Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm đáp án không thích hợp

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 2: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 1;1;2) và hai đường thẳng d:\frac{x - 2}{3} = \frac{y + 3}{2} = \frac{z -
1}{1},d^{'}:\frac{x + 1}{1} = \frac{y}{3} = \frac{z}{- 2}. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.

    Hướng dẫn:

    Gọi \Delta là đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.
    Giả sử \Delta \cap d = A \Rightarrow A(2 +
3t; - 3 + 2t;1 + t).

    \overrightarrow{AM} = (3 + 3t; - 4 + 2t;
- 1 + t)

    \Delta\bot d^{'} \Rightarrow
\overrightarrow{AM} \cdot \overrightarrow{u_{d^{'}}} = 0
\Leftrightarrow 3 + 3t + 3( - 4 + 2t) - 2( - 1 + t) = 0

    \Leftrightarrow 7t = 7 \Leftrightarrow t
= 1

    \Rightarrow A(5; -
1;2),\overrightarrow{AM} = (6; - 2;0) = 2(3; - 1;0).

    \Delta:\left\{ \begin{matrix}x = - 1 + 3t \\y = 1 - t \\z = 2 \\\end{matrix} ight.

  • Câu 3: Nhận biết
    Xác định vectơ chỉ phương của đường thẳng

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 3 - t \\
z = 2 - 3t \\
\end{matrix} \right.\ ,\left( t\mathbb{\in R} \right) , một vectơ chỉ phương của đường thẳng d là:

    Hướng dẫn:

    Một vectơ chỉ phương của đường thẳng d có tọa độ (2; - 1; - 3) = - ( - 2;1;3)

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{2} = \frac{y - 3}{- 1} = \frac{z -
1}{1} cắt mặt phẳng (P):2x - 3y + z
- 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng:

    Hướng dẫn:

    Ta có \left\{ I ight\} = d \cap
(P) suy ra \left\{ \begin{matrix}
I \in d \\
I \in (P) \\
\end{matrix} ight.

    I \in d nên tọa độ của I có dạng (1 + 2t;3 - t;1 + t),t\mathbb{\in
R}.

    I \in (P) nên ta có phương trình:

    2(1 + 2t) - 3(3 - t) + 1 + t - 2 = 0
\Leftrightarrow t = 1

    Vậy I(3;2;2) suy ra a + b + c = 3 + 2 + 2 = 7.

  • Câu 5: Nhận biết
    Chọn đường thẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Hướng dẫn:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 6: Nhận biết
    Xác định tọa độ hình chiếu của A lên mặt phẳng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Hình chiếu vuông góc của điểm a trên mặt phẳng (Oyz) là điểm

    Hướng dẫn:

    Khi chiếu vuông góc một điểm trong không gian lên mặt phẳng (Oyz), ta giữ lại các thành phần tung độ và cao độ nên hình chiếu của A(3; -
1;1) lên (Oyz) là điểm N(0; - 1;1).

  • Câu 7: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng (d):\frac{x - 2}{3} = \frac{y + 1}{- 2} = \frac{z
- 4}{4} có phương trình tham số là

    Hướng dẫn:

    Gọi \overrightarrow{u} vectơ chỉ phương của đường thẳng d, ta chọn \overrightarrow{u}( - 3;2; - 4)

    Giả sử M_{0} \in d, chọn M_{0}(2, - 1;4) suy ra phương trình tham số d là:

    \left\{ \begin{matrix}
x = 2 - 3m \\
y = - 1 + 2m \\
z = 4 - 4m \\
\end{matrix} ight.\ ;\left( m\mathbb{\in R} ight).

  • Câu 8: Nhận biết
    Định vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x + 1}{1} = \frac{y}{2} = \frac{z +
2}{3}. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?

    Hướng dẫn:

    Phương trình chính tắc của đường thẳng có dạng:

    \frac{x - x_{0}}{a} = \frac{y - y_{0}}{b}
= \frac{z - z_{0}}{c} với a.b.c
eq 0.

    Vectơ chỉ phương \overrightarrow{\mathbf{u}}\mathbf{=}\left(
\mathbf{a}\mathbf{;}\mathbf{b}\mathbf{;}\mathbf{c}
ight).

  • Câu 9: Nhận biết
    Viết phương trình đường trung tuyến AM

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A\left( { - 1;3;2} \right),B\left( {2;0;5} \right),C\left( {0; - 2;1} \right). Phương trình đường trung tuyến AM của tam giác ABC là.

    Hướng dẫn:

    M là trung điểm BC => M(1;-1;3)

    AM đi qua điểm A và có vectơ chỉ phương \overrightarrow {AM}  = \left( {2; - 4;1} ight)

    Vậy phương trình chính tắc của AM\frac{x
+ 1}{2} = \frac{y - 3}{- 4} = \frac{z - 2}{1}

  • Câu 10: Thông hiểu
    Xác định vị trí tương đối của hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z- 9}{- 1};d_{2}:\frac{x - 3}{- 1} = \frac{y - 1}{2} = \frac{z -1}{3}?

    Hướng dẫn:

    Gọi \overrightarrow{u_{1}};\overrightarrow{u_{2}} lần lượt là vectơ chỉ phương của d1 và d2 ta chọn \overrightarrow{u_{1}} = (1;2; -
1);\overrightarrow{u_{2}} = ( - 1;2;3)

    Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn M_{1}(7;\ 3;\
9);M_{2}( - 1;2;3) suy ra \overrightarrow{M_{1}M_{2}} = ( - 8; - 1; -
6)

    Khi đó \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = (8; -
2;4)\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0. Do đó (d1) và (d2) chéo nhau.

  • Câu 11: Nhận biết
    Tìm vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Hướng dẫn:

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, trục Oxcó phương trình tham số

    Hướng dẫn:

    Trục Oxđi qua O(0;0;0) và có véctơ chỉ phương \overrightarrow{i}(1;0;0)nên có phương trình tham số là: \left\{ \begin{matrix}
x = 0 + 1.t \\
y = 0 + 0.t \\
z = 0 + 0.t \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} \right.\ .

  • Câu 13: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian Oxyz, đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; - 1) làm vectơ chỉ phương có phương trình là:

    Hướng dẫn:

    Đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; -
1) làm vectơ chỉ phương có phương trình là \left\{ \begin{matrix}
x = 2 + t \\
y = - 1 + t \\
z = 3 - t \\
\end{matrix} ight..

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm M

    Hai đường thẳng (D):\left\{
\begin{matrix}
x = 2 + 4t \\
y = - 3m - t \\
z = 2t - 1 \\
\end{matrix} \right.(d):\left\{ \begin{matrix}
x = 4 - 2m \\
y = m + 2 \\
z = - m \\
\end{matrix} \right. cắt nhau tại M có tọa độ \left( t,m\mathbb{\in R} \right).

    Hướng dẫn:

    Ta có:

    (D) cắt (d) tại M
\Leftrightarrow \left\{ \begin{matrix}
2 + 4t = 4 - 2m \\
- 3 - t = m + 2 \\
2t - 1 = - m \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
2t + m = 1 \\
t + m = - 5 \\
\end{matrix} \right.\  \Leftrightarrow t = 6;m = - 11

    Vậy M(26, - 9,11)

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Đường thẳng d đi qua H(3; -
1;0) và vuông góc với (Oxz) có phương trình là

    Hướng dẫn:

    Nhận thấy đáp án là \left\{\begin{matrix}x = 3 \\y = - 1+ t \\z = 0 \\\end{matrix} \right.\ \left( t\mathbb{\in R} \right) vì nó vuông góc với (Oxz).

  • Câu 16: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):x = 8t - 1;\ \ y = -
1 - 14t;\ \ z = - 12t(d):x - 2y
+ 3z - 1 = 0;\ \ \ 2x + 2y - z + 4 = 0\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua E( - 1, - 1,0) có vecto chỉ phương \overrightarrow{a} = (8, - 14, - 12)

    Hai pháp vecto của hai mặt phẳng x - 2y +
3z - 1 = 02x + 2y - z + 1 =
0\overrightarrow{n_{1}} = (1, -
2,3);\overrightarrow{n_{2}} = (2,2, - 1)

    Vecto chỉ phương của (d):\overrightarrow{b} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( -
4,7,6)

    Ta có: \frac{8}{- 4} = \frac{- 14}{7} =
\frac{- 12}{6} = - 2 và tọa độ E( -1, - 1,0) thỏa man phương trình của (d) \Rightarrow (D) \equiv (d)

  • Câu 17: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, phương trình của đường thẳng đi qua điểm M(1; - 3;5) và có một vectơ chỉ phương \overrightarrow{u}(2; -
1;1) là:

    Hướng dẫn:

    Phương trình của đường thẳıg đi qua điểm M(1; - 3;5) và có một vectơ chỉ phương \overrightarrow{u}(2; - 1;1) là: \frac{x - 1}{2} = \frac{y + 3}{- 1} =
\frac{z - 5}{1}

  • Câu 18: Nhận biết
    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Hướng dẫn:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 19: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian Oxyz, đường thẳng đi qua hai điểm A(1;2; - 3)B(2; - 3;1) có phương trình tham số là:

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = (1; -
5;4)

    Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là \left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 5t \\
z = - 3 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số \left\{
\begin{matrix}
x = 3 - t \\
y = - 8 + 5t \\
z = 5 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 20: Nhận biết
    Viết phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d đi qua điểm A(4; - 1;3) và có một vecto chỉ phương \overrightarrow{u} = (2;5; - 6). Phương trình của d là:

    Hướng dẫn:

    Đường thẳng d đi qua điểm A(4; - 1;3) và có một vectơ chỉ phương \overrightarrow{u} = (2;5; - 6), phương trình của d\left\{ \begin{matrix}
x = 4 + 2t \\
y = - 1 + 5t \\
z = 3 - 6t \\
\end{matrix} \right.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo