Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Nguyên hàm của một số hàm số sơ cấp (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Hướng dẫn:

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 2: Nhận biết
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Hướng dẫn:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 3: Thông hiểu
    Tìm họ nguyên hàm của hàm số f(x)

    Họ nguyên hàm của hàm số f(x) =
\frac{\sin x}{\cos x - 3} là:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{\frac{\sin x}{\cos x - 3}dx =
\int_{}^{}{\frac{- d\left( \cos x - 3 \right)}{\cos x - 3} = - \ln\left|
\cos x - 3 \right| + C}}

  • Câu 4: Vận dụng
    Tính giá trị biểu thức

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

    Gợi ý:

     Sử dụng tích phân từng phần

    Hướng dẫn:

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 5: Thông hiểu
    Tìm nguyên hàm của hàm số

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 6: Thông hiểu
    Xác định một nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 7: Thông hiểu
    Tìm câu sai

    Cho hàm số f(x) = \frac{1}{2x -
3} . Gọi F(x) là một nguyên hàm của f(x). Chọn phương án sai.

    Hướng dẫn:

    Ta có F(x) = \int_{}^{}\frac{1}{2x - 3}dx
= \int_{}^{}{\frac{1}{2}.\frac{1}{(2x - 3)}d(2x - 3)}

    = \frac{\ln|2x - 3|}{2} + C

    Từ đây ta thấy F(x) = \frac{\ln|2x -
3|}{2} + 10 đúng.

    Với F(x) = \frac{\ln|4x - 6|}{4} +
10 ta thấy

    \frac{\ln|4x - 6|}{4} + 10 = \frac{ln2 +
\ln|2x - 3|}{4} + 10 eq F(x), vậy F(x) = \frac{\ln|4x - 6|}{4} + 10 sai.

  • Câu 8: Thông hiểu
    Biết F(x) = x2 + 4x + 1 là một nguyên hàm của hàm số y = f(x)

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

    Gợi ý:

     f\left( x ight) = \left[ {F\left( x ight)} ight]'

    Hướng dẫn:

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 9: Thông hiểu
    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \frac{1}{1 +
e^{x}} là:

    Hướng dẫn:

    Thay vì đi tìm nguyên hàm của hàm số theo cách truyền thống, ta có thể giải bài toán bằng bảng ở trên như sau:

    f(x) = \frac{1}{1 + e^{x}} = \frac{\left(
1 + e^{x} ight) - e^{x}}{1 + e^{x}} = 1 - \frac{e^{x}}{1 +
e^{x}}

    = x' - \frac{\left( 1 +
e^{x} ight)'}{1 + e^{x}} = x' - \left( \ln\left( e^{x} + 1
ight) ight)'

    = \left( x - \ln\left( e^{x} + 1 ight)
ight)' \Rightarrow \int_{}^{}{f(x)dx = x - \ln\left( e^{x} + 1
ight) + C}

  • Câu 10: Thông hiểu
    Tìm nguyên hàm của hàm số

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Hướng dẫn:

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 11: Thông hiểu
    Chọn phương án thích hợp

    Nguyên hàm của hàm số f(x) =
\frac{1}{\left( \ln x \right)^{2}} - \frac{1}{\ln x}

    Hướng dẫn:

    Ta có f(x) = \frac{1}{\left( \ln x
ight)^{2}} - \frac{1}{\ln x} = \frac{1 - \ln x}{\left( \ln x
ight)^{2}}

    = \frac{( - x)'.\ln x - ( - x).\left(
\ln x ight)'}{\left( \ln x ight)^{2}} = \left( \frac{- x}{\ln x}
ight)'

    \Rightarrow \int_{}^{}{f(x)dx = \frac{-
x}{\ln x} + C}.

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx = x^{2} - x +
C}. Khi đó \int_{}^{}{\mathbf{f}\left(
\mathbf{x}^{\mathbf{2}} \right)\mathbf{dx}} bằng:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{f(x)dx = x^{2} - x + C}
\Rightarrow f(x) = 2x - 1

    \Rightarrow f\left( x^{2} \right) =
2\left( x^{2} \right) - 1 = 2x^{2} - 1

    \int {f\left( {{x^2}} \right)dx}  = \frac{2}{3}{x^3} - x + C

  • Câu 13: Thông hiểu
    Xác định một nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{2x}{x + \sqrt{x^{2} -
1}}?

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{\frac{2x}{x +
\sqrt{x^{2} - 1}}dx} = \int_{}^{}{\left\lbrack 2x\left( x - \sqrt{x^{2}
- 1} ight) ightbrack dx}

    = \int_{}^{}{2x^{2}dx} -
\int_{}^{}{\left\lbrack 2x\sqrt{x^{2} - 1} ightbrack dx} =
\frac{2}{3}x^{3} - \int_{}^{}{\left( x^{2} - 1
ight)^{\frac{1}{2}}d\left( x^{2} - 1 ight)}

    = \frac{2}{3}x^{3} - \frac{2}{3}\left(
x^{2} - 1 ight)\sqrt{x^{2} - 1} + C

    Vậy một nguyên hàm của hàm số là F(x) =
\frac{2}{3}x^{3} - \frac{2}{3}\left( x^{2} - 1 ight)\sqrt{x^{2} -
1}.

  • Câu 14: Thông hiểu
    Tính giá trị của biểu thức

    Biết rằng \int_{}^{}{\frac{1}{x^{3} -
x}dx = a\ln\left| (x - 1)(x + 1) ight| + b\ln|x| + C}. Tính giá trị biểu thức H = 2a + b?

    Hướng dẫn:

    Ta có:

    \frac{1}{x^{3} - x} = \frac{A}{x} +
\frac{B}{x - 1} + \frac{D}{c + 1}

    = \frac{A\left( x^{2} - 1 ight) + Bx(x
+ 1) + Dx(x - 1)}{x^{3} - x}

    = \frac{(A + B + D)x^{2} + (B - D)x -
A}{x^{3} - x}

    \Rightarrow \left\{ \begin{matrix}A + B + D = 0 \\B - D = 0 \\- A = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = \dfrac{1}{2} \\D = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{1}{x^{3} - x}dx}
= \int_{}^{}{\left\lbrack \frac{- 1}{x} + \frac{1}{2(x - 1)} +
\frac{1}{2(x + 1)} ightbrack dx}

    = \frac{1}{2}\ln\left| (x - 1)(x + 1)
ight| - \ln|x| + C

    Suy ra a = \frac{1}{2};b = - 1
\Rightarrow H = 0.

  • Câu 15: Thông hiểu
    Tính giá trị biểu thức

    Cho hai hàm số F(x) = \left( x^{2} + bx +
c ight)e^{x}f(x) = \left(
x^{2} + 3x + 4 ight)e^{x}. Biết a;b là các số thực để F(x) là một nguyên hàm của f(x). Tính S
= a + b?

    Hướng dẫn:

    Từ giả thiết ta có:

    F'(x) = f(x)

    \Leftrightarrow (2x + a)e^{x} + \left(
x^{2} + ax + b ight)e^{x} = \left( x^{2} + 3x + 4 ight)e^{x};\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} + (2 + a)x + a + b
= x^{2} + 3x + 4;\forall x\mathbb{\in R}

    Đồng nhất hai vế ta có: \left\{
\begin{matrix}
a + 2 = 3 \\
a + b = 4 \\
\end{matrix} ight.\  \Rightarrow S = a + b = 4.

  • Câu 16: Nhận biết
    Tính giá trị của biểu thức

    Biết hàm số f(x) = (x - 3)^{4} có nguyên hàm là F(x) = \frac{(x -
3)^{a}}{b} + C với a,b\mathbb{\in
Z}. Tính giá trị biểu thức T =
a^{2} + b^{2}.

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = \frac{(x -
3)^{5}}{5} + C = F(x)\ \

    F(x) = \frac{(x - 3)^{a}}{b} + C
\Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 5 \\
\end{matrix} \right.

    \Rightarrow T = 5^{2} + 5^{2} =
50

  • Câu 17: Vận dụng
    Tính tổng các nghiệm của phương trình

    Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{x}{{\sqrt {8 - {x^2}} }} thỏa mãn F(2) = 0 

    Hướng dẫn:

    \begin{matrix}  F\left( x ight) = \int {f\left( x ight)dx}  \hfill \\   = \int {\dfrac{x}{{\sqrt {8 - {x^2}} }}dx}  = \dfrac{1}{2}\int {d\frac{x}{{\sqrt {8 - {x^2}} }}d\left( {8 - {x^2}} ight)}  \hfill \\   \Rightarrow F\left( x ight) =  - \sqrt {8 - {x^2}}  + C \hfill \\ \end{matrix}

    Ta có: F(2) = 0 => C = 2

    => F\left( x ight) =  - \sqrt {8 - {x^2}}  + 2

    Xét phương trình F(x) = x ta có:

    \begin{matrix}  F\left( x ight) = x \hfill \\   \Leftrightarrow  - \sqrt {8 - {x^2}}  + 2 = x \hfill \\   \Leftrightarrow \sqrt {8 - {x^2}}  = 2 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2 - x \geqslant 0} \\   {8 - {x^2} = {{\left( {2 - x} ight)}^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {{x^2} - 2x + 2 = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {x = 1 \pm \sqrt 3 } \end{array}} ight. \Leftrightarrow x = 1 - \sqrt 3  \hfill \\ \end{matrix}

    Vậy tổng các nghiệm của phương trình đã cho bằng x = 1 - \sqrt 3

  • Câu 18: Thông hiểu
    Chọn phương án thích hợp

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{5x - 2}.

    Hướng dẫn:

    Ta có

    \int_{}^{}{f(x)dx = \int_{}^{}{\frac{dx}{5x - 2}}}

    = \frac{1}{5}\int_{}^{}{\frac{d(5x - 2)}{5x- 2} = \frac{1}{5}\ln|5x - 2| + C}

  • Câu 19: Thông hiểu
    Tính giá trị của biểu thức

    Biết hàm số f(x) = 2x\left( 1 + 3x^{3}
\right) có nguyên hàm là F(x) =
ax^{2} + \frac{b}{c}x^{5} + C với a,b,c\mathbb{\in Z}\frac{b}{c} là phân số tối giản. Tính giá trị biểu thức T = \frac{a + b +
c}{a.b.c}.

    Hướng dẫn:

    Ta có: f(x) = 2x\left( 1 + 3x^{3} \right)
= 2x + 6x^{4}

    \int_{}^{}{f(x)dx} = x^{2} +
\frac{6x^{5}}{5} + C khi đó a = 1;b
= 6;c = 5

    \Rightarrow T = \frac{1 + 6 + 5}{1.6.5}
= \frac{2}{5}

    Vậy đáp án cần tìm là: T =
\frac{2}{5}

  • Câu 20: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} thỏa mãn f(x) + xf'(x)
= 3x^{2}f(2) = 8. Phương trình tiếp tuyến của đồ thị hàm số y
= f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

    Ta có: f(x) + xf'(x) =
3x^{2}

    \Leftrightarrow (x)'f(x) +
xf'(x) = 3x^{2}

    \Leftrightarrow \left( xf'(x)
ight)' = 3x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( xf'(x)
ight)'dx} = \int_{}^{}{3x^{2}dx} \Leftrightarrow xf(x) = x^{3} +
C

    Lại có f(2) = 8 \Rightarrow 2f(2) = 8 + C
\Leftrightarrow 2.8 = C + 8 \Leftrightarrow C = 8

    Từ đó suy ra xf(x) = x^{3} + 8
\Leftrightarrow f(x) = \frac{x^{3} + 8}{x}

    Xét phương trình hoành độ giao điểm \frac{x^{3} + 8}{x} = 0 \Leftrightarrow x = -
2

    Ta có: f'(x) = \frac{2x^{3} -
8}{x^{2}} \Rightarrow f'( - 2) = - 6;f( - 2) = 0

    Phương trình tiếp tuyến tại giao điểm với trục hoành là

    y = f'( - 2)(x + 2) + f( -
2)

    \Leftrightarrow y = - 6(x + 2)
\Rightarrow y = - 6x - 12

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo