Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Nguyên hàm của một số hàm số sơ cấp (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị biểu thức

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
3x^{2} - 1\ \ khi\ x < 1 \\
\end{matrix} ight. có một nguyên hàm là F(x) thỏa mãn F(0) = 1F(x) liên túc trên \mathbb{R}. Giá trị biểu thức K = F( - 1) - F(2) bằng:

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{2} + C_{1}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + C_{2}\ \ khi\ x < 1 \\
\end{matrix} ight.

    F(0) = 1 \Rightarrow C_{2} =
1

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 1 tức là

    \lim_{x ightarrow 1^{+}}F(x) = \lim_{x
ightarrow 1^{-}}F(x) = F(1)

    \Leftrightarrow 1 + C_{1} = C_{2}
\Leftrightarrow C_{1} = 0

    Do đó F(x) = \left\{ \begin{matrix}
x^{2}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + 1\ \ khi\ x < 1 \\
\end{matrix} ight.

    K = F( - 1) - F(2) = ( - 1 + 1 + 1) +
\left( 2^{2} ight) = 5

  • Câu 2: Thông hiểu
    Tìm một nguyên hàm F(x) của hàm số

    Một nguyên hàm F(x) của hàm số f(x) = 2x+ \frac{1}{\sin^2x} thỏa mãn F(\frac{\pi}{4}) = - 1 là:

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{\left( 2x +\frac{1}{sin^{2}x} \right)dx = x^2- \cot x} + C

    F\left( \frac{\pi}{4} \right) = - 1
\Leftrightarrow \left( \frac{\pi}{4} \right)^{2} - \cot\frac{\pi}{4} + C
= - 1

    \Leftrightarrow C =
\frac{\pi^{2}}{16}

    Vậy F(x) = - cotx + x^{2} -
\frac{\pi^{2}}{16}

  • Câu 3: Nhận biết
    Chọn phương án đúng

    Tìm nguyên hàm của hàm số:

    f(x) = 3\sin3x - \cos3x

    Hướng dẫn:

    Ta có:

    \int_{}^{}{(3sin3x - \cos3x)dx =\frac{3}{3}.( - \cos3x) - \frac{1}{3}.\sin3x + C}

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức S

    Biết \int_{}^{}{3x^{2}(2020 +
x^{3})^{2019}dx} = a(2020 + x^{3})^{b} + C, với a \in \mathbb{Q};{\text{ }}b \in \mathbb{Z}. Tính giá trị S = \frac{1}{{{{\left( {a.b} \right)}^{2020}}}}?

    Hướng dẫn:

    Ta có:

    \int_{}^{}{3x^{2}(2020 +
x^{3})^{2019}dx} = \int_{}^{}{(2020 + x^{3})^{2019}d\left( x^{3} + 2020
\right)} = \frac{1}{2020}(2020 + x^{3})^{2020} + C

    \Rightarrow a = \frac{1}{2020};b =
2020

    \Rightarrow S = \frac{1}{{{{\left( {\frac{1}{{2020}}.2020} \right)}^{2020}}}} = 1

  • Câu 5: Thông hiểu
    Xác định số cực trị của hàm số

    Hàm số F(x) là nguyên hàm của f(x) = (1 - x)\ln\left( x^{2} + 1
ight). Hỏi hàm số F(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}

    Ta có: F'(x) = f(x) = (1 -
x)\ln\left( x^{2} + 1 ight)

    \Rightarrow F'(x) = 0
\Leftrightarrow (1 - x)\ln\left( x^{2} + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - x = 0 \\
\ln\left( x^{2} + 1 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Phương trình F'(x) = 0 có 1 nghiệm đơn x = 1 và một nghiệm kép x = 0 nên hàm số F(x) có 1 điểm cực trị.

  • Câu 6: Thông hiểu
    Biết F(x) = x2 + 4x + 1 là một nguyên hàm của hàm số y = f(x)

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

    Gợi ý:

     f\left( x ight) = \left[ {F\left( x ight)} ight]'

    Hướng dẫn:

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 7: Thông hiểu
    Xác định hàm số f(x)

    Nếu \int_{}^{}{f(x)dx = e^{x} + sin^2x+ C} thì f(x) là hàm nào ?

    Hướng dẫn:

    Ta có: \left( e^{x} + sin^{2}x + C\right)^{'} = e^{x} + sin2x.

  • Câu 8: Thông hiểu
    Tính giá trị của biểu thức

    Gọi F(x) là một nguyên hàm của hàm số f(x), với f(x) = 3sinx + \frac{4}{cos^{2}x}, biết F(0) = 2. Tính F\left( \frac{\pi}{3} \right).

    Hướng dẫn:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
3sinx + \frac{4}{cos^{2}x} \right)dx}

    = 3\int_{}^{}{\sin xdx} +
4\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = - 3cosx + 4tanx + C.

    Do đó F(x) = - 3cosx + 4tanx +
C.

    F(0) = 2 \Leftrightarrow - 3 + C = 2
\Leftrightarrow C = 5.

    Suy ra F(x) = - 3cosx + 4tanx +
5.

    Vậy F\left( \frac{\pi}{3} \right) = -
3cos\frac{\pi}{3} + 4tan\frac{\pi}{3} + 5 = \frac{7}{2} +
4\sqrt{3}.

  • Câu 9: Nhận biết
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Hướng dẫn:

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 10: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} thỏa mãn f(x) + xf'(x)
= 3x^{2}f(2) = 8. Phương trình tiếp tuyến của đồ thị hàm số y
= f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

    Ta có: f(x) + xf'(x) =
3x^{2}

    \Leftrightarrow (x)'f(x) +
xf'(x) = 3x^{2}

    \Leftrightarrow \left( xf'(x)
ight)' = 3x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( xf'(x)
ight)'dx} = \int_{}^{}{3x^{2}dx} \Leftrightarrow xf(x) = x^{3} +
C

    Lại có f(2) = 8 \Rightarrow 2f(2) = 8 + C
\Leftrightarrow 2.8 = C + 8 \Leftrightarrow C = 8

    Từ đó suy ra xf(x) = x^{3} + 8
\Leftrightarrow f(x) = \frac{x^{3} + 8}{x}

    Xét phương trình hoành độ giao điểm \frac{x^{3} + 8}{x} = 0 \Leftrightarrow x = -
2

    Ta có: f'(x) = \frac{2x^{3} -
8}{x^{2}} \Rightarrow f'( - 2) = - 6;f( - 2) = 0

    Phương trình tiếp tuyến tại giao điểm với trục hoành là

    y = f'( - 2)(x + 2) + f( -
2)

    \Leftrightarrow y = - 6(x + 2)
\Rightarrow y = - 6x - 12

  • Câu 11: Vận dụng
    Tính giá trị biểu thức

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

    Gợi ý:

     Sử dụng tích phân từng phần

    Hướng dẫn:

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 12: Thông hiểu
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Hướng dẫn:

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    Xét từng đáp án ta thấy:

    \left( \frac{x^{3}}{3} + \frac{3}{2}x^{2}
+ 2x \right)' = x^{2} + 3x + 2.

    Vậy nguyên hàm của hàm số f(x) = (x +
1)(x + 2) là: F(x) =
\frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x + C

  • Câu 13: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) thỏa mãn f'(x) - f(x) = e^{x}f(0) = 2. Phương trình tiếp tuyến của đồ thị hàm số y(x) = f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

    Ta có: f'(x) - f(x) = e^{x}. Nhân cả hai vế với e^{- x} ta được:

    e^{- x}f'(x) - e^{- x}.f(x) =
1

    \Leftrightarrow \left( e^{- x}.f(x)
ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \Leftrightarrow \int_{}^{}{\left( e^{-
x}.f(x) ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow e^{- x}.f(x) =
x + C

    f(0) = 2 \Rightarrow f(0) = 0 + C
\Leftrightarrow C = 2

    Suy ra e^{- x}.f(x) = x + 2
\Leftrightarrow f(x) = \frac{x + 2}{e^{- x}} = (x + 2)e^{x}

    \Rightarrow f'(x) = (x +
3)e^{x}

    Xét phương trình hoành độ giao điểm (x +
2)e^{x} = 0 \Leftrightarrow x = - 2

    Ta có: f'( - 2) = ( - 2 + 3)e^{- 2} =
e^{- 2};f( - 2) = 0

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là: y = e^{- 2}(x + 2)

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Hãy xác định hàm số f(x) từ đẳng thức: x^{2} + xy + C =
\int_{}^{}{f(y)dy}

    Hướng dẫn:

    Ta có: \left( x^{2} + xy \right)' = x
+ C

    Vậy f(x) = x.

  • Câu 15: Thông hiểu
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
x\sqrt{x}.

    Hướng dẫn:

    Ta có:

    \int_{}^{}{x\sqrt{x}dx =
\int_{}^{}{x^{\frac{3}{2}}dx = \frac{2}{5}x^{\frac{5}{2}} + C =
\frac{2}{5}x^{2}\sqrt{x} + C}}.

  • Câu 16: Thông hiểu
    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) =
\frac{e^{x} + x.e^{x}.\ln x}{x} ?

    Hướng dẫn:

    Ta có f(x) = \frac{e^{x} +
x.e^{x}.\ln x}{x} = \frac{\left( 1 + x\ln x ight)e^{x}}{x}

    = \left( \frac{1}{x} + \ln x ight)e^{x}
= \left\lbrack \left( \ln x ight)' + \ln x ightbrack
e^{x}

    \Rightarrow F(x) = e^{x}.\ln x + C là nguyên hàm của hàm số đã cho.

  • Câu 17: Thông hiểu
    Tìm họ nguyên hàm của hàm số f(x)

    Họ nguyên hàm của hàm số f(x) =
\frac{\sin x}{\cos x - 3} là:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{\frac{\sin x}{\cos x - 3}dx =
\int_{}^{}{\frac{- d\left( \cos x - 3 \right)}{\cos x - 3} = - \ln\left|
\cos x - 3 \right| + C}}

  • Câu 18: Thông hiểu
    Chọn phương án thích hợp

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{5x - 2}.

    Hướng dẫn:

    Ta có

    \int_{}^{}{f(x)dx = \int_{}^{}{\frac{dx}{5x - 2}}}

    = \frac{1}{5}\int_{}^{}{\frac{d(5x - 2)}{5x- 2} = \frac{1}{5}\ln|5x - 2| + C}

  • Câu 19: Thông hiểu
    Tính giá trị của biểu thức

    Biết hàm số f(x) = 2x\left( 1 + 3x^{3}
\right) có nguyên hàm là F(x) =
ax^{2} + \frac{b}{c}x^{5} + C với a,b,c\mathbb{\in Z}\frac{b}{c} là phân số tối giản. Tính giá trị biểu thức T = \frac{a + b +
c}{a.b.c}.

    Hướng dẫn:

    Ta có: f(x) = 2x\left( 1 + 3x^{3} \right)
= 2x + 6x^{4}

    \int_{}^{}{f(x)dx} = x^{2} +
\frac{6x^{5}}{5} + C khi đó a = 1;b
= 6;c = 5

    \Rightarrow T = \frac{1 + 6 + 5}{1.6.5}
= \frac{2}{5}

    Vậy đáp án cần tìm là: T =
\frac{2}{5}

  • Câu 20: Thông hiểu
    Tìm nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{\sqrt{x + 1} + \sqrt{x - 1}} .

    Hướng dẫn:

    Ta có

    \int_{}^{}{\frac{dx}{\sqrt{x + 1} +
\sqrt{x - 1}} }= \int_{}^{}\frac{\left( \sqrt{x + 1} - \sqrt{x - 1}
ight)dx}{\left( \sqrt{x + 1} - \sqrt{x - 1} ight)\left( \sqrt{x + 1}
+ \sqrt{x - 1} ight)}

    =
\frac{1}{2}\int_{}^{}{\left( \sqrt{x + 1} - \sqrt{x - 1} ight)dx }=
\frac{1}{2}.\frac{2}{3}\left\lbrack (x + 1)^{\frac{3}{2}} - (x -
1)^{\frac{3}{2}} ightbrack + C

    = \frac{1}{3}\left\lbrack (x +
1)^{\frac{3}{2}} - (x - 1)^{\frac{3}{2}} ightbrack + C

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo