Giải Toán 12 trang 22 tập 1 Cánh diều
Giải Toán 12 trang 22 Cánh diều Tập 1
Giải Toán 12 trang 22 Tập 1 hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 12 Cánh diều tập 1 trang 22.
Luyện tập 1 trang 22 SGK Toán 12 tập 1
Tìm tiệm cận ngang của đồ thị hàm số \(y = \frac{3x-2}{x+1}\)
Hướng dẫn giải:
Hàm số đã cho có tập xác định là: \(\mathbb {R} \setminus \{-1\}\)
Ta có: \(\lim_{x\rightarrow +\infty} f(x) = \frac{3x-2}{x+1} =3\)
\(\lim_{x\rightarrow -\infty} f(x) = \frac{3x-2}{x+1} =3\)
Vậy đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số đã cho.
Hoạt động 2 trang 22 SGK Toán 12 tập 1
Cho hàm số y = f(x) = \(\frac{1}{x}\) có đồ thị là đường cong như Hình 12
Tìm \(\lim_{x\rightarrow 0^{+} } f(x); \lim_{x\rightarrow 0^{-} } f(x)\)
Hướng dẫn giải:
Ta có: \(\lim_{x\rightarrow 0^+} f(x) = \lim_{x\rightarrow 0^+} \frac{1}{x} =0\)
\(\lim_{x\rightarrow 0^-} f(x) = \lim_{x\rightarrow 0^-} \frac{1}{x} =0\)
-----------------------------------------------
---> Xem thêm: Giải Toán 12 trang 23 tập 1 Cánh diều
Lời giải Toán 12 trang 22 Tập 1 Cánh diều với các câu hỏi nằm trong Bài 3: Đường tiệm cận của đồ thị hàm số, được VnDoc biên soạn và đăng tải!