Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm đúng sai về Khảo sát Hàm số

Bài tập đúng sai khảo sát hàm số Toán 12

Trong chương trình Toán THPT, khảo sát hàm số là chuyên đề quan trọng, xuất hiện thường xuyên trong đề thi THPT Quốc gia. Để nắm chắc kiến thức và rèn luyện kỹ năng, việc luyện tập qua trắc nghiệm đúng sai là cách hiệu quả giúp học sinh củng cố lý thuyết, nhận diện nhanh các dạng bài và tránh sai lầm thường gặp. Bài viết này cung cấp bộ trắc nghiệm đúng sai về khảo sát hàm số có đáp án chi tiết, hỗ trợ học sinh ôn tập toàn diện, từ đó tự tin chinh phục các kỳ thi quan trọng.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Đáp án là:

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Câu 2

    a)

    b)

    c)

    d)

    ý

    Đúng

    Sai

    Sai

    Sai

    Ta có: y' = 3x^{2} - 6x, y' = 0 \Leftrightarrow x = 0 hoặc x = 2.

    Bảng biến thiên của hàm số đã cho là:

    Hàm số đồng biến trên các khoảng ( -
\infty;0)(2; +
\infty), hàm số nghịch biến trên khoảng (0;2).

    Đồ thị hàm số đã cho là:

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

  • Câu 2: Thông hiểu
    Xét đúng sai của các khẳng định

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    a) Đạo hàm của hàm số đã cho là y' =
1 - \frac{4}{x^{2}} nên mệnh đề sai.

    b) y' = 1 - \frac{4}{x^{2}} > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x > 2 \\
x < - 2
\end{matrix} \right.\ ,x \neq 0 nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0)
\cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2) \cup (2;\  +
\infty).

    c) Bảng biến thiên của hàm số đã cho là:

    Mệnh đề sai vì thấy y( - 2) = - 4 \neq
4

    d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng

    .

    Đáp án: a) Sai b) Đúng c) Sai d) Đúng.

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Cho hàm số y = \frac{2x - 1}{x -
1}. Xét tính đúng sai của các nhận định dưới đây?

    a) Đạo hàm của hàm số đã cho là y' =
\frac{- 1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x \neq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{2x - 1}{x -
1}. Xét tính đúng sai của các nhận định dưới đây?

    a) Đạo hàm của hàm số đã cho là y' =
\frac{- 1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x \neq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    a) Ta có: y' = \frac{2( - 1) - ( -
1).1}{(x - 1)^{2}} = - \frac{1}{(x - 1)^{2}} mệnh đề đúng

    Đạo hàm của hàm số đã cho là y' =
\frac{- 1}{(x - 1)^{2}}.

    b) y' = \frac{2( - 1) - ( - 1).1}{(x
- 1)^{2}} = - \frac{1}{(x - 1)^{2}} < 0,\forall x \neq 1 mệnh đề đúng

    Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x \neq 1.

    c) Bảng biến thiên của hàm số đã cho như hình dưới là sai vì hàm số không xác định tại x =
1

    d) Đồ thị hàm số đã cho như ở Hình 4. Mệnh đề đúng

    a) Đúng, b) Đúng, c) Sai, d) Đúng.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các khẳng đính

    Cho hàm số f(x) = 2\sin x - x. Xét tính đúng sai của các khẳng định sau:

    a) f'(x) = 2cosx - 1. Đúng||Sai

    b) f'(x) = 0 \Leftrightarrow x = \pm
\frac{\pi}{3} + k2\pi\left( k\mathbb{\in Z} \right). Đúng||Sai

    c) Tập hợp nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;\pi\rbrack\left\{ \frac{\pi}{3} \right\}. Đúng||Sai

    d) Giá trị nhỏ nhất của hàm số f(x) =
2sinx - x trên đoạn \lbrack
0;\pi\rbrack\sqrt{3} -
\frac{\pi}{3}. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = 2\sin x - x. Xét tính đúng sai của các khẳng định sau:

    a) f'(x) = 2cosx - 1. Đúng||Sai

    b) f'(x) = 0 \Leftrightarrow x = \pm
\frac{\pi}{3} + k2\pi\left( k\mathbb{\in Z} \right). Đúng||Sai

    c) Tập hợp nghiệm của phương trình f'(x) = 0 trên đoạn \lbrack 0;\pi\rbrack\left\{ \frac{\pi}{3} \right\}. Đúng||Sai

    d) Giá trị nhỏ nhất của hàm số f(x) =
2sinx - x trên đoạn \lbrack
0;\pi\rbrack\sqrt{3} -
\frac{\pi}{3}. Sai||Đúng

    Ta có f'(x) = 2cosx - 1f'(x) = 0 \Leftrightarrow x = \pm
\frac{\pi}{3} + k2\pi\ (k\mathbb{\in Z}).

    Khi đó với x \in \lbrack
0;\pi\rbrack thì x =
\frac{\pi}{3}.

    Ta có f(0) = 0,\ f\left( \frac{\pi}{3}
\right) = \sqrt{3} - \frac{\pi}{3},\ f(\pi) = - \pi.

    Vậy giá trị nhỏ nhất của hàm số f(x) =
2sinx - x trên \lbrack
0;\pi\rbrack- \pi.

    Đáp án: a) Đúng, b) Đúng, c) Đúng, d) Sai

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Các nhận định sau đúng hay sai?

    a) Hàm số nghịch biến trên khoảng ( -
\infty; - 1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng ( - 1;1). Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0\rbrack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Các nhận định sau đúng hay sai?

    a) Hàm số nghịch biến trên khoảng ( -
\infty; - 1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng ( - 1;1). Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0\rbrack bằng 1. Sai||Đúng

    Theo Hình 3, hàm số nghịch biến trên khoảng ( - \infty\ ;\  - 1) và đạt cực tiểu tại điểm x_{o} = - 1.

    Vì hàm số đồng biến trên khoảng ( - 1\ \ ;\ 1) nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó. Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1\ ;\
0\rbrack bằng - 1.

    Đáp án: a) Đúng, b) Đúng, c) Đúng, d) Sai.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    Xét tính đúng sai của các mệnh đề dưới đây:

    a) Hàm số y = f(x) có hai điểm cực trị là 02. Đúng||Sai

    b) Giá trị b bằng 0. Đúng||Sai

    c) Giá trị c = - 2. Sai||Đúng

    d) f(x) = x^{3} - 6x^{2} + 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    Xét tính đúng sai của các mệnh đề dưới đây:

    a) Hàm số y = f(x) có hai điểm cực trị là 02. Đúng||Sai

    b) Giá trị b bằng 0. Đúng||Sai

    c) Giá trị c = - 2. Sai||Đúng

    d) f(x) = x^{3} - 6x^{2} + 2. Sai||Đúng

    Hàm số y = f(x) có điểm cực tiểu là x = 2, điểm cực đại là x = 0.

    Ta có: f'(x) = 3x^{2} + 2ax +
b. 0,2 là hai nghiệm của phương trình f'(x) = 0

    nên b = 0,\ \ a = - 3. Vì đồ thị hàm số đi qua điểm có tọa độ (0\ \ ;\ \
2)nên c = 2.

    Suy ra f(x) = x^{3} - 2x^{2} + 2.

    Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

     

    Dựa vào đồ thị ta thấy hàm số y =
f(x) có hai điểm cực trị là x =
0x = 2.

    Giá trị lớn nhất của hàm số trên R không tồn tại.

    Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng ( - 2;0)

    Dựa vào đồ thị ta có f(0) = 2
\Rightarrow c = 2

  • Câu 8: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

    a) Hàm số đồng biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng (1;2). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;2\rbrack bằng 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

    a) Hàm số đồng biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng (1;2). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;2\rbrack bằng 2. Đúng||Sai

    a) Theo Hình, hàm số đồng biến trên khoảng ( - \infty\ ;\ 0)

    b) Hàm số đạt cực tiểu tại điểm x_{o} =
2.

    c) Vì hàm số nghịch biến trên khoảng (0\
\ ;\ 2) nên đạo hàm của hàm số nhận giá trị âm trên khoảng đó.

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0\ ;\ 2\rbrack bằng 2.

    Đáp án: a) Đúng, b) Đúng, c) Sai d) Đúng.

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.

    Xét tính đúng hoặc sai của các mệnh đề sau:

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty; - 2). Sai||Đúng

    b) Hàm số y = f(x) có hai điểm cực trị. Sai||Đúng

    c) f'(2) = 4. Sai||Đúng

    d) Hàm số g(x) = f(x) - \frac{1}{2}x^{2}
+ x + 2024 đồng biến trên khoảng \left( - \frac{5}{2}; - \frac{3}{2}
\right). Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.

    Xét tính đúng hoặc sai của các mệnh đề sau:

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty; - 2). Sai||Đúng

    b) Hàm số y = f(x) có hai điểm cực trị. Sai||Đúng

    c) f'(2) = 4. Sai||Đúng

    d) Hàm số g(x) = f(x) - \frac{1}{2}x^{2}
+ x + 2024 đồng biến trên khoảng \left( - \frac{5}{2}; - \frac{3}{2}
\right). Đúng||Sai

    a) Sai. Vì từ đồ thị của hàm số y =
f'(x) ta thấy f'(x) \geq
0 với \forall x \geq 1 nên hàm số đồng biến trên khoảng (1; +
\infty).

    b) Sai. Vì từ đồ thị của hàm số y =
f'(x) ta thấy f'(x) chỉ đổi dấu một lần qua x = 1 nên hàm số có một điểm cực trị.

    c) Sai. Vì:

    Từ đồ thị ta có hàm số f'(x) có dạng: f'(x) = a(x + 2)^{2}(x -
1).

    Đồ thị hàm số y = f'(x) đi qua (0; - 4) nên: - 4 = a(0 + 2)^{2}(0 - 1) \Leftrightarrow a =
1.

    Vậy f'(x) = (x + 2)^{2}(x - 1)
\Rightarrow f'(2) = (2 + 2)^{2}(2 - 1) = 16.

    d) Đúng. Vì:

    Ta có: g'(x) = f'(x) - x + 1 = 0
\Leftrightarrow f'(x) = x - 1.

    Vẽ đường thẳng y = x - 1 trên cùng hệ trục tọa độ với đồ thị hàm số y =
f'(x).

    Khi đó: f'(x) = x - 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = - 1 \\
x = 1
\end{matrix} \right..

    Bảng biến thiên của hàm số g(x).

    A black background with white squaresDescription automatically generated

    Ta có hàm số g(x) đồng biến trên khoảng ( - 3; - 1) nên g(x) đồng biến trên khoảng \left( - \frac{5}{2}; - \frac{3}{2}
\right).

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{2}{3}x^{3} - mx^{2}
- 2\left( 3m^{2} - 1 \right)x + \frac{2}{3} (m là tham số) (1) .

    a) Khi m = 1 thì hàm số có 2 điểm cực trị. Đúng||Sai

    b) Khi m = 1 thì hàm số nghịch biến trên khoảng ( - 1;2). Sai||Đúng

    c) Hàm số (1) có hai điểm cực trị \Leftrightarrow \left\lbrack \begin{matrix}
m > 2\sqrt{13} \\
m < - 2\sqrt{13}
\end{matrix} \right.. Sai||Đúng

    d) Co đúng một giá trị của tham số m để hàm số (1) có 2 điểm cực trị x_{1}, x_{2} sao cho x_{1}x_{2} + 2\left( x_{1} + x_{2} \right) =
1. Khi đó giá trị biểu thức S =
a^{2} + b^{2} = 13. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2}{3}x^{3} - mx^{2}
- 2\left( 3m^{2} - 1 \right)x + \frac{2}{3} (m là tham số) (1) .

    a) Khi m = 1 thì hàm số có 2 điểm cực trị. Đúng||Sai

    b) Khi m = 1 thì hàm số nghịch biến trên khoảng ( - 1;2). Sai||Đúng

    c) Hàm số (1) có hai điểm cực trị \Leftrightarrow \left\lbrack \begin{matrix}
m > 2\sqrt{13} \\
m < - 2\sqrt{13}
\end{matrix} \right.. Sai||Đúng

    d) Co đúng một giá trị của tham số m để hàm số (1) có 2 điểm cực trị x_{1}, x_{2} sao cho x_{1}x_{2} + 2\left( x_{1} + x_{2} \right) =
1. Khi đó giá trị biểu thức S =
a^{2} + b^{2} = 13. Đúng||Sai

    c) Tập xác định: D\mathbb{=
R}.

    Đạo hàm y' = 2x^{2} - 2mx - 6m^{2} +
2.. Hàm số có hai điểm cực trị

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - 2\left( - 6m^{2} + 2 \right) > 0
\Leftrightarrow 13m^{2} - 4 > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m > \frac{2\sqrt{13}}{13} \\
m < - \frac{2\sqrt{13}}{13}
\end{matrix} \right.

    d) Theo định lý Viet thì \left\{
\begin{matrix}
x_{1} + x_{2} = m \\
x_{1}x_{2} = - 3m^{2} + 1
\end{matrix} \right.

    Ta có x_{1}x_{2} + 2\left( x_{1} + x_{2}\right) = 1 \Leftrightarrow - 3m^{2} + 1 + 2m = 1

    \Leftrightarrow 3m^{2}- 2m = 0 \Leftrightarrow \left\lbrack \begin{matrix}m = 0 \\m = \frac{2}{3}\end{matrix} \right.

    Chỉ có giá trị m = \frac{2}{3} thỏa mãn điều kiện, khi đó S = a^{2} + b^{2}
= 2^{2} + 3^{2} = 13.

  • Câu 11: Thông hiểu
    Xét sự đúng sai của các nhận đính

    Cho hàm số y = x^{3} - 6x^{2} + 9x -
1 . Các nhận định dưới đây đúng hay sai?

    a) Hàm số đồng biến trên khoảng ( -
\infty;1)(3; + \infty). Đúng||Sai

    b) Hàm số có hai điểm cực trị. Đúng||Sai

    c) Hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu bằng 3. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2\rbrack bằng 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = x^{3} - 6x^{2} + 9x -
1 . Các nhận định dưới đây đúng hay sai?

    a) Hàm số đồng biến trên khoảng ( -
\infty;1)(3; + \infty). Đúng||Sai

    b) Hàm số có hai điểm cực trị. Đúng||Sai

    c) Hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu bằng 3. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2\rbrack bằng 2. Sai||Đúng

    Ta có: y' = 3x^{2} - 12x +
9

    y' = 0 \Rightarrow x = 1,x =
3

    Bảng biến thiên:

    A line with numbers and arrowsDescription automatically generated

    a) y' > 0 trên các khoảng ( - \infty;1)(3; + \infty): nên mệnh đề đúng

    b) Từ bảng biến thiên thấy hàm số có hai điểm cực trị: nên mệnh đề đúng

    c) Hàm số đạt cực đại tại x = 1: nên mệnh đề sai

    d) Trong khoảng \lbrack
1;2\rbrack thì hàm số nghịch biến nên: \min_{\lbrack 1;2\rbrack}f(x) = 1: nên mệnh đề sai

    Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai

  • Câu 12: Nhận biết
    Xét sự đúng sai của các khẳng định

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau.

    a) Hàm số đã cho nghịch biến trên khoảng (0;2). Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số bằng -
3.Đúng||Sai

    c) Hàm số đạt cực đại tại x = 0. Sai||Đúng

    d) Đồ thị của hàm số đã cho cắt trục hoành tại 4 điểm phân biệt. Đúng||Sai

    Đáp án: a) Sai, b) Đúng, c) Sai, d) Đúng.

  • Câu 13: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x + \frac{4}{x}. Xét tính đúng sai của các nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    A diagram of a mathematical equationDescription automatically generated with medium confidence

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    A graph of a functionDescription automatically generated

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = x + \frac{4}{x}. Xét tính đúng sai của các nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    A diagram of a mathematical equationDescription automatically generated with medium confidence

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    A graph of a functionDescription automatically generated

    Đúng||Sai

    a) Đạo hàm của hàm số đã cho là y' =
1 - \frac{4}{x^{2}} nên mệnh đề sai.

    b) y' = 1 - \frac{4}{x^{2}}; y' > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x > 2 \\
x < - 2
\end{matrix} \right.; y' không xác định tại x = 0.

    nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty).

    c) Bảng biến thiên của hàm số đã cho là:

    A diagram of a mathematical equationDescription automatically generated with medium confidence

    Mệnh đề sai vì thấy y( - 2) = - 4 \neq
4

    d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng

    A graph of a functionDescription automatically generated.

    Đáp án: a) Sai b) Đúng c) Sai d) Đúng.

  • Câu 14: Thông hiểu
    Xét sự đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
2. Sai||Đúng

    c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng ( - 1;1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
2. Sai||Đúng

    c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng ( - 1;1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 1. Sai||Đúng

    Theo Hình 3, ta có:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0)

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
0.

    c) Vì hàm số đồng biến trên khoảng (0;1) nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó và nghịch biến trên khoảng ( - 1;0) nên đạo hàm của hàm số nhận giá trị không dương trên khoảng đó .

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 2 .

    Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.

  • Câu 15: Thông hiểu
    Xét sự đúng sai của các nhận định

    Cho hàm số f(x) liên tục trên \lbrack - 1;5\rbrack và có đồ thị trên đoạn \lbrack - 1;5\rbrack như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây:

    a) Hàm số có ba điểm cực trị trên đoạn \lbrack 0;5\rbrack. Sai||Đúng

    b) Hàm số đồng biến trên khoảng ( -
1;2). Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn \lbrack - 1;5\rbrackbằng 1. Đúng||Sai

    d) Giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0;1\rbrackbằng 1. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;5\rbrack và có đồ thị trên đoạn \lbrack - 1;5\rbrack như hình vẽ bên dưới.

    A graph of a functionDescription automatically generated

    Xét tính đúng sai của các khẳng định dưới đây:

    a) Hàm số có ba điểm cực trị trên đoạn \lbrack 0;5\rbrack. Sai||Đúng

    b) Hàm số đồng biến trên khoảng ( -
1;2). Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn \lbrack - 1;5\rbrackbằng 1. Đúng||Sai

    d) Giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0;1\rbrackbằng 1. Đúng||Sai

    Hàm số có hai điểm cực trị trên đoạn \lbrack 0;5\rbrack.

    Hàm số đồng biến trên khoảng ( - 1;0).

    Trên đoạn \lbrack -
1;5\rbrackhàm số f(x) có GTLN là 3; GTNN là -2.

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) bằng 1.

    Giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0;1\rbrackbằng 1.

    Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (7%):
    2/3
  • Thông hiểu (93%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Chuyên đề Toán 12

Xem thêm