Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán vectơ trong không gian (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Cho tứ diện ABCD với AB\bot AC,\ \ AB\bot BD. Gọi P,\ \ Q lần lượt là trung điểm của ABCD. Góc giữa PQAB là?

    Hướng dẫn:

    Ta có: \overrightarrow{AB}.\overrightarrow{PQ}
\Rightarrow AB\bot PQ

    Vậy góc giữa PQAB90^{0}.

  • Câu 2: Thông hiểu
    Chọn biểu thức phân tích vectơ đúng

    Cho hình lăng trụ tam giác ABC.A'B'C'\overrightarrow{AA'} =\overrightarrow{a};\overrightarrow{AB} =\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Hãy phân tích vectơ \overrightarrow{B'C} theo các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{B'C} =\overrightarrow{BB'} + \overrightarrow{BC} = - \overrightarrow{a} +\left( \overrightarrow{AC} - \overrightarrow{AB} ight)

    = - \overrightarrow{a} +\overrightarrow{c} - \overrightarrow{b} = - \overrightarrow{a} -\overrightarrow{b} + \overrightarrow{c}

  • Câu 3: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AOCD bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Vì ABCD là tứ diện đều nên AM\bot
CD;OM\bot CD

    Ta có: \overrightarrow{CD}.\overrightarrow{AO} =
\overrightarrow{CD}.\left( \overrightarrow{AM} + \overrightarrow{MO}
ight)

    =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MO} =
\overrightarrow{0}

    Suy ra \overrightarrow{CD}\bot\overrightarrow{AO} nên số đo góc giữa hai đường thẳng bằng 90^{0}.

  • Câu 4: Thông hiểu
    Xác định góc giữa cặp vecto

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD} ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{AB}.\overrightarrow{CD}
= \overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = AB.AD.\cos60^{0} - AB.AC.\cos60^{0} =0

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{CD} ight) = 90^{0}

  • Câu 5: Thông hiểu
    Tìm đẳng thức chưa chính xác

    Cho hình hộp ABCD.A'B'C'D và tâm O. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành suy ra \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} đúng.

    Do \overrightarrow{AB};\overrightarrow{CD} đối nhau và \overrightarrow{BC'};\overrightarrow{D'A} đối nhau nên \overrightarrow{AB} +
\overrightarrow{BC'} + \overrightarrow{CD} +
\overrightarrow{D'A} = \overrightarrow{0} đúng.

    Do \overrightarrow{AB} +
\overrightarrow{AA'} = \overrightarrow{AB'};\overrightarrow{AD}
+ \overrightarrow{DD'} = \overrightarrow{AD'} suy ra \overrightarrow{AB} =
\overrightarrow{AD} nên \overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AD} + \overrightarrow{DD'} sai.

    Do \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CC'} =
\overrightarrow{AC'}\overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} =
\overrightarrow{AC'} nên \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CC'} = \overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} đúng.

  • Câu 6: Vận dụng
    Xác định vị trí điểm M

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 7: Thông hiểu
    Chọn kết luận đúng

    Cho \overrightarrow{a}\overrightarrow{b}\overrightarrow{a} + 2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} -
4\overrightarrow{b}\left|
\overrightarrow{a} \right| = \left| \overrightarrow{b} \right|. Khi đó:

    Hướng dẫn:

    +Vì \overrightarrow{a} +
2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} - 4\overrightarrow{b} nên:

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight).\left( 5\overrightarrow{a} -
4\overrightarrow{b} ight) = 0

    \Leftrightarrow
5{\overrightarrow{a}}^{2} - 8{\overrightarrow{b}}^{2} +
6\overrightarrow{a}\overrightarrow{b} = 0

    \Leftrightarrow
\overrightarrow{a}\overrightarrow{b} = \frac{- 5{\overrightarrow{a}}^{2}
+ 8{\overrightarrow{b}}^{2}}{6}

    Ta có \left| \overrightarrow{a} ight| =
\left| \overrightarrow{b} ight| \Leftrightarrow \left|
\overrightarrow{a} ight|^{2} = \left| \overrightarrow{b}
ight|^{2}. Suy ra \overrightarrow{a}\overrightarrow{b} =
\frac{3{\overrightarrow{a}}^{2}}{6}

    \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} =
\dfrac{\dfrac{3{\overrightarrow{a}}^{2}}{6}}{{\overrightarrow{a}}^{2}} =
\dfrac{1}{2}.

  • Câu 8: Vận dụng
    Chọn kết luận đúng

    Cho tứ diện ABCD, M là một điểm nằm trong tứ diện. Các đường thẳng AM,BM,CM,DM cắt các mặt (BCD),(CDA),(DAB),(ABC) lần lượt tại A',B',C',D'. Mặt phẳng (\alpha) đi qua M và song song với (BCD) lần lượt cắt A'B',A'C',A'D' tại các điểm B_{1},C_{1},D_{1}.Khẳng định nào sau đây là đúng nhất. Chứng minh M là trọng tâm của tam giác B_{1}C_{1}D_{1}.

    Hướng dẫn:

    Hình vẽ minh họa

    M nằm trong tứ diện ABCD nên

    tồn tại x,y,z,t > 0 sao cho x\overrightarrow{MA} + y\overrightarrow{MB}
+ z\overrightarrow{MC} + t\overrightarrow{MD} = \overrightarrow{0}\ \ \
(1)

    Gọi (\alpha) là mặt phẳng đi qua M và song song với mặt phẳng (BCD).

    Ta có \left\{ \begin{matrix}
(\alpha)//(BCD) \\
(BB'A') \cap (\alpha) = MB_{1} \\
(BB'A') \cap (BCD) = BA' \\
\end{matrix} \right.\  \Rightarrow MB_{1}//BA'.

    Do đó \frac{MB_{1}}{BA'} =
\frac{MB'}{BB'} \Rightarrow \overrightarrow{MB_{1}} =
\frac{MB'}{BB'}\overrightarrow{BA'}\ \ \ (2)

    Trong (1), chiếu các vec tơ lên đường thẳng BB' theo phương (ACD) ta được:

    x\overrightarrow{MB'} +
y\overrightarrow{MB} + z\overrightarrow{MB'} +
t\overrightarrow{MB'} = \overrightarrow{0} \Rightarrow (x + y + z)\overrightarrow{MB'} +
y\overrightarrow{MB} = \overrightarrow{0}

    \Rightarrow (x + y + z +t)\overrightarrow{MB'} = y\overrightarrow{BB'}\Rightarrow\frac{MB'}{BB'} = \frac{y}{x + y + z + t}

    Từ (2) suy ra \overrightarrow{MB_{1}} = \frac{y}{x + y + z +
t}\overrightarrow{BA'}\ \ \ (3)

    Tương tự ta có \overrightarrow{MC_{1}} =
\frac{z}{x + y + z + t}\overrightarrow{CA'}\ \ (4)

    \overrightarrow{MD_{1}} = \frac{z}{x + y
+ z + t}\overrightarrow{DA'}\ \ (5)

    Mặt khác chiếu các vec tơ trong (1) lên mặt phẳng (BCD) theo phương AA' tì thu được y\overrightarrow{A'B} +
z\overrightarrow{A'C} + t\overrightarrow{A'D} =
\overrightarrow{0}.

    Vậy từ (3),(4),(5) ta có \overrightarrow{MB_{1}} + \overrightarrow{MC_{1}}+ \overrightarrow{MD_{1}}= \frac{1}{x + y + z + t}\left(y\overrightarrow{BA'} + z\overrightarrow{CA'} +t\overrightarrow{DA'} \right) = \overrightarrow{0}, hay M là trọng tâm của tam giác B_{1}C_{1}D_{1}.

  • Câu 9: Nhận biết
    Xác định mệnh đề đúng

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 10: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    a) Đúng: Ta có

    \overrightarrow{MA} = -
\overrightarrow{AM} = - \frac{1}{5}\overrightarrow{AD} = -
\frac{1}{5}\overrightarrow{b}

    b) Sai:

    \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC} = \frac{2}{5}(\overrightarrow{EF} +
\overrightarrow{EH} + \overrightarrow{EA}) =
\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -
\overrightarrow{c})

    c) Đúng:

    (m.\overrightarrow{a} +n.\overrightarrow{b} + p.\overrightarrow{c})^{2} =m^{2}.{\overrightarrow{a}}^{2} + n^{2}.{\overrightarrow{b}}^{2}+p^{2}.{\overrightarrow{c}}^{2} +2mn.\overrightarrow{a}.\overrightarrow{b}+2np\overrightarrow{b}.\overrightarrow{c} +2mp.\overrightarrow{a}.\overrightarrow{c}= m^{2}.{\overrightarrow{a}}^{2} +
n^{2}.{\overrightarrow{b}}^{2} + p^{2}.{\overrightarrow{c}}^{2}

    (vì \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đôi một vuông góc nên \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{b}.\overrightarrow{c} =
\overrightarrow{a}.\overrightarrow{c} = 0).

    Ta có

    \overrightarrow{MN} =\overrightarrow{MA} + \overrightarrow{AE} + \overrightarrow{EN}

    = -\frac{1}{5}\overrightarrow{b} + \overrightarrow{c} +\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -\overrightarrow{c})

    = \frac{2}{5}\overrightarrow{a} +\frac{1}{5}\overrightarrow{b} +\frac{3}{5}\overrightarrow{c}.

    d) Đúng:

    MN^{2} =
{\overrightarrow{MN}}^{2} = \left( \frac{2}{5}\overrightarrow{a} +
\frac{1}{5}\overrightarrow{b} + \frac{3}{5}\overrightarrow{c}
ight)^{2}

    = \frac{4}{25}{\overrightarrow{a}}^{2} +\frac{1}{25}{\overrightarrow{b}}^{2} +\frac{9}{25}{\overrightarrow{c}}^{2}= \frac{4}{25}.4 + \frac{1}{25}.9 +\frac{9}{25}.4 = \frac{61}{25}

    Suy ra MN =
\frac{\sqrt{61}}{5}.

  • Câu 11: Nhận biết
    Xác định mệnh đề không chính xác

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 12: Thông hiểu
    Chọn đáp án chính xác

    Trong không gian, cho hình chóp S.ABC với G là trọng tâm của tam giác ABC. Khi đó \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} bằng.

    Hướng dẫn:

    Do G là trọng tâm của tam giác ABC nên \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}.

    Áp dụng quy tắc ba điểm, ta có:

    \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC}

    = \left( \overrightarrow{SG} +
\overrightarrow{GA} ight) + \left( \overrightarrow{SG} +
\overrightarrow{GB} ight) + \left( \overrightarrow{SG} +
\overrightarrow{GC} ight).

    = 3\overrightarrow{SG} + \left(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} ight)= 3\overrightarrow{SG}

  • Câu 13: Nhận biết
    Phân tích vectơ

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{BD} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{BD} =
\overrightarrow{AD} - \overrightarrow{AB} \Rightarrow
\overrightarrow{BD} = - \overrightarrow{AB} + \overrightarrow{AD} +
0.\overrightarrow{AA_{1}}

  • Câu 14: Nhận biết
    Tính góc giữa hai vecto

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: EG//AC (do ACGE là hình chữ nhật)

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{EG} ight) = \left(
\overrightarrow{AB},\overrightarrow{AC} ight) = \widehat{BAC} =
45{^\circ}

  • Câu 15: Thông hiểu
    Tìm câu sai

    Cho hình chóp S.ABCD. Gọi O là giao điểm của ACBD.

    Hướng dẫn:

    Nếu \overrightarrow{SA}
+ \overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO} thì ABCD là hình thang ». Đúng vì \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}SC\bot(BIH).

    O,A,CBIH thẳng hàng nên đặt \overrightarrow{OA} = k\overrightarrow{OC};OB =
m\overrightarrow{OD}

    \Rightarrow (k + 1)\overrightarrow{OC} +
(m + 1)\overrightarrow{OD} = \overrightarrow{0}.

    \overrightarrow{OC},\overrightarrow{OD} không cùng phương nên k = - 2m = - 2 \Rightarrow \frac{OA}{OC} =
\frac{OB}{OD} = 2 \Rightarrow AB//CD.

    Nếu ABCD là hình bình hành thì \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO}. ». Đúng. Học sinh tự biến đổi bằng cách chiêm điểm O vào vế trái.

    Nếu ABCD là hình thang thì \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}. ». Sai. Vì nếu ABCD là hình thang cân có 2 đáy là AD,BC thì sẽ sai.

    Nếu \overrightarrow{SA}
+ \overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO} thì ABCD là hình bình hành. ». Đúng. Tương tự đáp án A với k = - 1,m = - 1 \Rightarrow O là trung điểm 2 đường chéo.

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Cho \left| \overrightarrow{a} ight| =
3;\left| \overrightarrow{b} ight| = 5, góc giữa \overrightarrow{a};\overrightarrow{b} bằng 120^{0}. Chọn khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = 3.5.cos120^{0} = -
\frac{15}{2}

    Khi đó:

    \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 -
15 + 25 = 19

    \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 +
15 + 25 = 49

    \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 +
30 + 100 = 139

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 -
30 + 100 = 79

    Vậy khẳng định sai là \left| \overrightarrow{a} +
2\overrightarrow{b} ight| = 9.

  • Câu 17: Thông hiểu
    Xác định độ lớn góc giữa hai vectơ

    Cho hình chóp S.ABCSA = SB = SC\widehat{ASB} = \widehat{BSC} =
\widehat{CSA}. Góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC} là:

    Hướng dẫn:

    Ta có: \overrightarrow{SA}.\overrightarrow{BC} =
\overrightarrow{SA}.\left( \overrightarrow{SC} - \overrightarrow{SB}
ight)

    =
\overrightarrow{SA}.\overrightarrow{SC} -
\overrightarrow{SA}.\overrightarrow{SB}

    = \left| \overrightarrow{SA}ight|.\left| \overrightarrow{SC} ight|.\cos\widehat{ASC} - \left|\overrightarrow{SA} ight|.\left| \overrightarrow{SB}ight|.\cos\widehat{ASB} = 0

    Vậy góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC}90^{0}.

  • Câu 18: Thông hiểu
    Tìm câu sai

    Cho tứ diện ABCD có các cạnh đều bằng a. Xác định câu sai trong các câu dưới đây?

    Hướng dẫn:

    Hình vẽ minh họa

    ABCD là tứ diện đều nên các tam giác ABC,BCD,CDA,ABD là các tam giác đều.

    Đáp án \overrightarrow{AD} +
\overrightarrow{CB} + \overrightarrow{BC} + \overrightarrow{DA} =
\overrightarrow{0}.

    Đúng vì \overrightarrow{AD} + \overrightarrow{CB} +
\overrightarrow{BC} + \overrightarrow{DA} = \overrightarrow{DA} +
\overrightarrow{AD} + \overrightarrow{BC} + \overrightarrow{CB} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AB}.\overrightarrow{BC} = -
\frac{a^{2}}{2}.

    Đúng vì \overrightarrow{AB}.\overrightarrow{BC} = -\overrightarrow{BA}.\overrightarrow{BC}= - a.a.\cos60^{0} = \frac{-
a^{2}}{2}.

    Đáp án \overrightarrow{AC}.\overrightarrow{AD} =
\overrightarrow{AC}.\overrightarrow{CD}.

    Sai vì \overrightarrow{AC}.\overrightarrow{AD} =a.a.\cos60^{0} = \frac{a^{2}}{2}; \overrightarrow{AC}.\overrightarrow{CD} = -
\overrightarrow{CA}.\overrightarrow{CD} = - a.a.\cos60^{0} = -
\frac{a^{2}}{2}

    Đáp án AB\bot CD hay \overrightarrow{AB}.\overrightarrow{CD} =
0.

    Đúng vì \overrightarrow{AB}\bot\overrightarrow{CD}
\Rightarrow \overrightarrow{AB}.\overrightarrow{CD} = 0.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Cho lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi G là trọng tâm tam giác AB'C. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{BA} +
\overrightarrow{BC} + \overrightarrow{BB'} =
\overrightarrow{BD'}

    Do G là trọng tâm tam giác AB'C suy ra \overrightarrow{BA} + \overrightarrow{BC} +
\overrightarrow{BB'} = 3\overrightarrow{BG} \Leftrightarrow
\overrightarrow{BD'} = 3\overrightarrow{BG}

  • Câu 20: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính góc giữa đường thẳng AC' với các đường thẳng AB,AD,AA'.

    Hướng dẫn:

    Hình vẽ minh họa

    \left( \widehat{AC',AB} \right) =
\left( \widehat{AC',AD} \right) = \left( \widehat{AC',AA'}
\right) = \arccos\frac{\sqrt{6}}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo