Trong không gian , phương trình đường thẳng đi qua hai điểm
và
là:
Ta có
Phương trình đường thẳng AB đi qua nhận vectơ
làm vectơ chỉ phương nên có phương trình là:
.
Trong không gian , phương trình đường thẳng đi qua hai điểm
và
là:
Ta có
Phương trình đường thẳng AB đi qua nhận vectơ
làm vectơ chỉ phương nên có phương trình là:
.
Trong không gian với hệ tọa độ , cho điểm
và hai đường thẳng
. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Gọi là đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Giả sử .
Trong không gian , cho đường thẳng
, một vectơ chỉ phương của đường thẳng d là:
Một vectơ chỉ phương của đường thẳng có tọa độ
Trong không gian với hệ tọa độ , cho đường thẳng
cắt mặt phẳng
tại điểm
. Khi đó
bằng:
Ta có suy ra
Vì nên tọa độ của I có dạng
.
Vì nên ta có phương trình:
Vậy suy ra
.
Trong không gian với hệ tọa độ , cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Trong không gian , cho điểm
. Hình chiếu vuông góc của điểm
trên mặt phẳng
là điểm
Khi chiếu vuông góc một điểm trong không gian lên mặt phẳng , ta giữ lại các thành phần tung độ và cao độ nên hình chiếu của
lên
là điểm
.
Trong không gian với hệ trục tọa độ , cho đường thẳng
có phương trình tham số là
Gọi vectơ chỉ phương của đường thẳng
, ta chọn
Giả sử , chọn
suy ra phương trình tham số d là:
.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng . Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Trong không gian với hệ tọa độ cho tam giác ABC có
. Phương trình đường trung tuyến AM của tam giác ABC là.
M là trung điểm BC => M(1;-1;3)
AM đi qua điểm A và có vectơ chỉ phương
Vậy phương trình chính tắc của là
Trong không gian với hệ tọa độ , cho hai đường thẳng
?
Gọi lần lượt là vectơ chỉ phương của d1 và d2 ta chọn
Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn suy ra
Khi đó và
. Do đó (d1) và (d2) chéo nhau.
Trong không gian với hệ tọa độ , vectơ
là vectơ chỉ phương của đường thẳng nào sau đây?
Đường thẳng có một vectơ chỉ phương là
cùng phương với vectơ
. Vậy
là một vectơ chỉ phương của đường thẳng
Trong không gian , trục
có phương trình tham số
Trục đi qua
và có véctơ chỉ phương
nên có phương trình tham số là:
Trong không gian , đường thẳng đi qua
và nhận
làm vectơ chỉ phương có phương trình là:
Đường thẳng đi qua và nhận
làm vectơ chỉ phương có phương trình là
.
Hai đường thẳng và
cắt nhau tại M có tọa độ
Ta có:
cắt
tại
Vậy
Đường thẳng d đi qua và vuông góc với
có phương trình là
Nhận thấy đáp án là vì nó vuông góc với
.
Hai đường thẳng và
qua
có vecto chỉ phương
Hai pháp vecto của hai mặt phẳng và
là
Vecto chỉ phương của
Ta có: và tọa độ
thỏa man phương trình của
Trong không gian với hệ trục tọa độ , phương trình của đường thẳng đi qua điểm
và có một vectơ chỉ phương
là:
Phương trình của đường thẳıg đi qua điểm và có một vectơ chỉ phương
là:
Trong không gian với hệ tọa độ , phương trình chính tắc của đường thẳng
đi qua điểm
có vectơ chỉ phương
là:
Phương trình đường thẳng đi qua điểm có vectơ chỉ phương
nên có phương trình:
.
Trong không gian , đường thẳng đi qua hai điểm
và
có phương trình tham số là:
Ta có:
Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là
Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số .
Trong không gian , cho đường thẳng
đi qua điểm
và có một vecto chỉ phương
. Phương trình của
là:
Đường thẳng đi qua điểm
và có một vectơ chỉ phương
, phương trình của
là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: