Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán trong không gian (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian cho điểm O và bốn điểm A, B, C, D không thẳng hàng. Điều kiện cần và đủ để A, B, C, D tạo thành hình bình hành là

    Hướng dẫn:

    Hình vẽ minh họa

    Trước hết, điều kiện cần và đủ để ABCD là hình bình hành là:

    \overrightarrow{BD} = \overrightarrow{BA}
+ \overrightarrow{BC}.

    Với mọi điểm O bất kì khác A, B, C, D, ta có:

    \overrightarrow{BD} =
\overrightarrow{BA} + \overrightarrow{BC}

    \Leftrightarrow \overrightarrow{OD} -
\overrightarrow{OB} = \overrightarrow{OA} - \overrightarrow{OB} +
\overrightarrow{OC} - \overrightarrow{OB}

    \Leftrightarrow \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}.

  • Câu 2: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1).

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3).

    c) Tam giác ABC là tam giác cân.

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5).

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1). Đúng

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3). Sai

    c) Tam giác ABC là tam giác cân. Đúng

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5). Sai

    a) Đúng.

    Trọng tâm tam giác có tọa độ là:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = 1 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = - 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = 1 \\\end{matrix} ight.\  \Rightarrow G(1; - 1;1)

    b) Sai. Vì \overrightarrow{AB} = ( -
3;3;6),\overrightarrow{AC} = (3; - 6;3)

    c) Đúng. Do AB = AC = 3\sqrt{6} nên tam giác ABC cân tại A.

    d) Sai. Gọi D(x;y;z), vì ABCD là hình bình hành nên

    \overrightarrow{AB} =
\overrightarrow{CD} \Leftrightarrow ( - 3;3;6) = (x - 4;y + 6;z -
1)

    \Leftrightarrow (x;y;z) = (1; -
3;7)

  • Câu 3: Thông hiểu
    Xác định góc giữa cặp vecto

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD} ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{AB}.\overrightarrow{CD}
= \overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = AB.AD.\cos60^{0} - AB.AC.\cos60^{0} =0

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{CD} ight) = 90^{0}

  • Câu 4: Nhận biết
    Tìm khẳng định đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt \overrightarrow{SA} =
\overrightarrow{a};\overrightarrow{SB} =
\overrightarrow{b};\overrightarrow{SC} =
\overrightarrow{c};\overrightarrow{SD} = \overrightarrow{d}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Gọi O là tâm hình bình hành ABCD. Khi đó:

    \overrightarrow{SA} +
\overrightarrow{SC} = \overrightarrow{SB} + \overrightarrow{SD} =
2\overrightarrow{SO}

    Vậy \overrightarrow{a} +
\overrightarrow{c} = \overrightarrow{d} +
\overrightarrow{b}.

  • Câu 5: Nhận biết
    Xác định góc giữa hai vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b}
\right|?

    Hướng dẫn:

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|, suy ra \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) = - 1 \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 180^{0}

  • Câu 6: Nhận biết
    Chọn đáp án thích hợp

    Tích vô hướng của 2 vectơ \overrightarrow{a},\overrightarrow{b}trong không gian được tính bằng:

    Hướng dẫn:

    Theo định nghĩa tích vô hướng của hai vecto, ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight).

  • Câu 7: Nhận biết
    Tính góc giữa hai vecto

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: EG//AC (do ACGE là hình chữ nhật)

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{EG} ight) = \left(
\overrightarrow{AB},\overrightarrow{AC} ight) = \widehat{BAC} =
45{^\circ}

  • Câu 8: Nhận biết
    Xác định mệnh đề đúng

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 9: Nhận biết
    Chọn khẳng định đúng

    Trong không gian cho hai đường thẳng a;b lần lượt có vectơ chỉ phương \overrightarrow{u};\overrightarrow{v}. Gọi \alpha là góc giữa hai đường thẳng a;b. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Khẳng định đúng: “Nếu a\bot b thì \overrightarrow{u}.\overrightarrow{v} =
\overrightarrow{0}”.

  • Câu 10: Nhận biết
    Chọn mệnh đề đúng

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng nên \left(
\overrightarrow{a},\overrightarrow{b} ight) = 0^{0} \Rightarrow
\cos\left( \overrightarrow{a},\overrightarrow{b} ight) =
1.

    Vậy \overrightarrow{a}.\overrightarrow{b}
= \left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

  • Câu 11: Thông hiểu
    Tính độ dài vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn điều kiện \left| \overrightarrow{a} \right| =
\left| \overrightarrow{b} \right| = 1\overrightarrow{a}.\overrightarrow{b} =
3. Độ dài vectơ 3\overrightarrow{a}
+ 5\overrightarrow{b}:

    Hướng dẫn:

    Ta có:

    \left( 3\overrightarrow{a} +
5\overrightarrow{b} ight)^{2} = 9{\overrightarrow{a}}^{2} +
30\overrightarrow{a}\overrightarrow{b} +
25{\overrightarrow{b}}^{2}

    = 9 + 90 + 25 = 124.

    \Rightarrow \left| 3\overrightarrow{a} +
5\overrightarrow{b} ight| = \sqrt{124}

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \overrightarrow{AC_{1}}.\overrightarrow{BD}.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}}.\overrightarrow{BD} =
\left( \overrightarrow{AA_{1}} + \overrightarrow{AC} ight)\left(
\overrightarrow{AD} - \overrightarrow{AB} ight)

    =
\overrightarrow{AC}.\overrightarrow{AD} -
\overrightarrow{AC}.\overrightarrow{AB} =
\overrightarrow{AC}.\overrightarrow{BD} = 0

    \Rightarrow
\overrightarrow{AC_{1}}.\overrightarrow{BD} = 0

  • Câu 13: Nhận biết
    Chọn đáp án thích hợp

    Cho hình hộp ABCD.A'B'C'D'. Gọi MN lần lượt là trung điểm của BCCD. Vectơ nào sau đây bằng 2\overrightarrow{MN}?

    Hướng dẫn:

    Ta có \overrightarrow{B'D'} cùng hướng với \overrightarrow{MN}B'D' = 2MN, suy ra \overrightarrow{B'D'} =2\overrightarrow{MN}

  • Câu 14: Nhận biết
    Tìm mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{AB} =
3\overrightarrow{AC} - 4\overrightarrow{AD} thỏa mãn biểu thức \overrightarrow{c} = m\overrightarrow{a} +
n\overrightarrow{b} (với m;n duy nhất) của định lí về các vectơ đồng phẳng.

    Vậy đáp án đúng là: “Nếu \overrightarrow{AB} = 3\overrightarrow{AC} -
4\overrightarrow{AD} thì bốn điểm A,B,C,D đồng phẳng.”

  • Câu 15: Nhận biết
    Chọn kết quả chính xác

    Cho hai vectơ \overrightarrow{u},\overrightarrow{v} đều khác \overrightarrow{0}. Khi đó \left| \overrightarrow{u} +
2\overrightarrow{v} \right|^{2} bằng

    Hướng dẫn:

    Ta có \left| \overrightarrow{u} +
2\overrightarrow{v} ight|^{2} = \left( \overrightarrow{u} +
2\overrightarrow{v} ight)^{2} = {\overrightarrow{u}}^{2} +
4{\overrightarrow{v}}^{2} +
4\overrightarrow{u}\overrightarrow{v}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (67%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng