Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 12 trang 32 tập 1 Cánh diều

Giải Toán 12 trang 32 Cánh diều Tập 1

Giải Toán 12 trang 32 Tập 1 hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 12 Cánh diều tập 1 trang 32.

Luyện tập 4 trang 32 SGK Toán 12 tập 1

Khảo sát sự biến thiên và vẽ đồ thị hàm số y = \frac{x-3}{-x+2}\(y = \frac{x-3}{-x+2}\)

Hướng dẫn giải:

1) Tập xác định: \mathbb{R} \setminus \{2\}\(\mathbb{R} \setminus \{2\}\)

2) Sự biến thiên

  • Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:

\lim_{x \rightarrow 2^+} y = +\infty ;\  \lim_{x \rightarrow 2^-} y = -\infty\(\lim_{x \rightarrow 2^+} y = +\infty ;\ \lim_{x \rightarrow 2^-} y = -\infty\). Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

\lim_{x \rightarrow +\infty} y =  -1 ; \ \lim_{x \rightarrow -\infty} y =  -1\(\lim_{x \rightarrow +\infty} y = -1 ; \ \lim_{x \rightarrow -\infty} y = -1\). Do đó, đường thẳng y = − 1 là tiệm cận ngang của đồ thị hàm số

  • Bảng biến thiên:

y\(y'=\frac{-1}{\left(-x+2\right)^2}< 0\) với mọi x ≠ 2.

Hàm số nghịch biến trên mỗi khoảng (-\infty;2)\((-\infty;2)\)(2;+\infty)\((2;+\infty)\)

Hàm số không có cực trị.

3) Đồ thị

Giao điểm của đồ thị với trục tung: \left(0;-\frac{3}{2}\right)\(\left(0;-\frac{3}{2}\right)\)

Giao điểm của đồ thị với trục hoành: (3; 0)

Đồ thị hàm số đi qua các điểm (1; − 2) 

Vậy đồ thị hàm số y = \frac{x-3}{-x+2}\(y = \frac{x-3}{-x+2}\) được cho ở hình bên dưới.

Quan sát hình vẽ, đồ thị đó nhận tâm giao điểm I(1; − 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

-----------------------------------------------

---> Xem thêm: Giải Toán 12 trang 34 tập 1 Cánh diều

Lời giải Toán 12 trang 32 Tập 1 Cánh diều với các câu hỏi nằm trong Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số, được VnDoc biên soạn và đăng tải!

Chia sẻ, đánh giá bài viết
1
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Toán 12 Cánh diều

Xem thêm