Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, đường thẳng đi qua điểm A( - 2;4;3) và vuông góc với mặt phẳng 2x - 3y + 6z + 19 =
0 có phương trình là:

    Hướng dẫn:

    Ta có một vectơ pháp tuyến của mặt phẳng 2x - 3y + 6z + 19 = 0\overrightarrow{n} = (2; - 3;6)

    Đường thẳng đi qua điểm A( -
2;4;3) và vuông góc với mặt phẳng 2x - 3y + 6z + 19 = 0 có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n} = (2; - 3;6) nên có phương trình là \frac{x + 2}{2} = \frac{y - 4}{- 3} = \frac{z -
3}{6}.

  • Câu 2: Nhận biết
    Xác định điểm không thuộc đường thẳng

    Trong không gian Oxyz, đường thẳng \Delta:\frac{x - 1}{2} = \frac{y +
2}{1} = \frac{z}{- 1} không đi qua điểm nào dưới đây?

    Hướng dẫn:

    Ta có \frac{- 1 - 1}{2} eq \frac{2 +
2}{1} eq \frac{0}{- 1} nên điểm (
- 1;2;0) không thuộc đường thẳng \Delta.

  • Câu 3: Nhận biết
    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ 2\sqrt{3}cho đường thẳng d có phương trình tham số \left\{ \begin{matrix}
x = 2 + t \\
y = - 3t \\
z = - 1 + 5t \\
\end{matrix} \right.. Phương trình chính tắc của đường thẳng d là?

    Hướng dẫn:

    Cách 1:

    \Delta đi qua điểm A(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a_{d}} = (1; - 3;5)

    Vậy phương trình chính tắc của Oxyz\Delta

    Cách 2:

    A( - 2;2;1)

    Vậy phương trình chính tắc của B\frac{x - 2}{1} = \frac{y}{- 3} = \frac{z
+ 1}{5}

  • Câu 4: Nhận biết
    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 + 2t \hfill \\
  y =  - 2 + 3t \hfill \\
  z = 3 + t \hfill \\ 
\end{gathered}  \right.. Hình chiếu vuông góc của d lên mặt phẳng (Oxz) có phương trình là.

    Hướng dẫn:

    Cho y = 0, phương trình của d lên mặt phẳng (Oxz) là \left\{ \begin{matrix}
x = 1 + 2t \\
y = 0 \\
z = 3 + t \\
\end{matrix} ight.\ .

  • Câu 5: Nhận biết
    Vị trí tương đối của hai đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = - t \\
z = 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\frac{x - 1}{- 3} = \frac{y - 2}{1} =
\frac{z - 3}{2}. Vị trí tương đối của dd'

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (3; - 1; - 2) và đi qua điểm M(−1; 0; 1).

    Đường thẳng d’ có vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
3;1;2).

    Hai vectơ \overrightarrow{u_{d}}\overrightarrow{u_{d'}} cùng phương và điểm M không thuộc đường thẳng d’.

    Do đó hai đường thẳng d và d’ song song với nhau.

  • Câu 6: Nhận biết
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, cho điểm A(2;1;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{- 2}. Tính khoảng cách từ A đến đường thẳng d.

    Hướng dẫn:

    Gọi M(1;\ 2;\ 3) \in d

    \Rightarrow AM = ( - 1;1;2) \Rightarrow
\left\lbrack \overrightarrow{AM};\overrightarrow{u} ightbrack = ( -
6;0; - 3)

    Ta có d(A;d) = \frac{\left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{3\sqrt{5}}{3} =
\sqrt{5}.

  • Câu 7: Nhận biết
    Xác định phương trình tham số

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + 3y - 5z + 6 = 0(\beta):x - y + 3z - 6 = 0. Phương trình tham số của d là:

    Hướng dẫn:

    Nhận thấy A(1;1;2),B(2; - 1;1) đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng d.

    Ta có \overrightarrow{AB} = (1; - 2; -
1) là một vectơ chỉ phương của d.

    Khi đó phương trình tham số của d là: \left\{
\begin{matrix}
x = 1 + t \\
y = 1 - 2t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 8: Nhận biết
    Viết PT tham số

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

    Gợi ý:

    Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.

    Hướng dẫn:

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 9: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình x - 3y - z + 8 = 0. Vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Ta có:

    (P):x–3y–z + 8 = 0 nên (P) có một vectơ pháp tuyến là \overrightarrow{n} =
(1; - 3; - 1)

  • Câu 10: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình chính tắc của đường thẳng?

    Hướng dẫn:

    Phương trình chính tắc của đường thẳng có dạng:

    \frac{x - x_{0}}{a} = \frac{y - y_{0}}{b}
= \frac{z - z_{0}}{c} với a.b.c
eq 0.

    Vậy đáp án đúng là : \frac{x - 6}{3} =
\frac{y - 3}{4} = \frac{z - 5}{3}

  • Câu 11: Nhận biết
    Giao điểm của 2 đường thẳng

    Hai đường thẳng ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. cắt nhau tại điểm A. Tọa độ của A là:

    Hướng dẫn:

     Để tìm được A là giao điểm của 2 đường thẳng, ta sẽ xét và giải hệ PT giữa chúng.

    Từ phương trình của  ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.  ,tính x,y theo z được 

    \left\{ \begin{array}{l}x = 4z + 17\\y = 3z + 10\end{array} ight.

    Thế vào phương trình của ({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. , được z = - 4 .

    Từ đó suy ra x = 1, y = - 2

    \Rightarrow A(1, - 2, - 4)

  • Câu 12: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 3;4), đường thẳng d:\frac{x + 2}{3} = \frac{y - 5}{- 5} = \frac{z -
2}{- 1} và mặt phẳng (P):2x + z - 2
= 0. Viết phương trình đường thẳng \Delta qua M vuông góc với d và song song với (P).

    Hướng dẫn:

    Đường thẳng d:\frac{x + 2}{3} = \frac{y -
5}{- 5} = \frac{z - 2}{- 1} có vec tơ chỉ phương \overrightarrow{u_{d}} = (3; - 5; -
1).

    Mặt phẳng (P):2x + z - 2 = 0 có vec tơ pháp tuyến \overrightarrow{n_{(P)}} =
(2;0;1).

    Đường thẳng ∆ vuông góc với d nên vectơ chỉ phương \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Đường thẳng ∆ song song với (P) nên \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Ta có \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ightbrack = ( - 5; -
5;10)

    Suy ra vec tơ chỉ phương của đường thẳng ∆ là \overrightarrow{u_{\Delta}} = \frac{-
1}{5}.\left\lbrack \overrightarrow{u_{d}};\overrightarrow{n_{(P)}}
ightbrack = (1;1; - 2)

    Vậy phương trình đường thẳng ∆ là \Delta:\frac{x - 1}{1} = \frac{y + 3}{1} = \frac{z
- 4}{- 2}.

  • Câu 13: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình đường thẳng \Delta đi qua điểm A(1;2;0) và vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0?

    Hướng dẫn:

    Đường thẳng \Delta vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0 nên \Delta có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n_{P}} = (2;1; - 3).

    Phương trình \Delta\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)\ \ \
(*)

    Kiểm tra được điểm M(3;3; - 3) thỏa mãn hệ (*).

    Vậy phương trình: \left\{ \begin{matrix}
x = 3 + 2t \\
y = 3 + t \\
z = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) cũng là phương trình của \Delta.

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y - 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương có tọa độ là:

    Hướng dẫn:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 2; -
3).

    Do d\bot(P) nên vectơ \overrightarrow{n} = (1; - 2; - 3) cũng là một vectơ chỉ phương của d.

  • Câu 15: Thông hiểu
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y}{3} = \frac{z +
1}{- 1}d_{2}:\left\{
\begin{matrix}
x = 1 + t \\
y = 3 - 2t \\
z = 5 - 2t \\
\end{matrix} \right.. Phương trình đường thẳng \Delta đi qua điểm A(2;3; - 1) và vuông góc với hai đường thẳng d_{1},\ d_{2}

    Hướng dẫn:

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2;3; - 1)

    d_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = (1; - 2; -
2)

    Gọi \overrightarrow{a_{\Delta}} là vectơ chỉ phương của \Delta

    \left\{ \begin{matrix}
\Delta\bot d_{1} \\
\Delta\bot d_{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{1}} \\
\overrightarrow{a_{\Delta}}\bot\overrightarrow{a_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{a_{\Delta}} =
\left\lbrack \overrightarrow{a_{1}};\overrightarrow{a_{2}} ightbrack
= ( - 8;3; - 7)

    Vậy phương trình tham số của \Delta\left\{ \begin{matrix}
x = 2 - 8t \\
y = 3 + 3t \\
z = - 1 - 7t \\
\end{matrix} ight.

  • Câu 16: Thông hiểu
    Hai đường thẳng cắt nhau

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

    Hướng dẫn:

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 17: Nhận biết
    Chọn phương án thích hợp

    Trong không gian Oxyz, đường thẳng Oy có phương trình tham số là

    Hướng dẫn:

    Đường thẳng Oy đi qua điểm A(0\ ;\ 2\ ;\ 0) và nhận vectơ đơn vị \overrightarrow{j} = (0;\ 1;\ 0) làm vectơ chỉ phương nên có phương trình tham số là:\left\{ \begin{matrix}
x = 0 + 0.t \\
y = 2 + 1.t \\
z = 0 + 0.t \\
\end{matrix} \right.\ \left( t\mathbb{\in R} \right) \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
y = 2 + t \\
z = 0 \\
\end{matrix} \right.\ \left( t\mathbb{\in R} \right).

  • Câu 18: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta có phương trình chính tắc \frac{x - 3}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}. Phương trình tham số của đường thẳng \Delta là?

    Hướng dẫn:

    Ta có:

    \frac{x}{2} = \frac{y - 6}{4} =
\frac{z}{- 1} đi qua điểm A(3; -
1;0) và có vectơ chỉ phương Oxyz

    Vậy phương trình tham số của \DeltaB(1;1;2)

  • Câu 19: Thông hiểu
    Tìm khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyzkhoảng cách từ điểm M(1;3;2) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = - t \\
\end{matrix} \right. bằng

    Hướng dẫn:

    Đường thẳng \Delta đi qua A(1;1;0) và có một VTCP là \overrightarrow{u} = (1;1; - 1)

    Suy ra \overrightarrow{AM} =
(0;2;2); \left\lbrack
\overrightarrow{u};\overrightarrow{AM} \right\rbrack = (4; -
2;2)

    Vậy d(M;\Delta) = \frac{\left|
\left\lbrack \overrightarrow{u};\overrightarrow{AM} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = 2\sqrt{2}

  • Câu 20: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gianOxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(7; - 3; - 1) thuộc đường thẳng (d). Sai||Đúng

    b) Điểm N( - 1;1; - 5) thuộc đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = (4; - 2;3) là một vectơ chỉ phương. Đúng||Sai

    d) Đường thẳng (d) nhận \overrightarrow{v} = ( - 4;2; - 3) là một vectơ chỉ phương. Đúng||Sai

    Đáp án là:

    Trong không gianOxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(7; - 3; - 1) thuộc đường thẳng (d). Sai||Đúng

    b) Điểm N( - 1;1; - 5) thuộc đường thẳng (d). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = (4; - 2;3) là một vectơ chỉ phương. Đúng||Sai

    d) Đường thẳng (d) nhận \overrightarrow{v} = ( - 4;2; - 3) là một vectơ chỉ phương. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Phương án a) sai vì thay M(7; - 3; -
1) vào đường thẳng (d), ta có

    \left\{ \begin{matrix}
7 = 3 + 4t \\
- 3 = - 1 - 2t \\
- 1 = - 2 + 3t
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
t = 1 \\
t = 1 \\
t = \frac{1}{3}
\end{matrix} \right.\  \Rightarrow M(7; - 3; - 1) \notin
(d)

    Phương án b) đúng vì thay N( - 1;1; -
5) vào đường thẳng (d), ta có

    \left\{ \begin{matrix}
- 1 = 3 + 4t \\
1 = - 1 - 2t \\
- 5 = - 2 + 3t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 1 \\
t = - 1 \\
t = - 1
\end{matrix} \right.\  \Rightarrow N( - 1;1; - 5) \in (d)

    Phương án c) đúng vì một vectơ chỉ phương của đường thẳng (d):\left\{ \begin{matrix}
x = 3 + 4t \\
y = - 1 - 2t \\
z = - 2 + 3t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)\overrightarrow{u} = (4; - 2;3).

    Phương án d) đúng vì \overrightarrow{v} =
( - 4;2; - 3) = - \overrightarrow{u} nên \overrightarrow{v} cũng là một vectơ chỉ phương của (d).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo