\left( z - \frac{3}{2} \right)^{2} =
64

    Mặt cầu (S):\left( x - \frac{1}{2}
\right)^{2} + (y - 1)^{2} + \left( z - \frac{3}{2} \right)^{2} =
4

  • Câu 17: Thông hiểu
    Xác định đường kính của mặt cầu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)?

    Hướng dẫn:

    Gọi tâm mặt cầu là I(x;y;0)

    Ta có:

    \left\{ \begin{matrix}
IA = IB \\
IA = IC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 1)^{2} + (y +
3)^{2} + 1^{2}} \\
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 2)^{2} + (y -
2)^{2} + 3^{2}} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(y - 2)^{2} + 4^{2} = (y + 3)^{2} + 1 \\
x^{2} - 2x + 1 + 16 = x^{2} - 4x + 4 + 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10y = 10 \\
2x = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 1 \\
x = - 2 \\
\end{matrix} ight.

    \Rightarrow l = 2R = 2\sqrt{( - 3)^{2} +
( - 1)^{2} + 4^{2}} = 2\sqrt{26}.

  • Câu 18: Vận dụng
    Tính độ dài đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 3 = 0 và mặt cầu (S) tâm I(5;
- 3;5), bán kính R =
2\sqrt{5}. Từ một điểm A thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại B. Tính OA biết AB =
4.

    Hướng dẫn:

    Hình vẽ minh họa

    Khoảng cách từ điểm I đến mặt phẳng (P) là

    d\left( I;(P) ight) = \frac{\left| 5 -
2.( - 3) + 2.5 - 3 ight|}{3} = 6

    Vì AB tiếp xúc với (S) tại B nên tam giác AIB vuông tại B, do đó ta có:

    IA = \sqrt{IB^{2} + AB^{2}} =
\sqrt{R^{2} + AB^{2}} = 6 = d\left( I;(P) ight)

    Đường thẳng IA đi qua I(5; −3; 5) có vectơ chỉ phương là \overrightarrow{u} = (1; - 2;2) nên có phương trình là: \left\{ \begin{matrix}
x = 5 + t \\
y = - 3 - 2t \\
z = 5 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do A = IA ∩ (P) nên 5 + t − 2(−3 − 2t) + 2(5 + 2t) − 3 = 0 ⇔ t = −2

    Vậy A(3; 1; 1) nên OA =
\sqrt{11}.

  • Câu 19: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là mét), một ngon hải đăng được đặt ở vị trí I(20;\ 35;\
60), biết rằng ngọn hải đăng được thiết kế với bán kính phủ sáng là 4 km.

    a) Phương trình mặt cầu để mô tả ranh giới vùng phủ sáng trên biển của hải đăng là: (x - 20)^{2} + (y - 35)^{2}
+ (z - 60)^{2} = 4^{2}.Sai||Đúng

    b) Điểm B( - 290;\ \  - 165;\ \
3660) nằm phía trong mặt cầu đó.Đúng||Sai

    c) Nếu người đi biển ở vị trí C(541\ ;\
137\ ;\  - 690) thì không thể nhìn được ánh sáng từ ngọn hải đăng. Sai||Đúng

    d) Giả sử người đi biển di chuyển theo đường thẳng từ vị trí điểm I(20;\ \ 35;\ \ 60) đến vị trí D(4020;\ \ 35;\ \ 3060). Vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển vẫn còn nhìn thấy được ánh sáng từ ngọn hải đăng là M( - 3180;\ 35;\ 2460). Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là mét), một ngon hải đăng được đặt ở vị trí I(20;\ 35;\
60), biết rằng ngọn hải đăng được thiết kế với bán kính phủ sáng là 4 km.

    a) Phương trình mặt cầu để mô tả ranh giới vùng phủ sáng trên biển của hải đăng là: (x - 20)^{2} + (y - 35)^{2}
+ (z - 60)^{2} = 4^{2}.Sai||Đúng

    b) Điểm B( - 290;\ \  - 165;\ \
3660) nằm phía trong mặt cầu đó.Đúng||Sai

    c) Nếu người đi biển ở vị trí C(541\ ;\
137\ ;\  - 690) thì không thể nhìn được ánh sáng từ ngọn hải đăng. Sai||Đúng

    d) Giả sử người đi biển di chuyển theo đường thẳng từ vị trí điểm I(20;\ \ 35;\ \ 60) đến vị trí D(4020;\ \ 35;\ \ 3060). Vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển vẫn còn nhìn thấy được ánh sáng từ ngọn hải đăng là M( - 3180;\ 35;\ 2460). Sai||Đúng

    a) Sai

    Mặt cầu tâm I(20;\ 35;\ 60), bán kính R = 4\ km\ \  = 4000\ m có phương trình là:

    (x - 20)^{2} + (y - 35)^{2} + (z -
60)^{2} = 4000^{2}

    b) Đúng

    Ta có: IB = \sqrt{( - 310)^{2} + ( -
200)^{2} + 3600^{2}} \approx 3618,9 < R.

    Do đó, điểm B nằm phía trong mặt cầu đó.

    c) Sai

    Với C(541\ ;\ 137\ ;\  - 690), ta có: IC = \sqrt{521^{2} + 102^{2} + ( -
750)^{2}} \approx 918,9 < R.

    Do đó, nếu người đi biển đứng ở vị trí C(541\ ;\ 137\ ;\  - 690) thì vẫn nhìn thấy ánh sáng từ ngọn hải đăng.

    d) Sai

    Gọi M(x\ ;\ \ y\ ;\ \ z) là điểm cuối cùng trên đoạn thẳng ID mà người đi biển vẫn còn nhìn thấy ánh sáng của ngon hải đăng.

    Khi đó, IM = R = 4000m.

    Ta có: ID = \sqrt{4000^{2} + 0^{2} +
3000^{2}} = 5000m.

    \overrightarrow{IM} = (x - 20; y -35; z - 60); \overrightarrow{ID} = (4000; 0;3000).

    M thuộc đoạn thẳng ID\frac{IM}{ID} = \frac{4000}{5000} =
\frac{4}{5} nên \overrightarrow{IM}
= \frac{4}{5}\overrightarrow{ID}.

    \Leftrightarrow \left\{ \begin{matrix}x - 20 = \dfrac{4}{5}.4000 \\y - 35 = \dfrac{4}{5}.0 \\z - 60 = \dfrac{4}{5}.3000\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}x = 3220 \\y = 35 \\z = 2460\end{matrix} \right.\Rightarrow M(3220 ;35 ;2460).

  • Câu 20: Nhận biết
    Xác định phương trình mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1; - 4;0) có bán kính bằng 3. Phương trình của (S) là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; - 4;0)và bán kính bằng 3có phương trình là:

    (x - 1)^{2} + (y + 4)^{2} + (z - 0)^{2}
= 3^{2}

    \Rightarrow (x - 1)^{2} + (y + 4)^{2} +
z^{2} = 9

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo