Cho F(x) là một nguyên hàm của hàm số thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Cho F(x) là một nguyên hàm của hàm số thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Cho hàm số , ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Tìm nguyên hàm của hàm số .
Ta có:
.
Hàm số nào dưới đây là một nguyên hàm của hàm số ?
Ta có:
.
.
.
.
Vậy là một nguyên hàm của hàm số
.
Cho hàm số thỏa mãn
và
với mọi
. Giá trị của
bằng?
Ta có:
Vậy
Theo bài ra ta có:
Vậy
Cho hàm số có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Tìm nguyên hàm của hàm số
Ta có
Biết , với
. Tính giá trị
Ta có:
Khi đó
Hàm số nào dưới đây là họ nguyên hàm của hàm số ?
Ta có:
Vậy đáp án cần tìm là: .
Cho F(x) là nguyên hàm của hàm số thỏa mãn
. Tìm tập nghiệm S của phương trình
Đặt
Ta có:
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Nguyên hàm của hàm số là
Sử dụng các công thức nguyên hàm cơ bản: .
Ta có: .
Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Cách 1: Ta có
Cách 2: Thực chất đây là công thức nguyên hàm mà tôi đã giới thiệu ở bảng nguyên hàm phía trên (dòng số 6 trong bảng).
Áp dụng công thức trên ta có ngay .
Biết là nguyên hàm của
và
. Khi đó giá trị
bằng:
Ta có
Mà .
Do đó .
Tìm một nguyên hàm của hàm số ?
Ta có:
Đặt
Khi đó .
Tìm một nguyên hàm của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Họ nguyên hàm của hàm số là:
Ta có:
Trong các khẳng định sau khẳng định nào đúng.
Ta có:
Khi đó:
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Tìm nguyên hàm của hàm số .
Ta có
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: