Họ nguyên hàm của hàm số là:
Ta có:
Họ nguyên hàm của hàm số là:
Ta có:
Biết rằng . Xác định
?
Ta có:
Do đó:
Biết là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Biết rằng liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Tìm nguyên hàm của hàm số .
Ta có
Nguyên hàm của hàm số là
Sử dụng các công thức nguyên hàm cơ bản: .
Ta có: .
Xác định nguyên hàm của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Kết quả nào dưới đây không phải là nguyên hàm của ?
Ta có:
.
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Họ nguyên hàm của hàm số là:
Ta có:
Một nguyên hàm của là :
Ta có:
Đặt:
Khi đó:
Biết hàm số có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Cho hàm số có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Cho hàm số thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Biết hàm số có nguyên hàm là
với
. Tính giá trị biểu thức
.
Ta có:
Mà
Nguyên hàm của hàm số là
Ta có
Từ bảng nhận dạng nguyên hàm phía trên là nguyên hàm của hàm số đã cho.
Biết , với
. Tính giá trị
?
Ta có:
Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Cách 1: Ta có
Cách 2: Thực chất đây là công thức nguyên hàm mà tôi đã giới thiệu ở bảng nguyên hàm phía trên (dòng số 6 trong bảng).
Áp dụng công thức trên ta có ngay .
Tìm nguyên hàm của hàm số là
Công thức áp dụng:
Ta có:
Nguyên hàm của hàm số là
Ta có
là nguyên hàm của hàm số đã cho.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: