Toán lớp 5 trang 176, 177 Luyện tập chung (tiếp)
Giải bài tập trang 176, 177 SGK Toán 5: Luyện tập chung (tiếp) bao gồm đáp án chi tiết cho từng bài tập SGK Toán lớp 5 trang 176 và 177 do giáo viên VnDoc biên soạn và đăng tải.
Toán lớp 5 trang 176 Bài 1
Tính
a) \(1\dfrac{5}{7} \times \dfrac{3}{4};\)
b) \(\dfrac{{10}}{{11}}:1\dfrac{1}{3};\)
c) 3,57 x 4,1 + 2,43 x 4,1;
d) 3,42 : 0,57 x 8,4 - 6,8.
Đáp án:
a)\(1\dfrac{5}{7} \times \dfrac{3}{4} = \dfrac{{12}}{7} \times \dfrac{3}{4} = \dfrac{{12 \times 3}}{{7 \times 4}} = \dfrac{{4 \times 3 \times 3}}{{7 \times 4}} = \dfrac{9}{7};\)
b)\(\dfrac{{10}}{{11}}:1\dfrac{1}{3} = \dfrac{{10}}{{11}}:\dfrac{4}{3} = \dfrac{{10}}{{11}} \times \dfrac{3}{4} = \dfrac{{10 \times 3}}{{11 \times 4}} = \dfrac{{5 \times 2 \times 3}}{{11 \times 2 \times 2}} = \dfrac{{15}}{{22}};\)
c) 3,57 x 4,1 + 2,43 x 4,1
= (3,57 + 2,43) x 4,1
= 6 x 4,1
= 24,6
d) 3,42 : 0,57 x 8,4 - 6,8
= 6 x 8,4 - 6,8
= 50,4 - 6,8
= 43,6
Toán lớp 5 trang 177 Bài 2
Tính bằng cách thuận tiện nhất
a) \(\;\dfrac{{21}}{{11}} \times \dfrac{{22}}{{17}} \times \dfrac{{68}}{{63}}\)
b) \(\;\dfrac{5}{{14}} \times \dfrac{7}{{13}} \times \dfrac{{26}}{{25}}\)
Đáp án:
a) \(\dfrac{{21}}{{11}} \times \dfrac{{22}}{{17}} \times \dfrac{{68}}{{63}} = \dfrac{{21 \times 22 \times 68}}{{11 \times 17 \times 63}}\)
=\(\dfrac{{21 \times 11 \times 2 \times 17 \times 4}}{{11 \times 17 \times 21 \times 3}}= \dfrac{{2 \times 4}}{3} = \dfrac{8}{3}\)
b) \(\dfrac{5}{{14}} \times \dfrac{7}{{13}} \times \dfrac{{26}}{{25}} = \dfrac{{5 \times 7 \times 26}}{{14 \times 13 \times 25}}\)
= \(\dfrac{{5 \times 7 \times 13 \times 2}}{{7 \times 2 \times 13 \times 5 \times 5}} = \dfrac{1}{5}\)
Toán lớp 5 trang 177 Bài 3
Một bể bơi dạng hình hộp chữ nhật có chiều dài 22,5m, chiều rộng 19,2m. Nếu bể chứa 414,72m2 nước thì mực nước trong bể lên tới \(\frac{4}{5}\) chiều cao của bể. Hỏi chiều cao của bể là bao nhiêu mét?
Đáp án:
Diện tích đáy bể bơi là:
22,5 x 19,2 = 432 (m2)
Chiều cao mực nước trong bể là:
414,72 : 432 = 0,96m.
Vậy chiều cao bể bơi là: 0,96 : 4 x 5 = 1,2 (m)
Đáp số: 1,2m.
Ta có thể lập luận theo cách khác như sau
Vnước = chiều dài x chiều rộng x chiều cao của nước.
= diện tích đáy bể x chiều cao của nước.
Nên chiều cao của nước = V : diện tích đáy bể.
Đáy bể có chiều dài 22,5m, chiều rộng 19,2m.
Diện tích đáy bể bơi là:
22,5 x 19,2 = 432 (m2)
Thể tích của nước trong bể là 414,72m3 và diện tích đáy bể là 432 m2
Chiều cao mực nước trong bể là:
414,72 : 432 = 0,96 (m).
Tỉ số chiều cao của bể bơi và chiều cao mực nước trong bể là \(\frac54\).
Vậy chiều cao bể bơi là:
0,96 x \(\frac54\) = 1,2 (m)
Đáp số: 1,2m.
Toán lớp 5 trang 177 Bài 4
Câu 4: Một con thuyền đi với vận tốc 7,2km/giờ khi nước lặng, vận tốc của dòng nước là 1,6km/giờ.
a) Nếu thuyền đi xuôi dòng thì sau 3,5 giờ sẽ đi được bao nhiêu ki-lô-mét?
b) Nếu thuyền đi ngược dòng thì cần bao nhiêu thời gian để đi được quãng đường như khi xuôi dòng trong 3,5 giờ?
Đáp án:
a) Vận tốc thuyền khi đi xuôi dòng là:
7,2 + 1,6 = 8,8 (km/giờ)
Vận tốc thuyền khi đi ngược dòng là:
7,2 – 1,6 = 5,6 (km/giờ)
Quãng sông thuyền đi xuôi dòng trong 3,5 giờ là:
8,8 x 3,5 = 30,8 (km)
b) Thời gian thuyền đi ngược dòng quãng sông 30,8km là:
30,8 : 5,6 = 5,5 (giờ) = 5 giờ 30 phút.
Đáp số: a) 30,8km; b) 5 giờ 30 phút.
Toán lớp 5 trang 177 Bài 5
Câu 5: Tìm x:
8,75 x X + 1,25 x X = 20
Đáp án:
Áp dụng tính chất (a + b) x c = a x c + b x c ta được
8,75 x X + 1,25 x X = 20
(8,75 + 1,25) x X = 20
10 x X = 20
x = 20 : 10
x = 2
Bài tiếp theo: Giải bài tập trang 177, 178 SGK Toán 5: Luyện tập chung (tiếp)
Bài luyện tập
Bài 1: Một người đi xe máy trong 4 giờ được 142km. Tính vận tốc của người đi xe máy.
Bài 2: Một chiếc ca nô di chuyển với vận tốc 16km/giờ. Hãy tính quãng đường đi được của ca nô trong 3 giờ 30 phút.
Bài 3: Quãng đường AB dài 180km. Một ô tô đi từ A với vận tốc không đổi là 45km/ giờ và đến B lúc 14 giờ 45 phút. Hỏi người đó đi từ A lúc mấy giờ, biết rằng dọc đường ô tô nghỉ 15 phút.
Đáp án:
Bài 1:
Vận tốc của người đi xe máy là:
142 : 4 = 35,5 (km/giờ)
Đáp số: 35,5 km/giờ
Bài 2:
Quãng đường ca nô đi được trong 3,5 giờ là:
16 × 3,5 = 56 (km)
Đáp số: 56km.
Bài 3:
Thời gian ô tô đi từ A đến B là:
135 : 45 = 4 (giờ).
Thời gian ô tô bắt đầu khởi hành từ A đến B là:
14 giờ 45 phút – 4 giờ - 15 phút = 10 giờ 30 phút.
Đáp số: 10 giờ 30 phút