Giải Toán 12 trang 25 tập 1 Cánh diều
Giải Toán 12 trang 25 Cánh diều Tập 1
Giải Toán 12 trang 25 Tập 1 hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 12 Cánh diều tập 1 trang 25.
Luyện tập 3 trang 25 SGK Toán 12 tập 1
Chứng minh rằng đường thẳng y = – x là tiệm cận xiên của đồ thị hàm số
\(y = f\left( x \right) = \frac{{ - {x^2} - 2x + 3}}{{x + 2}}\)
Hướng dẫn giải:
Hàm số đã cho có tập xác định là: \(\mathbb {R} \setminus \{-2\}\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( -x \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left(\frac{{ - {x^2} - 2x + 3}}{{x + 2}} +x\right)\)
\(=\mathop {\lim }\limits_{x \to + \infty } \frac{{ 3}}{{x + 2}} =0\)
\(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( -x \right)} \right] = 0\)
Vậy y = - x là tiệm cận xiên của đồ thị hàm số.
-----------------------------------------------
---> Xem thêm: Giải Toán 12 trang 26 tập 1 Cánh diều
Lời giải Toán 12 trang 25 Tập 1 Cánh diều với các câu hỏi nằm trong Bài 3: Đường tiệm cận của đồ thị hàm số, được VnDoc biên soạn và đăng tải!