Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Cho hai đường thẳng: \left( d_{1}
\right):\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z - 9}{- 1}\left( d_{2} \right):\frac{x -
3}{- 1} = \frac{y - 1}{2} = \frac{z - 1}{3} .

    Chọn câu trả lời đúng?

    Hướng dẫn:

    Phương trình \left( d_{1} \right) \in
\left( d_{1} \right) cho A(7,3,7) và vectơ chỉ phương của \left( d_{1} \right) :

    \overrightarrow{a} = (1,2, - 1) .

    Phương trình \left( d_{2}
\right) cho B(3,1,1) \in \left(
d_{2} \right) và vectơ chỉ phương của \left( d_{2} \right) :

    \overrightarrow{b} = ( - 7,2,3) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack = (8,4,16) ; \overrightarrow{AB} = ( - 4, - 2, -
8) .

    \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
= - 32 - 8 - 128 \neq 0 \Leftrightarrow \left( d_{1} \right)\left( d_{2} \right) chéo nhau .

  • Câu 2: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình đường thẳng \Delta đi qua điểm A(1;2;0) và vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0?

    Hướng dẫn:

    Đường thẳng \Delta vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0 nên \Delta có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n_{P}} = (2;1; - 3).

    Phương trình \Delta\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)\ \ \
(*)

    Kiểm tra được điểm M(3;3; - 3) thỏa mãn hệ (*).

    Vậy phương trình: \left\{ \begin{matrix}
x = 3 + 2t \\
y = 3 + t \\
z = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) cũng là phương trình của \Delta.

  • Câu 3: Nhận biết
    Tìm phương trình chính tắc

    Trong không gian tọa độ Oxyz, phương trình nào dưới đây là phương trình chính tắc của đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3t \\
z = - 2 + t \\
\end{matrix} \right.\ ?

    Hướng dẫn:

    Do đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3t \\
z = - 2 + t \\
\end{matrix} \right. đi qua điểm M(1;0; - 2) và có véc tơ chỉ phương \overrightarrow{u}(2;3;1) nên có phương trình chính tắc là \frac{x - 1}{2} =\frac{y}{3} = \frac{ z + 2}{1}.

  • Câu 4: Nhận biết
    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ 2\sqrt{3}cho đường thẳng d có phương trình tham số \left\{ \begin{matrix}
x = 2 + t \\
y = - 3t \\
z = - 1 + 5t \\
\end{matrix} \right.. Phương trình chính tắc của đường thẳng d là?

    Hướng dẫn:

    Cách 1:

    \Delta đi qua điểm A(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a_{d}} = (1; - 3;5)

    Vậy phương trình chính tắc của Oxyz\Delta

    Cách 2:

    A( - 2;2;1)

    Vậy phương trình chính tắc của B\frac{x - 2}{1} = \frac{y}{- 3} = \frac{z
+ 1}{5}

  • Câu 5: Nhận biết
    Tìm tọa độ hình chiếu của A

    Trong không gian Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(1; 2; 5) trên trục Ox?

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(1;2;5) trên trục Ox có tọa độ là (1;0;0).

  • Câu 6: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ \left\{
\begin{matrix}
x = 2 \\
y = 3 - t \\
z = 3 - t \\
\end{matrix} \right.cho đường thẳng Oxyz,. Đường thẳng d_{1}:\frac{x}{2} = \frac{y - 1}{- 1} = \frac{z +
2}{1} đi qua điểm d_{2}:\left\{
\begin{matrix}
x = - 1 + 2t \\
y = 1 + t \\
z = 3 \\
\end{matrix} \right. và có vectơ chỉ phương (P):7x + y - 4z = 0 có tọa độ là:

    Hướng dẫn:

    d đi qua A = d \cap d_{1},B = d \cap d_{2} và có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( {1;3;1} ight).

  • Câu 7: Nhận biết
    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng đi qua điểm M(1;2;3) và song song với trục Oy có phương trình tham số là:

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm.

    Ta có d//Oy nên d có vectơ chỉ phương là \overrightarrow{u} = (0;1;0).

    Do đó \left\{ \begin{matrix}
x = 1 \\
y = 2 + t \\
z = 3 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 8: Thông hiểu
    Phương trình chính tắc

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình chính tắc của cạnh AB.

    Hướng dẫn:

    (AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:  \overrightarrow {AB}  = \left( {1, - 3,7} ight)

    (AB) đi qua A (1, 2, -3) và nhận vecto \overrightarrow {AB}  = \left( {1, - 3,7} ight) làm 1 VTCP có phương trình chính tắc là:

     \begin{array}{l}AB:x - 1 = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{7}\\ \Leftrightarrow {m{ }}x - 2 = \frac{{y + 1}}{{ - 3}} = \frac{{z - 4}}{7}\\ \Leftrightarrow \,\,x - 1 = \frac{{2 - y}}{3} = \frac{{z + 3}}{7}\end{array}

  • Câu 9: Nhận biết
    Chọn phương trình tham số

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm A(1;2;3) và vuông góc với mặt phẳng (\alpha):4x + 3y - 7z + 1 = 0. Phương trình tham số của d là:

    Hướng dẫn:

    Đường thẳng d vuông góc với mặt phẳng (\alpha) nên nhận vectơ \overrightarrow{n_{(\alpha)}} làm véc-tơ chỉ phương.

    Suy ra, phương trình đường thẳng: \left\{
\begin{matrix}
x = 1 + 4t \\
y = 2 + 3t \\
z = 3 - 7t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 10: Nhận biết
    Giao điểm của 2 đường thẳng

    Hai đường thẳng ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. cắt nhau tại điểm A. Tọa độ của A là:

    Hướng dẫn:

     Để tìm được A là giao điểm của 2 đường thẳng, ta sẽ xét và giải hệ PT giữa chúng.

    Từ phương trình của  ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.  ,tính x,y theo z được 

    \left\{ \begin{array}{l}x = 4z + 17\\y = 3z + 10\end{array} ight.

    Thế vào phương trình của ({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. , được z = - 4 .

    Từ đó suy ra x = 1, y = - 2

    \Rightarrow A(1, - 2, - 4)

  • Câu 11: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Đường thẳng \Delta đi qua C và song song với AB có phương trình là:

    Hướng dẫn:

    Một vectơ chỉ phương của đường thẳng ∆ là \overrightarrow{BA} = (1;2;1)

    Vậy phương trình tham số của đường thẳng ∆ là \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 2t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 12: Nhận biết
    Hai đường thẳng cắt nhau

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} ,  \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) cắt nhau khi và chỉ khi:

    Hướng dẫn:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d)  cùng nằm trong một mặt phẳng

    Để (D) và d cắt nhau, ta sẽ xét tỉ số sau:

      {a_1}:{a_2}:{a_3} e {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} e \frac{{{a_2}}}{{{b_2}}} e \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)

    và (d) cắt nhau.

  • Câu 13: Nhận biết
    Viết PT tham số

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

    Gợi ý:

    Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.

    Hướng dẫn:

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 14: Nhận biết
    Xác định tọa độ hình chiếu của A lên mặt phẳng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Hình chiếu vuông góc của điểm a trên mặt phẳng (Oyz) là điểm

    Hướng dẫn:

    Khi chiếu vuông góc một điểm trong không gian lên mặt phẳng (Oyz), ta giữ lại các thành phần tung độ và cao độ nên hình chiếu của A(3; -
1;1) lên (Oyz) là điểm N(0; - 1;1).

  • Câu 15: Nhận biết
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta

    Hướng dẫn:

    đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{u} = (2; - 3;1) nên có phương trình tham số \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{- 1} = \frac{y - 1}{3} =
\frac{z - 1}{2}d_{2}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = - 2 + t \\
z = - 1 - t \\
\end{matrix} \right.. Phương trình đường thẳng nằm trong (\alpha):x + 2y - 3z - 2 = 0 và cắt hai đường thẳng d_{1},\ d_{2} là:

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm

     

    • Gọi A = d_{1} \cap
(\alpha)

     

    \begin{matrix}
A \in d_{1} \Rightarrow A(2 - a;1 + 3a;1 + 2a) \\
A \in (\alpha) \Rightarrow a = - 1 \Rightarrow A(3; - 2; - 1) \\
\end{matrix}

     

    • Gọi B = d_{2} \cap
(\alpha)

     

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - 3b; - 2 + b; - 1 - b) \\
B \in (\alpha) \Rightarrow b = 1 \Rightarrow B( - 2; - 1; - 2) \\
\end{matrix}

     

    • d đi qua điểm A(3; - 2; - 1) và có vectơ chỉ phương \overrightarrow{AB} = ( - 5;1; -
1)

     

    Vậy phương trình chính tắc của d\frac{x - 3}{- 5} = \frac{y + 2}{1} =
\frac{z + 1}{- 1}.

  • Câu 17: Nhận biết
    Xác định điều kiện tham số m

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình d:\frac{x - 1}{3} = \frac{y + 2}{2} = \frac{z -
3}{- 4}. Điểm nào sau đây không thuộc đường thẳng d?

    Hướng dẫn:

    Ta thay lần lượt tọa độ các điểm vào phương trình đường thẳng d, điểm N(7;2;1) có tọa độ không thỏa mãn phương trình đường thẳng d.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( P \right):2x + y + 2z - 1 = 0 và đường thẳng \Delta\ :\frac{x + 1}{2} = \frac{y}{- 1} =
\frac{z - 3}{3}. Phương trình đường thẳng d đi qua điểm B(2; - 1;5) song song với (P) và vuông góc với \Delta

    Hướng dẫn:

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (2; -
1;3)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2;1;2)

    Gọi \overrightarrow{a_{d}} là vectơ chỉ phương d

    \left\{ \begin{matrix}
d\bot(P) \\
d\bot\Delta \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{d}}\bot\overrightarrow{n_{P}} \\
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{a_{\Delta}};\overrightarrow{n_{P}} ightbrack = ( -
5;2;4)

    Vậy phương trình chính tắc của d\frac{x - 2}{- 5} = \frac{y + 1}{2} =
\frac{z - 5}{4}

  • Câu 19: Nhận biết
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:\left\{ \begin{matrix}
x = 3 - t \\
y = - 1 + 2t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?

    Hướng dẫn:

    Đường thẳng (d) đi qua điểm M(3; - 1;0) và nhận \overrightarrow{u} = ( - 1;2; - 3) làm vectơ chỉ phương.

    Phương trình chính tắc của (d):\frac{x -
3}{- 1} = \frac{y + 1}{2} = \frac{z}{- 3}

  • Câu 20: Thông hiểu
    Tìm phương trình d thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9. Phương trình đường thẳng d đi qua tâm của mặt cầu (S), song song với \left( \alpha  \right):2x + 2y - z - 4 = 0 và vuông góc với đường thẳng \frac{x - 1}{2} = \frac{y + 2}{5} = \frac{z - 1}{-
1} là.

    Hướng dẫn:

    Tâm của mặt cầu (S) là I(1;-2;3)

    \Delta có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \left( {3; - 1;1} ight)

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_a}}  = \left( {2;2; - 1} ight)

    d đi qua điểm I và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{a_\Delta }} ;\overrightarrow {{n_\alpha }} } ight] = \left( { - 1;5;8} ight)

    Vậy phương của d là \left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 5t \\
z = 3 + 8t \\
\end{matrix} ight.\ .

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo