Họ nguyên hàm của là:
Ta đặt:
.
.
Họ nguyên hàm của là:
Ta đặt:
.
.
Cho hàm số . Gọi
là một nguyên hàm của
. Chọn phương án sai.
Ta có
Từ đây ta thấy đúng.
Với ta thấy
, vậy
sai.
Tìm ?
Đặt với
Ta có :
Cho hàm số , ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Tìm nguyên hàm của hàm số
, biết rằng
?
Ta có:
Vậy .
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
.
Cách 1: Sử dụng tính chất của nguyên hàm .
Từ giả thiết, ta có
.
Suy ra .
Vậy .
Đặt .
.
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Ta có
Từ giả thiết:
.
Vậy .
Họ nguyên hàm của hàm số là:
Ta có:
.
Tính
Ta có:
Tìm nguyên hàm của hàm số ?
Đặt
Cho hàm số là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Tìm nguyên hàm .
Đặt ;
Lúc này ta có
Cho hàm số . Biết
là một nguyên hàm của
; đồ thị hàm số
đi qua điểm
. Nguyên hàm
là
Ta có:
Mà đồ thị hàm số đi qua điểm
khi đó:
Vậy đáp án cần tìm là:
Họ nguyên hàm của hàm số là:
Ta có:
Khi đó:
Cho là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Biết rằng liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Xét hai khẳng định sau:
(I) Mọi hàm số liên tục trên đoạn
đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số liên tục trên đoạn
đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên:
Trong hai khẳng định trên chỉ có khẳng định "(II) Mọi hàm số liên tục trên đoạn
đều có nguyên hàm trên đoạn đó” là khẳng định đúng."
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Tìm nguyên hàm của hàm số
Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3
Tìm nguyên hàm của hàm số
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: