Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 15 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian Oxyz, đường thẳng đi qua hai điểm A(1;2; - 3)B(2; - 3;1) có phương trình tham số là:

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = (1; -
5;4)

    Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là \left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 5t \\
z = - 3 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số \left\{
\begin{matrix}
x = 3 - t \\
y = - 8 + 5t \\
z = 5 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 2: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian với hệ tọa độ  Oxyz,  cho đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha):x - 2y - z + 1 = 0(\beta):2x + 2y - 3z - 4 = 0. Phương trình đường thẳng d đi qua điểm M(1; - 1;0) và song song với đường thẳng \Delta

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {1; - 2; - 1} ight)

    \left( \beta  ight) có vectơ pháp tuyến \overrightarrow {{n_\beta }}  = \left( {2;2; - 3} ight)

    d đi qua điểm M và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {8;1;6} ight)

    Vậy phương của d là \frac{x - 1}{8} = \frac{y + 1}{1} =
\frac{z}{6}.

  • Câu 3: Nhận biết
    Xác định điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \left\{
\begin{matrix}
x = - 3 + t \\
y = 1 - 2t \\
z = - 2 + t \\
\end{matrix} \right.. Điểm nào sau đây thuộc đường thẳng d?

    Hướng dẫn:

    Thay tọa độ điểm M( - 3;\ 1;\  -
2) vào phương trình tham số của đường thẳng d

    \left\{ \begin{matrix}
- 3 = - 3 + t \\
1 = 1 - 2t \\
- 2 = - 2 + t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0 \\
\end{matrix} ight..

    Vậy điểm M( - 3;\ 1;\  - 2) thuộc đường thẳng d.

  • Câu 4: Thông hiểu
    Tìm hình chiếu của điểm lên đường thẳng

    Trong không gian Oxyz, tìm tọa độ hình chiếu H của A(1;1;1)lên đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = t \\
\end{matrix} \right..

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (1;1;1)

    Do H \in d \Rightarrow H(1 + t;1 +
t;t).

    Ta có: \overrightarrow{AH} = (t;t;t -
1)

    Do H là hình chiếu của điểm A lên đường thẳng d nên suy ra \overrightarrow{AH}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Leftrightarrow t + t + t - 1 = 0
\Leftrightarrow t = \frac{1}{3} \Rightarrow H\left(
\frac{4}{3};\frac{4}{3};\frac{1}{3} \right)

  • Câu 5: Nhận biết
    Chọn phát biểu đúng

    Trong không gian Oxyz, cho hai đường thẳng d : \left\{ \begin{matrix}
x = 2 - 2t \\
y = 3 - 2t \\
z = 1 - 3t \\
\end{matrix} \right.d’: \left\{ \begin{matrix}
x = 6 + 2t' \\
y = 3 + 2t' \\
z = 7 + 9t' \\
\end{matrix} \right.. Xét các mệnh đề sau:

    (I) d đi qua A(2 ;3 ;1) và có véctơ chỉ phương \overrightarrow{a\ }(2;2;3)

    (II) d’ đi qua A’ (0;-3;-11) và có véctơ chỉ phương \overrightarrow{a'}(2;2;9)

    (III) \overrightarrow{a}\overrightarrow{a'} không cùng phương nên d không song song với d’

    (IV) Vì \left\lbrack \overrightarrow{a\
};\overrightarrow{a'\ }\  \right\rbrack.\overrightarrow{AA'} =
\overrightarrow{0\ } nên d và d’ đồng phẳng và chúng cắt nhau

    Dựa vào các phát biểu trên, ta kết luận:

    Hướng dẫn:

    Các phát biểu (I), (III) đúng, các phát biểu (II), (IV) sai

  • Câu 6: Nhận biết
    Tìm phương trình (P) vuông góc với d

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 2}
= \frac{z + 2}{1}. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng d.

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = (1; -
2;1)

    Mặt phẳng vuông góc với d nhận vectơ \overrightarrow{u} làm vectơ pháp tuyến.

    Do đó (P):x - 2y + z + 1 = 0 là mặt phẳng thỏa mãn.

  • Câu 7: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta có phương trình chính tắc \frac{x - 3}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}. Phương trình tham số của đường thẳng \Delta là?

    Hướng dẫn:

    Ta có:

    \frac{x}{2} = \frac{y - 6}{4} =
\frac{z}{- 1} đi qua điểm A(3; -
1;0) và có vectơ chỉ phương Oxyz

    Vậy phương trình tham số của \DeltaB(1;1;2)

  • Câu 8: Nhận biết
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Hướng dẫn:

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Phương án a) sai vì:

    Thay M(2;2; - 3) vào đường thẳng (d), ta có \left\{ \begin{matrix}
2 = 2 - 5t \\
2 = 2t \\
- 3 = - 3
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 1
\end{matrix} \right.\  \Leftrightarrow M(2;2; - 3) \notin
(d)

    Phương án b) đúng vì:

    Khi thay t = - 2 vào phương trình tham số của (d), ta được:

    \left\{ \begin{matrix}
x = 2 - 5.( - 2) \\
y = 2.( - 2) \\
z = - 3
\end{matrix} \right.

    Vậy \Leftrightarrow A(12, - 4, - 3) \in
(d)

    Phương án c) đúng vì từ phương trình tham số ta có \overrightarrow{v} = ( - 5;2;0) là một vectơ chỉ phương của (d)\overrightarrow{v} = ( - 5;2;0) = - ( - 5;2;0) = -
\overrightarrow{u} do đó \overrightarrow{u} = ( - 5;2;0) cũng là một vectơ chỉ phương của đường thẳng (d).

    Phương án d) đúng vì đường thẳng (d) luôn đi qua điểm có cao độ bằng -3, ta có z_{N} = 3 \Rightarrow N \notin
(d)

  • Câu 10: Nhận biết
    Tìm điểm thuộc đường thẳng

    Trong hệ tọa độ Oxyz, điểm nào dưới đây thuộc đường thẳng d:\frac{x - 1}{2}
= \frac{y + 1}{- 1} = \frac{z - 2}{3}?

    Hướng dẫn:

    Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm N(1; - 1;2).

  • Câu 11: Thông hiểu
    Tính khoảng cách giữa đường thẳng và mặt phẳng

    Trong không gian Oxyz, khoảng cách giữa đường thẳng d:\frac{x - 1}{1} =
\frac{y}{1} = \frac{z}{- 2} và mặt phẳng (P):x + y + z + 2 = 0 bằng:

    Hướng dẫn:

    Đường thẳng d qua M(1;0;0) và có vec-tơ chỉ phương \overrightarrow{a} = (1;1; - 2).

    Mặt phẳng (P) có vec-tơ pháp tuyến \overrightarrow{n} =
(1;1;1).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{n} = 1.1 + 1.1 - 2.1 = 0 \\
M \notin (P) \\
\end{matrix} \right.\  \Rightarrow d//(P)

    d\left( d;(P) \right) = d\left( M;(P)
\right) = \frac{|1 + 0 + 0 + 2|}{\sqrt{1^{2} + 1^{2} + 1^{2}}} =
\sqrt{3}

  • Câu 12: Nhận biết
    Hai đường thẳng song song

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) song song khi và chỉ khi:

    Hướng dẫn:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d) cùng nằm trong một mặt phẳng

    Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):

      {a_1}:{a_2}:{a_3} = {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)và (d)  cùng phương A\left( {{x_1},{y_1},{z_1}} ight) \in \left( D ight)A otin \left( d ight) \Rightarrow \left( D ight) và (d) song song.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz. Điểm nào sau đây là hình chiếu vuông góc của điểm A(1;4;2) trên mặt phẳng Oxy?

    Hướng dẫn:

    Ta có hình chiếu của A(1;4;2) trên mặt phẳng Oxy(1;4;0).

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz,  phương trình đường thẳng \Delta đi qua điểm A(2;-1; 3) và vuông góc với mặt phẳng (Oxz) là.

    Hướng dẫn:

    (Oxz) có vectơ pháp tuyến \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  vuông góc với (Oxz) nên d có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương \overrightarrow {{a_\Delta }}

    Vậy phương trình tham số của  \Delta  là \left\{ \begin{matrix}
x = 2 \\
y = - 1 + t \\
z = 3 \\
\end{matrix} ight.\ .

     

  • Câu 15: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2),B(2; - 1;3). Viết phương trình đường thẳng AB?

    Hướng dẫn:

    Vectơ chỉ phương của đường thẳng AB\overrightarrow{AB} = (1; - 2;1). Suy ra phương trình đường thẳng AB là:

    AB:\frac{x - 1}{1} = \frac{y - 1}{- 2} =
\frac{z - 2}{1}

  • Câu 16: Thông hiểu
    Tìm khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyzkhoảng cách từ điểm M(1;3;2) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = - t \\
\end{matrix} \right. bằng

    Hướng dẫn:

    Đường thẳng \Delta đi qua A(1;1;0) và có một VTCP là \overrightarrow{u} = (1;1; - 1)

    Suy ra \overrightarrow{AM} =
(0;2;2); \left\lbrack
\overrightarrow{u};\overrightarrow{AM} \right\rbrack = (4; -
2;2)

    Vậy d(M;\Delta) = \frac{\left|
\left\lbrack \overrightarrow{u};\overrightarrow{AM} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = 2\sqrt{2}

  • Câu 17: Thông hiểu
    Viết phương trình tham số

    Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:

    Hướng dẫn:

    Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là \overrightarrow {{e_1}}  = \left( {1,0,0} ight)

    Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP \overrightarrow {{e_1}}  = \left( {1,0,0} ight) có PTTS là:

    (d): \left\{ \begin{array}{l}x = t - 1\\y = 5\\z = 2\end{array} ight.\,\,\,;t \in \mathbb{R}

  • Câu 18: Nhận biết
    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ 2\sqrt{3}cho đường thẳng d có phương trình tham số \left\{ \begin{matrix}
x = 2 + t \\
y = - 3t \\
z = - 1 + 5t \\
\end{matrix} \right.. Phương trình chính tắc của đường thẳng d là?

    Hướng dẫn:

    Cách 1:

    \Delta đi qua điểm A(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a_{d}} = (1; - 3;5)

    Vậy phương trình chính tắc của Oxyz\Delta

    Cách 2:

    A( - 2;2;1)

    Vậy phương trình chính tắc của B\frac{x - 2}{1} = \frac{y}{- 3} = \frac{z
+ 1}{5}

  • Câu 19: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 + 2t \hfill \\
  y =  - 1 + t \hfill \\
  z = 2 + t \hfill \\ 
\end{gathered}  \right.. Hình chiếu vuông góc của d lên mặt phẳng (Oxy) có phương trình là.

    Hướng dẫn:

    Cho z = 0, phương trình của d' là \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + t \\
z = 0 \\
\end{matrix} ight.\ .

  • Câu 20: Nhận biết
    Tìm điều kiện để hai đường thẳng song song

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Hướng dẫn:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo