Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 7 Luyện tập chung trang 74

Giải Toán 7 Luyện tập chung trang 74 hướng dẫn giải bài tập trong SGK Toán 7 Kết nối tri thức tập 1 trang 74, giúp các em học sinh ôn tập, củng cố kiến thức, luyện tập Giải Toán 7 hiệu quả. Sau đây mời các em tham khảo chi tiết.

Bài 4.16 trang 74 Toán 7 tập 1

Cho hai tam giác ABC và DEF thoả mãn AB = DE,AC = DF,\widehat {BAC} = \widehat {EDF} = {60^\circ },BC = 6\;{\rm{cm}},\widehat {ABC} = {45^\circ }AB=DE,AC=DF,BAC^=EDF^=60,BC=6cm,ABC^=45. Tính độ dài cạnh EF và số đo các góc ACB, DEF, EFD.

Hướng dẫn giải:

Bài 4.16

Xét hai tam giác ABC và DEF có:

\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} = {60^\circ }\end{array}AB=DEAC=DFBAC^=EDF^=60

\Rightarrow \Delta ABC = \Delta DEF(c.g.c)ΔABC=ΔDEF(c.g.c)

Do đó:

EF = BC = 6cm

\widehat {DEF} = \widehat {ABC} = {45^o}DEF^=ABC^=45o

\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}BAC^+ABC^+ACB^=180o60o+45o+ACB^=180oACB^=75o

\Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}EFD^=ACB^=75o

Bài 4.17 trang 74 Toán 7 tập 1

Cho hai tam giác ABC và DEF thoả mãn AB = DE, \widehat {ABC} = \widehat {DEF} = {70^\circ },\widehat {BAC} = \widehat {EDF} = {60^\circ },AC = 6\;{\rm{cm}}AB=DE,ABC^=DEF^=70,BAC^=EDF^=60,AC=6cm.

Tính độ dài cạnh DF.

Hướng dẫn giải:

Xét hai tam giác ABC và DEF có:

Cho hai tam giác ABC và DEF thỏa mãn AB = DE

\begin{array}{l}\widehat {ABC} = \widehat {DEF} (= {70^\circ })\\AB = DE\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}ABC^=DEF^(=70)AB=DEBAC^=EDF^(=60)

\Rightarrow \Delta ABC{\rm{  = }}\Delta DEF(g.c.g)ΔABC=ΔDEF(g.c.g)

\Rightarrow DF = ACDF=AC (2 cạnh tương ứng)

Mà AC = 6 cm

\Rightarrow DF = 6cmDF=6cm

Bài 4.18 trang 74 Toán 7 tập 1

Cho Hình 4.44, biết EC = ED và \widehat {AEC} = \widehat {AED}AEC^=AED^. Chứng minh rằng:

\begin{array}{*{20}{l}}{{\rm{ a) }}\Delta AEC = \Delta AED;}&{{\rm{ b) }}\Delta ABC = \Delta ABD.}\end{array}a)ΔAEC=ΔAED;b)ΔABC=ΔABD.

Hình 4.44

Hướng dẫn giải:

a) Xét hai tam giác AEC và AED có

EC = ED

\widehat {CEA} = \widehat {DEA}CEA^=DEA^

AE chung

\Rightarrow \Delta AEC{\rm{  =  }}\Delta AED(c.g.c)ΔAEC=ΔAED(c.g.c)

b) Do \Delta AEC{\rm{  =  }}\Delta AEDΔAEC=ΔAED nên \widehat {CAE} = \widehat {DAE}CAE^=DAE^ (2 góc tương ứng) và AC=AD (2 cạnh tương ứng).

Xét \Delta ABCΔABC\Delta ABDΔABD có:

AB chung

\widehat {CAE} = \widehat {DAE}CAE^=DAE^

AC=AD

\Rightarrow \Delta ABC = \Delta ABD(c.g.c)ΔABC=ΔABD(c.g.c)

Bài 4.19 trang 74 Toán 7 tập 1

Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A,B,C lần lượt thuộc các tia Ox, Oy, Oz sao cho \widehat {CAO} = \widehat {CBO}CAO^=CBO^.

a) Chứng minh rằng \Delta OAC = \Delta OBCΔOAC=ΔOBC.

b) Lấy điểm M trên tia đối của tia CO. Chứng minh rằng \Delta MAC = \Delta MBCΔMAC=ΔMBC.

Hướng dẫn giải:

Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A, B, C lần lượt thuộc

a) Xét \Delta OACΔOAC\Delta OBCΔOBC có:

\widehat {AOC} = \widehat {AOB}AOC^=AOB^(Oz là phân giác góc xOy)

OC chung

\widehat {CAO} = \widehat {CBO}CAO^=CBO^

\Rightarrow \Delta OAC = \Delta OBC(g.c.g)ΔOAC=ΔOBC(g.c.g)

b) Do \Delta OAC = \Delta OBCΔOAC=ΔOBC nên AC=BC (2 cạnh tương ứng)

\widehat {ACO}ACO^\widehat {ACM}ACM^ kề bù

\widehat {BCO}BCO^\widehat {BCM}BCM^ kề bù

\widehat {ACO} = \widehat {BCO}ACO^=BCO^ nên \widehat {ACM} = \widehat {BCM}ACM^=BCM^

Xét \Delta MACΔMAC\Delta MBCΔMBC có:

AC=BC

\widehat {ACM} = \widehat {BCM}ACM^=BCM^

CM chung

\Rightarrow \Delta MAC = \Delta MBC(c.g.c)ΔMAC=ΔMBC(c.g.c)

Chia sẻ, đánh giá bài viết
7
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 7 Kết nối tri thức

    Xem thêm
    Chia sẻ
    Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
    Mã QR Code
    Đóng