Biết hàm số có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Biết hàm số có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Nguyên hàm của hàm số là
Ta có
.
Cho hàm số . Gọi
là một nguyên hàm của
. Chọn phương án sai.
Ta có
Từ đây ta thấy đúng.
Với ta thấy
, vậy
sai.
Họ nguyên hàm của là:
Ta đặt:
.
.
Cho hàm số thỏa mãn
và
. Mệnh đề nào dưới đây đúng?
Ta có
Do nên
.
Vậy .
Cho hàm số xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Biết rằng . Xác định
?
Ta có:
Do đó:
Kết quả nào dưới đây không phải là nguyên hàm của ?
Ta có:
.
Tìm nguyên hàm của hàm số
Nguyên hàm của hàm số là:
Ta có:
Tìm ?
Đặt với
Ta có :
Cho là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Cho hàm số có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Tìm nguyên hàm của hàm số
Tích phân từng phần:
Đặt
Cho hàm số có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Tìm họ các nguyên hàm của hàm số ?
Ta có:
Tìm nguyên hàm của hàm số
, biết
.
Ta có:
Mà
Vậy đáp án cần tìm là:
Cho hàm số xác định trên
thỏa mãn
và
. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: